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Abstract
In this paper, we have discussed a special type of nonlinear boundary value problems (BVPs) which

involves both the right-sided Caputo-Katugampola (CK) and the left-sided Katugampola fractional deriv-
atives (FDs). Based on some new techniques and some properties of the Mittag-Leffl er functions, we
have introduced a formula of the solution for the aforementioned problem. To study the existence and
uniqueness results of the solution for this problem, we have applied some known fixed point theorems (i.e.,
Banach’s contraction principle, Schauder’s fixed point theorem, nonlinear alternative of Leray-Schauder
type and Schaefer’s fixed point theorem). We have also studied the Ulam-Hyers stability of this problem.
To illustrate the theoretical results in this work, we have given two examples.

1 Introduction

In mathematical analysis, fractional calculus (FC) is a subject that studies different approaches of defining
non-integer order derivatives (i.e., fractional differential calculus (FDC)) and integrals (i.e., fractional integral
calculus (FIC)). For more details in the subject, the reader may refer to (Samko et al. 1993 [1], Podlubny
1999 [2], Kilbas et al. 2006 [3], Diethelm 2010 [4]).
Considering FC, classical integer order differential equations (IODEs) commonly known as ordinary DEs

have been generalized to get fractional order differential equations (FODEs) or FDEs simply. FDEs find
their applications in may different academic and research fields of engineering and science including biology,
mathematical physics, control theory, bio- and bio-inspired engineering, fluid mechanics, and signals and
systems.
In [5, 6, 7] Katugampola introduced a new fractional integro-differential operator which generalized both

the Reimann-Liouville (RL) and Hadamard operators.
Almeida et al. in [8] proposed a Caputo-type modification of Katugampola fractional derivative (FD) of

order α ∈ (0, 1) which represents in turn a generalization of the Caputo and Caputo-Hadamard FDs. This
new FD was named as the Caputo-Katugampola (CK) FD. In the same paper, some fundamental results
have been presented and proved. The authors have also developed an existence and uniqueness theorem for
a BVP with dependence on the CKFD. Later, in [9] Ricardo Almeida has defined a CKFD of arbitrary real
order α > 0, and has studied its properties.

Different fixed-point theorems have been used by researchers to develop solutions and their existence for
BVPs of FDEs (see [10, 11, 12])
The stability problem introduced by Ulam in [13] has attracted the attention and efforts of many famous

researchers (see [14, 15] ). Not long ago, Ulam-Hyers stability problem for FDEs has gained much research
attention (see [16, 17, 18, 19]).
Recently, some BVPs involving nonlinear mixed FDEs have been studied (see [20, 21, 22, 23]).
In this paper, we investigate the existence and uniqueness of solution for the following BVP involving a

nonlinear FDE with two different fractional derivatives
CKDβ,ρ

1−

(
KDα,ρ

0+ + λ
)
u(t) = f(t, u(t)), t ∈ J = [0, 1], (1)
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with the boundary conditions
(KI1−α,ρ

0+ u)(0) = u0, (2)(
KDα,ρ

0+ + λ
)
u(1) = u1, (3)

where α, β, α + β ∈ (0, 1), λ, ρ > 0, u0, u1 ∈ R, CKDβ,ρ
1− is the right CKFD of order β. KDα,ρ

0+ is the left
Katugampola FD of order α and KI1−α,ρ

0+ is the Katugampola FI.
The rest of this paper is structured as follows. In section 2, we re-call some useful definitions, theorems

and lemmas of FC. We also present some properties of classical and generalized Mittag-Leffl er functions. In
section 3, we give the formula of solution to the studied problem. This result plays a crucial role in the
coming analysis throughout this paper. In section 4, we study the existence and uniqueness of solution to the
problem (1)—(3) by using the Banach’s contraction principle, Schauder’s Fixed Point Theorem, Schaefer’s
Fixed Point Theorem and the nonlinear alternative of Leray-Schauder type. In section 5, we present the
Ulam-Hyers stability result for the nonlinear mixed FDE (1)—(3). We also give two examples to demonstrate
our theoretical results. Finally, this paper is ended with a conclusion.

2 Background Materials and Preliminaries

In this section, we present the necessary definitions and notations from FC theory which will be used through
the whole of this work. Let J = [0, 1] be a finite interval of R. We denote by C ([0, 1],R) the Banach space
of all continuous functions y : [0, 1]→ R with the norm

‖y‖∞ = sup
t∈[0,1]

|y (t)| ,

where y ∈ C ([0, 1],R) . We denote also by Cn ([0, 1],R) with n ∈ N0 the set of mappings having n times
continuously differentiable on J .
As in [3], for 1 ≤ p ≤ ∞ and c ∈ R, consider the space Xp

c [0, 1] as follows

Xp
c [0, 1] =

{
y : [0, 1]→ R : ‖y‖Xpc =

(∫ 1

0

|scy (s)|p ds
s

) 1
p

<∞
}
,

for 1 ≤ p <∞, c ∈ R. For the case p =∞,

‖y‖X∞c = ess sup
0≤t≤1

[tc |y (t)|] , c ∈ R.

Now, we give some basic definitions and properties of the FC theory that we will need later in this work.

Definition 1 (Katugampola fractional integrals [5, 6, 9]) Let a, b > 0 be two reals, and y : [a, b]→ R
be an integrable function. The left-sided and right-sided Katugampola fractional integrals of order α > 0, and
parameter ρ > 0 are defined respectively by

(
KIα,ρa+ y

)
(t) =

ρ1−α

Γ (α)

∫ t

a

sρ−1 (tρ − sρ)α−1
y (s) ds, t > a,

and (
KIα,ρb− y

)
(t) =

ρ1−α

Γ (α)

∫ b

t

sρ−1 (sρ − tρ)α−1
y (s) ds, t < b, (4)

where Γ (.) is the Gamma function.
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Definition 2 (Katugampola fractional derivatives [6, 9]) The left-sided and right-sided Katugampola
fractional derivatives for a differential operator of order α > 0 with dependence on a parameter ρ > 0 are
defined respectively as

(
KDα,ρ

a+ y
)

(t) =

(
t1−ρ

d

dt

)n
KIn−α,ρa+ y (t)

=
ρ1−n+α

Γ (n− α)

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1 (tρ − sρ)n−α−1
y (s) ds,

and (
KDα,ρ

b− y
)

(t) =

(
−t1−ρ d

dt

)n
KIn−α,ρb− y (t)

=
ρ1−n+α

Γ (n− α)

(
−t1−ρ d

dt

)n ∫ b

t

sρ−1 (sρ − tρ)n−α−1
y (s) ds,

where n− 1 < α < n, n = [α] + 1 and [α] denotes the integer part of α.

Definition 3 (Caputo-Katugampola fractional derivatives [8]) Let 0 < a < b < ∞, y : [a, b] → R
be an integrable function, and γ ∈ (0, 1) and ρ > 0 are two fixed reals. The left-sided and right-sided
Caputo-Katugampola fractional derivatives of order γ are defined respectively by

CKDγ,ρ
a+ y (t) = KDγ,ρ

a+ [y(t)− y(a)]

=
ργ

Γ (1− γ)

(
t1−ρ

d

dt

)∫ t

a

τρ−1 (tρ − τρ)−γ [y (τ)− y (a)] dτ,

and

CKDγ,ρ
b− y (t) = KDγ,ρ

b− [y(t)− y(b)]

=
−ργ

Γ (1− γ)

(
t1−ρ

d

dt

)∫ b

t

τρ−1 (τρ − tρ)−γ [y (τ)− y (b)] dτ.

Lemma 1 (See [8]) Let J = [a, b] , γ, ρ > 0 and y ∈ C(J,R) ∩ C1(J,R). Then, the Caputo-Katugampola
fractional deferential equation

CKDγ,ρ
b− y (t) = 0,

has solutions

y (t) = c0 + c1

(
bρ − tρ
ρ

)
+ c2

(
bρ − tρ
ρ

)2

+ ...+ cn−1

(
bρ − tρ
ρ

)n−1

,

where ci ∈ R, i = 0, 1, 2, ..., n− 1 and n = [α] + 1.

Theorem 1 (See [9]) Given a function y ∈ Cn [a, b] , we have

KI
γ,ρ

b−
CKDγ,ρ

b− y (t) = y (t)−
n−1∑
j=0

ρ−j(−1)j

j!
(bρ − tρ)j y(j) (b) .

If 0 < γ < 1, then
KI

γ,ρ

b−
CKDγ,ρ

b− y (t) = y (t)− y (b) .

Theorem 2 (See [24]) The Cauchy problem{ (
KDµ,ρ

0+ − λ
)
u(t) = f(t), t > 0, 0 < µ ≤ 1, λ ∈ R,(

KI1−µ,ρ
0+ u

)
(0) = k, k ∈ R,
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has the solution

u (t) = k

(
tρ

ρ

)µ−1

Eµ,µ

(
λ

(
tρ

ρ

)µ)
+

∫ t

0

(
tρ − τρ
ρ

)µ−1

Eµ,µ

(
λ

(
tρ − τρ
ρ

)µ)
τρ−1f(τ)dτ.

Definition 4 Let E be a Banach space. We say that a part P in C(E) is equicontinuous if

∀ε > 0, ∃δ > 0,∀u, v ∈ E,∀A ∈ P, ‖u− v‖ < δ ⇒ ‖A(u)−A(v)‖ < ε.

Definition 5 We say A : E → E is Completely continuous if for any bounded subset P of E, the set A (P )
is relatively compact.

Theorem 3 (Arzelà-Ascoli’s Theorem [26]) Let B ⊂ C(E,Rn), (E = [a, b] ⊂ R). B is relatively com-
pact (i.e., B is compact) if and only if

1. B is uniformly bounded.

2. B is equicontinuous.

Recall that a function f is uniformly bounded in B if there exists a constant M > 0 such that

‖f‖ = sup
x∈E
|f(x)| ≤M, ∀f ∈ B.

Theorem 4 (Banach’s Fixed Point Theorem [27]) Let X be a Banach space and Q : X → X is a
contraction mapping. Then Q has a fixed point i.e.

∃!x ∈ X : Qx = x.

Theorem 5 (Schauder’s Fixed Point Theorem [28]) Let X be a Banach space, and let P be a closed,
convex and non-empty subset of X. Let T : P → P be a continuous mapping such that T (P ) is a relatively
compact subset of X. Then T has at least one fixed point in P .

Theorem 6 (Nonlinear alternative of Leray-Schauder type [28]) Let X be a Banach space with P
⊂ X be a closed and convex. U be an open subset of P with 0 ∈ U. Assume that A : U → P is a continuous,
compact (that is, A(U) is a relatively compact subset of P ) map. Then either

(i) A has a fixed point in U ; or

(ii) there is a point u ∈ ∂U and σ ∈ (0, 1) with u = σA(u).

Properties of Mittag-Leffl er functions
Here, we present some properties of the Mittag-Leffl er functions.

Definition 6 (See [2, 3]) For σ, γ > 0, z ∈ R, the classical Mittag-Leffl er function Eσ(z) and the general-
ized Mittag-Leffl er function Eσ,γ(z) are defined by

Eσ(z) =

∞∑
k=0

zk

Γ (σk + 1)
(5)

and

Eσ,γ(z) =

∞∑
k=0

zk

Γ (σk + γ)
(6)

It is clear from these two equations that Eσ,1(z) = Eσ(z).
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Lemma 2 (see [20]) Let α ∈ (0, 1), θ > α be arbitrary. The functions Eα, Eα,α and Eα,θ are nonnegative
and have the following properties:

(i) For any t ∈ J, Eα(−λtα) ≤ 1, Eα,α(−λtα) ≤ 1
Γ(α) and Eα,θ(−λt

α) ≤ 1
Γ(θ) .

(ii) For any t1, t2 ∈ J,
|Eα(−λtα2 )− Eα(−λtα1 )| = O(|t2 − t1|α), as t2 → t1,

|Eα,α(−λtα2 )− Eα,α(−λtα1 )| = O(|t2 − t1|α), as t2 → t1,

|Eα,α+1(−λtα2 )− Eα,α+1(−λtα1 )| = O(|t2 − t1|α), as t2 → t1.

3 Solutions for BVP

In this section, we give the formula of the solution to the problem (1)—(3). We start by solving the following
linear problem

CKDβ,ρ
1−

(
KDα,ρ

0+ + λ
)
u(t) = h(t), t ∈ J = [0, 1], (7)

with (
KI1−α,ρ

0+ u
)

(0) = u0, (8)(
KDα,ρ

0+ + λ
)
u(1) = u1. (9)

Lemma 3 Let α, β, ρ, λ ∈ R be such that 0 < α, β < 1 and λ, ρ > 0. For a given h ∈ C ([0, 1] ,R) , the
solution u to the linear BVP (7)—(9) is given by

u(t) = u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
+ u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
+

∫ 1

0

K (t, τ) h(τ)dτ, (10)

where

K (t, τ) =
τρ−1

Γ(β)
×


∫ τ

0

(
tρ−sρ
ρ

)α−1 (
τρ−sρ
ρ

)β−1

Eα,α

(
−λ
(
tρ−sρ
ρ

)α)
sρ−1ds, 0 < τ < t ≤ 1,

∫ t
0

(
tρ−sρ
ρ

)α−1 (
τρ−sρ
ρ

)β−1

Eα,α

(
−λ
(
tρ−sρ
ρ

)α)
sρ−1ds, 0 < t < τ ≤ 1.

(11)

Proof. First, by applying the right-sided Katugampola fractional integral KIβ,ρ1− defined by (4) to both sides
of equation (7), using Theorem 1 and (9), we get(

KDα,ρ
0+ + λ

)
u(t) = u1 +

(
KIβ,ρ1− h

)
(t). (12)

Following the same idea of Theorem 2, with (8), equation (12) can be written as

u(t) = u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
+

∫ t

0

(
tρ − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)
[u1 + KIβ,ρ1− h(s)]sρ−1ds,

so

u(t) = u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
+u1

∫ t

0

(
tρ − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)
sρ−1ds
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+
1

Γ(β)

∫ t

0

(
tρ − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)
sρ−1

[∫ 1

s

(
τρ − sρ

ρ

)β−1

τρ−1h(s)dτ

]
ds.

(13)

Applying Fubini’s Theorem, (13) can be re-written as

u(t) = u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
+ u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
+

1

Γ(β)

∫ t

0

τρ−1h(τ)

∫ τ

0

(
tρ − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)(
τρ − sρ

ρ

)β−1

sρ−1dsdτ

+
1

Γ(β)

∫ 1

t

τρ−1h(τ)

∫ t

0

(
tρ − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)(
τρ − sρ

ρ

)β−1

sρ−1dsdτ ,

which can be simplified to

u(t) = u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
+ u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
+

∫ 1

0

K (t, τ)h(τ)dτ.

The proof is finished.
Let us define

K (t, τ) =

{
K1 (t, τ) , 0 < τ < t ≤ 1,
K2 (t, τ) , 0 < t < τ ≤ 1.

where

K1 (t, τ) =
τρ−1

Γ(β)

∫ τ

0

(
tρ − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)
sρ−1ds,

K2 (t, τ) =
τρ−1

Γ(β)

∫ t

0

(
tρ − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)
sρ−1ds.

In the next lemma, we present some properties of the function K (t, τ) , that form the basis of our main
work.

Lemma 4 For α, β ∈ (0, 1), ρ, λ > 0, the function K (t, τ) mentioned in Lemma 3 satisfies the following
estimates.

1) The function K (t, τ) is nonnegative.

2)

|K1 (t, τ)| ≤
τρ−1

(
tρ−τρ
ρ

)α−1

Γ(β + 1)Γ(α)
, 0 < τ < t ≤ 1 . (14)

3)

|K2 (t, τ)| ≤
τρ−1

(
τρ−tρ
ρ

)β−1

Γ(α+ 1)Γ(β)
, 0 < t < τ ≤ 1. (15)

4) ∫ 1

0

K (t, τ) dτ ≤ ρα + ρβ

ρα+βΓ(α+ 1)Γ(β + 1)
= Λ0. (16)
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Proof. 1) It is obvious that K (t, τ) ≥ 0.
2) For 0 < τ < t ≤ 1, by Lemma 2, we obtain

|K1 (t, τ)|

=

∣∣∣∣∣τρ−1

Γ(β)

∫ τ

0

(
tρ − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)
sρ−1ds

∣∣∣∣∣
≤ τρ−1

Γ(β)Γ(α)

∣∣∣∣∣
∫ τ

0

(
tρ − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣ .
Since ∫ τ

0

(
tρ − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

sρ−1ds

≤
(
tρ − τρ
ρ

)α−1 ∫ τ

0

(
τρ − sρ

ρ

)β−1

sρ−1ds

≤
(
tρ − τρ
ρ

)α−1 [ −1

βρβ

∫ τ

0

d

ds
(τρ − sρ)β ds

]

≤
(
tρ − τρ
ρ

)α−1
[
− (τρ − sρ)β

βρβ

]τ
0

≤

(
τρ

ρ

)β
β

(
tρ − τρ
ρ

)α−1

,

we see that

|K1 (t, τ)| ≤ τρ−1

Γ(β)Γ(α)

(
τρ

ρ

)β
β

(
tρ − τρ
ρ

)α−1

≤
τρ−1

(
tρ−τρ
ρ

)α−1

Γ(β + 1)Γ(α)
.

3) For 0 < t < τ ≤ 1, similarly with 2), by Lemma 2, we get

|K2 (t, τ)|

=

∣∣∣∣∣τρ−1

Γ(β)

∫ t

0

(
tρ − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ − sρ
ρ

)α)
sρ−1ds

∣∣∣∣∣
≤ τρ−1

Γ(β)Γ(α)

∣∣∣∣∣
∫ t

0

(
tρ − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣ .
We have ∫ t

0

(
tρ − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

sρ−1ds

≤
(
τρ − tρ
ρ

)β−1 ∫ t

0

(
tρ − sρ
ρ

)α−1

sρ−1ds

≤
(
τρ − tρ
ρ

)β−1 [− (tρ − sρ)α

αρα

]t
0

≤
(
τρ − tρ
ρ

)β−1 [
tρα

αρα

]
≤

(
tρ

ρ

)α
α

(
τρ − tρ
ρ

)β−1

.

Then

|K2 (t, τ)| ≤ τρ−1

Γ(β)Γ(α)

(
tρ

ρ

)α
α

(
τρ − tρ
ρ

)β−1

≤

(
τρ−tρ
ρ

)β−1

τρ−1

Γ(α+ 1)Γ(β)
.
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4) By (14) and (15), we observe that∫ 1

0

K (t, τ) dτ =

∫ t

0

K1 (t, τ) dτ +

∫ 1

t

K2 (t, τ) dτ

≤ 1

Γ(β + 1)Γ(α)

∫ t

0

(
tρ − τρ
ρ

)α−1

τρ−1dτ

+
1

Γ(α+ 1)Γ(β)

∫ 1

t

(
τρ − tρ
ρ

)β−1

τρ−1dτ

≤ tρα

ραΓ(β + 1)Γ(α+ 1)
+

(1− tρ)β

ρβΓ(α+ 1)Γ(β + 1)

≤ 1

ραΓ(β + 1)Γ(α+ 1)
+

1

ρβΓ(α+ 1)Γ(β + 1)

≤ ρα + ρβ

ρα+βΓ(β + 1)Γ(α+ 1)
= Λ0.

Lemma 5 The following inequalities hold∣∣∣∣∣
∫ τ

0

[(
tρ1 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
−
(
tρ2 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)]

×
(
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣ ≤ O((tρ2 − t
ρ
1)α), for 0 < τ < t1 < t2 ≤ 1, (17)

∣∣∣∣∣
∫ t1

0

[(
tρ1 − sρ
ρ

)α−1

−
(
tρ2 − sρ
ρ

)α−1
](

τρ − sρ
ρ

)β−1

sρ−1ds

∣∣∣∣∣
≤

(
τρ − tρ2
ρ

)β−1

.O((tρ2 − t
ρ
1)α), for 0 < t1 < t2 < τ ≤ 1, (18)

∣∣∣∣∣
∫ t1

0

[(
tρ1 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
−
(
tρ2 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)]

×
(
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣ ≤
[(

τρ

ρ

)β
−
(
τρ − tρ1
ρ

)β]
.O((tρ2 − t

ρ
1)α), for 0 < t1 < τ < t2 ≤ 1. (19)

Proof. For 0 < τ < t1 < t2 ≤ 1, it follows from Lemma 2 and the Mean Value Theorem that∣∣∣∣∣
(
tρ1 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
−
(
tρ2 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)∣∣∣∣∣
≤

∣∣∣∣∣
(
tρ1 − sρ
ρ

)α−1

−
(
tρ2 − sρ
ρ

)α−1
∣∣∣∣∣Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)

+

∣∣∣∣Eα,α(−λ( tρ1 − sρρ

)α)
− Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)∣∣∣∣ ( tρ2 − sρρ

)α−1

≤ O
(
(tρ2 − t

ρ
1)
α)
,
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which yields ∣∣∣∣∣
∫ τ

0

[(
tρ1 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
−
(
tρ2 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)]

×
(
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣
≤

∫ τ

0

(
τρ − sρ

ρ

)β−1

sρ−1ds.O((tρ2 − t
ρ
1)α)

≤ 1

β

(
τρ

ρ

)β
.O((tρ2 − t

ρ
1)α) ≤ O((tρ2 − t

ρ
1)α).

For 0 < t1 < t2 < τ ≤ 1, we obtain∣∣∣∣∣
∫ t1

0

[(
tρ1 − sρ
ρ

)α−1

−
(
tρ2 − sρ
ρ

)α−1
](

τρ − sρ
ρ

)β−1

sρ−1ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t1

0

[(
tρ1 − sρ
ρ

)α−1

−
(
tρ2 − sρ
ρ

)α−1
]
sρ−1ds

∣∣∣∣∣
(
τρ − tρ1
ρ

)β−1

.

We have [(
tρ1 − sρ
ρ

)α−1

−
(
tρ2 − sρ
ρ

)α−1
]
sρ−1

= ρ1−αsρ−1
[
(tρ1 − sρ)

α−1 − (tρ2 − sρ)α−1
]

=
−1

αρα
d

ds

[
(tρ1 − sρ)

α − (tρ2 − sρ)α
]
.

Then ∣∣∣∣∣
∫ t1

0

[(
tρ1 − sρ
ρ

)α−1

−
(
tρ2 − sρ
ρ

)α−1
]
sρ−1ds

∣∣∣∣∣
(
τρ − tρ1
ρ

)β−1

≤ 1

αρα

∣∣∣∣∫ t1

0

d

ds

[
(tρ1 − sρ)

α − (tρ2 − sρ)α
]
ds

∣∣∣∣ (τρ − tρ1ρ

)β−1

≤ 1

αρα
[tρα2 − t

ρα
1 + (tρ2 − t

ρ
1)α]

(
τρ − tρ1
ρ

)β−1

≤
(
τρ − tρ2
ρ

)β−1

.O((tρ2 − t
ρ
1)α).

In a similar way as for (17) and (18), for 0 < t1 < τ < t2 ≤ 1, we obtain∣∣∣∣∣
∫ t1

0

[(
tρ1 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
−

(
tρ2 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)](
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣
≤

∫ t1

0

(
τρ − sρ

ρ

)β−1

sρ−1ds ·O((tρ2 − t
ρ
1)α)

≤
[(

τρ

ρ

)β
−
(
τρ − tρ1
ρ

)β]
.O((tρ2 − t

ρ
1)α).
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Lemma 6 We have the following properties

|K1 (t2, τ)−K1 (t1, τ)| = τρ−1 ·O((tρ2 − t
ρ
1)α), for 0 < τ < t1 < t2 ≤ 1, (20)

|K2 (t2, τ)−K2 (t1, τ)| = τρ−1

(
τρ − tρ2
ρ

)β−1

.O((tρ2 − t
ρ
1)α), (21)

for 0 < t1 < t2 < τ ≤ 1, and

|K1 (t2, τ)−K2 (t1, τ)| = τρ−1

[(
τρ

ρ

)β
−
(
τρ − tρ1
ρ

)β]
·O((tρ2 − t

ρ
1)α), (22)

for 0 < t1 < τ < t2 ≤ 1.

Proof. For 0 < τ < t1 < t2 ≤ 1, by (17), we get

|K1 (t2, τ)−K1 (t1, τ)|

≤ τρ−1

Γ(β)

∣∣∣∣∣
∫ τ

0

[(
tρ1 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
−

(
tρ2 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)](
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣
≤ τρ−1 ·O((tρ2 − t

ρ
1)α).

For 0 < t1 < t2 < τ ≤ 1, by (18) and Lemma 2, we find

|K2 (t2, τ)−K2 (t1, τ)|

=

∣∣∣∣∣τρ−1

Γ(β)

[∫ t2

0

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)
sρ−1ds

−
∫ t1

0

(
tρ1 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
sρ−1ds

]∣∣∣∣∣
≤ τρ−1

Γ(β)

∣∣∣∣∣
∫ t1

0

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)
sρ−1ds

∣∣∣∣∣
+
τρ−1

Γ(β)

∣∣∣∣∣
∫ t2

t1

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)
sρ−1ds

∣∣∣∣∣
−τ

ρ−1

Γ(β)

∣∣∣∣∣
∫ t1

0

(
tρ1 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
sρ−1ds

∣∣∣∣∣
≤ τρ−1

Γ(β)

[∣∣∣∣∣
∫ t1

0

((
tρ1 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
−
(
tρ2 − sρ
ρ

)α−1

×Eα,α
(
−λ
(
tρ2 − sρ
ρ

)α))(
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣
]

+
τρ−1

Γ(β)

∫ t2

t1

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)
sρ−1ds

≤ τρ−1

Γ(β)

[
1

Γ(α)

∣∣∣∣∣
∫ t1

0

((
tρ1 − sρ
ρ

)α−1

−
(
tρ2 − sρ
ρ

)α−1
)(

τρ − sρ
ρ

)β−1

sρ−1ds

∣∣∣∣∣
]
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+
τρ−1

Γ(β)Γ(α)

∫ t2

t1

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

sρ−1ds

≤ τρ−1

Γ(α)Γ(β)

(
τρ − tρ2
ρ

)β−1

·O((tρ2 − t
ρ
1)α)

+
τρ−1

(
τρ−tρ2
ρ

)β−1

Γ(α)Γ(β)

∫ t2

t1

(
tρ2 − sρ
ρ

)α−1

sρ−1ds

≤ τρ−1

(
τρ − tρ2
ρ

)β−1

·O((tρ2 − t
ρ
1)α).

In the same way, for 0 < t1 < τ < t2 ≤ 1, by (19) and Lemma 2, we have

|K1 (t2, τ)−K2 (t1, τ)|

=

∣∣∣∣∣τρ−1

Γ(β)

[∫ τ

0

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)
sρ−1ds

−
∫ t1

0

(
tρ1 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
sρ−1ds

]∣∣∣∣∣
≤ τρ−1

Γ(β)

∣∣∣∣∣
[∫ t1

0

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)
sρ−1ds

−
∫ t1

0

(
tρ1 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)
sρ−1ds

]∣∣∣∣∣
+
τρ−1

Γ(β)

∫ τ

t1

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)
sρ−1ds

≤ τρ−1

Γ(β)

[∣∣∣∣∣
∫ t1

0

[(
tρ2 − sρ
ρ

)α−1

Eα,α

(
−λ
(
tρ2 − sρ
ρ

)α)
−
(
tρ1 − sρ
ρ

)α−1

× Eα,α

(
−λ
(
tρ1 − sρ
ρ

)α)](
τρ − sρ

ρ

)β−1

sρ−1ds

∣∣∣∣∣
]

+
τρ−1

Γ(β)Γ(α)

∫ τ

t1

(
tρ2 − sρ
ρ

)α−1(
τρ − sρ

ρ

)β−1

sρ−1ds

≤ τρ−1

Γ(β)

∫ t1

0

(
τρ − sρ

ρ

)β−1

sρ−1ds ·O((tρ2 − t
ρ
1)α)

≤ τρ−1

[(
τρ

ρ

)β
−
(
τρ − tρ1
ρ

)β]
·O((tρ2 − t

ρ
1)α).

4 Existence and Stability Results

Now, to prove our results, we give the following conditions

(H1) f : [0, 1]× R −→ R is a continuous function.

(H2) There exists a constant L > 0 such that

|f(t, u)− f(t, v)| ≤ L |u− v| , ∀u, v ∈ R, t ∈ [0, 1].
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(H3) There exists a constant M > 0 with |f(t, u)| ≤M for each t ∈ [0, 1].

In light of Lemma 3, we define the operator F : C([0, 1],R)→ C([0, 1],R) as follows

Fu(t) = u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
+ u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
+

∫ 1

0

K (t, τ) f(τ , u(τ))dτ, (23)

where K (t, τ) is defined by (11).

Lemma 7 F is a completely continuous operator

Proof. Firstly, according to (H1) , we note that the operator F is well defined. Next, choosing

η ≥ |u0|
ρα−1Γ(α)

+
|u1|

ραΓ(α+ 1)
+MΛ0.

We define
Ωη = {u ∈ C([0, 1],R) : ‖u‖∞ ≤ η, η > 0} . (24)

Clearly, Ωη is a nonempty, bounded, closed and convex subset of C([0, 1],R). We show that F (Ωη) is
uniformly bounded. Let u ∈ Ωη, in fact for any t ∈ [0, 1], by condition (H3), from Lemma 2(i) and equation
(16), we obtain

|Fu(t)| ≤
∣∣∣∣∣u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)∣∣∣∣∣
+

∣∣∣∣u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)∣∣∣∣
+

∫ 1

0

K (t, τ) |f(τ , u(τ))| dτ

≤ |u0| tρ(α−1)

ρα−1Γ(α)
+

|u1| tρα
ραΓ(α+ 1)

+M

∫ 1

0

K (t, τ) dτ

≤ |u0| tρ(α−1)

ρα−1Γ(α)
+

|u1| tρα
ραΓ(α+ 1)

+
M(ρα + ρβ)

ρα+βΓ(α+ 1)Γ(β + 1)

≤ |u0|
ρα−1Γ(α)

+
|u1|

ραΓ(α+ 1)
+MΛ0

≤ η.

Consequently,

‖Fu‖∞ ≤
|u0|

ρα−1Γ(α)
+

|u1|
ραΓ(α+ 1)

+MΛ0 <∞, for all u ∈ Ωη

and hence F (Ωη) is uniformly bounded.
Now, we show that F is equicontinuous. Let t1, t2 ∈ [0, 1], with t1 < t2, ∀u ∈ Ωη, by the Mean Value

Theorem, we obtain

|Fu(t2)− Fu(t1)|

≤
∣∣∣∣∣u0

[(
tρ2
ρ

)α−1

Eα,α

(
−λ
(
tρ2
ρ

)α)
−
(
tρ1
ρ

)α−1

Eα,α

(
−λ
(
tρ1
ρ

)α)]∣∣∣∣∣
+

∣∣∣∣u1

[(
tρ2
ρ

)α
Eα,α+1

(
−λ
(
tρ2
ρ

)α)
−
(
tρ1
ρ

)α
Eα,α+1

(
−λ
(
tρ1
ρ

)α)]∣∣∣∣
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+

∫ 1

0

|K (t2, τ)−K (t1, τ)| |f(τ , u(τ))| dτ

≤ |u0|O
(
(tρ2 − t

ρ
1)
α)

+ |u1|O
(
(tρ2 − t

ρ
1)
α)

+M

∫ 1

0

|K (t2, τ)−K (t1, τ)| dτ

≤ O
(
(tρ2 − t

ρ
1)
α)

+M

∫ 1

0

|K (t2, τ)−K (t1, τ)| dτ.

It remains to show that the right-hand side of the above inequality tends to zero as t2 → t1. In what follows,
we divide the proof into three cases
Case1: For τ < t1 < t2, by (20), we have

|Fu(t2)− Fu(t1)| ≤ O
(
(tρ2 − t

ρ
1)
α)

+M

∫ 1

0

|k1 (t2, τ)− k1 (t1, τ)| dτ

≤ O
(
(tρ2 − t

ρ
1)
α)

+M

∫ 1

0

O((tρ2 − t
ρ
1)α)τρ−1dτ

= O((tρ2 − t
ρ
1)α).

Case 2: For t1 < t2 < τ, by (21), we get

|Fu(t2)− Fu(t1)|

≤ O
(
(tρ2 − t

ρ
1)
α)

+M

∫ 1

0

|k2 (t2, τ)− k2 (t1, τ)| dτ

≤ O
(
(tρ2 − t

ρ
1)
α)

+M

∫ 1

0

τρ−1

(
τρ − tρ2
ρ

)β−1

.O((tρ2 − t
ρ
1)α))dτ

= O((tρ2 − t
ρ
1)α).

Case 3: In the same way, for t1 < τ < t2, by (22), we obtain

|Fu(t2)− Fu(t1)|

≤ O
(
(tρ2 − t

ρ
1)
α)

+M

∫ 1

0

|k1 (t2, τ)− k2 (t1, τ)| dτ

≤ O
(
(tρ2 − t

ρ
1)
α)

+
M

Γ(β + 1)

∫ 1

0

τρ−1

[(
τρ

ρ

)β
−
(
τρ − tρ1
ρ

)β]
.O((tρ2 − t

ρ
1)α))dτ

= O((tρ2 − t
ρ
1)α).

Consequently, by this three cases, we have |Fu(t2)− Fu(t1)| → 0 as t2 → t1. Finally, by the Ascoli-Arzela
Theorem 3, we have F : C([0, 1],R)→ C([0, 1],R) is completely continuous.
Next, we study the existence and uniqueness of solution for the PVP (1)—(3).

4.1 Existence of At Least One Solution via Schauder’s Fixed Point Theorem

Now, we demonstrate the first existence result, by using the fixed point theorem of Schauder

Theorem 7 Assume that (H1) and (H3) are satisfied. Then the problem (1)—(3) has at least one solution
on [0, 1].

Proof. Let the operator F defined in (23), then we shall show that F satisfies the assumptions of Schauder’s
Fixed Point Theorem. It means, we will prove that the operator F is continuous and completely continuous.
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Let’s first show that F is continuous. Let {un} be a sequence such that un → u in C([0, 1],R), for each
t ∈ [0, 1], by (16), we get

|Fun(t)− Fu(t)| =

∣∣∣∣∫ 1

0

K (t, τ) f(τ , un(τ))dτ −
∫ 1

0

K (t, τ) f(τ , u(τ))dτ

∣∣∣∣
≤

∫ 1

0

K (t, τ) |f(τ , un(τ))− f(τ , u(τ))| dτ

≤
∫ 1

0

K (t, τ) sup |f(τ , un(τ))− f(τ , u(τ))| dτ

≤ ‖f (., un)− f(., u)‖∞
∫ 1

0

K (t, τ) dτ

≤
(
ρα + ρβ

)
‖f (., un)− f(., u)‖∞

ρα+βΓ(α+ 1)Γ(β + 1)

≤ Λ0 ‖f (., un)− f(., u)‖∞ .

Then ‖Fun − Fu‖∞ ≤ Λ0 ‖f (., un)− f(., u)‖∞. Since f is continuous, we see that ‖f (., un)− f(., u)‖∞ → 0
as n → ∞. Consequently, F is continuous. From Lemma 7, we know that F is a completely continuous
operator. As a consequence of Schauder’s Fixed Point Theorem 5, we deduce that F has a fixed point which
is a solution of the problem (1)—(3) on [0, 1].

Next, we demonstrate the second existence result, by using the fixed point theorem of Schaefer.

4.2 Existence of At Least One Solution via Schaefer’s Fixed Point Theorem

Theorem 8 Assume that (H1) and (H3) hold. Then the problem (1)—(3) has at least one solution.

Proof. Consider F as in (23). Clearly, F is a continuous and completely continuous operator.
Now, it remains to show that the set

E = {u ∈ C([0, 1],R) : u = λu, λ ∈ (0, 1)}

is bounded. Let u ∈ E . Then, u = λFu for some λ ∈ (0, 1) . For each t ∈ [0, 1], by (H3), Lemma 2 and
equation (16), we obtain

|u(t)| = λ

∣∣∣∣∣u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
+ u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
+

∫ 1

0

K (t, τ) f(τ , u(τ))dτ

∣∣∣∣
≤

∣∣∣∣∣u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)∣∣∣∣∣+

∣∣∣∣u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)∣∣∣∣
+

∫ 1

0

K (t, τ) |f(τ , u(τ))| dτ

≤ |u0|
ρα−1Γ(α)

+
|u1|

ραΓ(α+ 1)
+MΛ0 <∞.

This shows that the set E is bounded. Hence the fixed point theorem of Schaefer guarantees that F has
a fixed point, which is a solution of (1)—(3).
Our third existence result for (1)—(3) is based on the non-linear alternative of Leray-Schauder type.
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4.3 Existence of At Least One Solution via the Non-Linear Alternative of Leray-
Schauder Type

Theorem 9 Assume that hypotheses (H1) and (H3) hold, and that there exists θ > 0, such that

1

θ

(
|u0|

ρα−1Γ(α)
+

|u1|
ραΓ(α+ 1)

+MΛ0

)
< 1. (25)

Then the problem (1)—(3) has at least one solution on [0, 1].

Proof. Consider the operator F defined in (23), then we shall show that all assumption of Leray-Schauder
Fixed Point Theorem 6 are satisfied by the operator F. The proof will be given in several claims.
Claim 1: Clearly F is continuous.
Claim 2: F maps bounded sets into bounded sets in C ([0, 1],R) .
Actually, it is enough to show that for any θ > 0, there exists l > 0 such that for each u ∈ Dθ =

{u ∈ C ([0, 1],R) : ‖u‖∞ ≤ θ} , we have ‖Fu‖∞ ≤ l.
Let u ∈ Dθ, for each t ∈ [0, 1], we have

|Fu(t)| ≤
∣∣∣∣∣u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)∣∣∣∣∣
+

∣∣∣∣u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)∣∣∣∣
+

∫ 1

0

K (t, τ) |f(τ , u(τ))| dτ

≤ |u0| tρ(α−1)

ρα−1Γ(α)
+

|u1| tρα
ραΓ(α+ 1)

+
M(ρα + ρβ)

ρα+βΓ(α+ 1)Γ(β + 1)

≤ |u0|
ρα−1Γ(α)

+
|u1|

ραΓ(α+ 1)
+MΛ0.

Thus

‖Fu‖∞ ≤
|u0|

ρα−1Γ(α)
+

|u1|
ραΓ(α+ 1)

+MΛ0 := l <∞. (26)

Claim 3: It is Clear that F maps bounded sets into equicontinuous sets of C([0, 1],R). From Claim 1
—Claim 3, we conclude that F : C([0, 1],R)→ C([0, 1],R) is continuous and complectly continuous.

Claim 4: A priori bounds.
Let u ∈ ∂Dθ, such that u = µFu, for some 0 < µ < 1. From (26), we obtain

‖u‖∞ = µ ‖Fu‖∞ ≤ ‖Fu‖∞ ,

≤ |u0|
ρα−1Γ(α)

+
|u1|

ραΓ(α+ 1)
+MΛ0,

and thus

θ ≤ |u0|
ρα−1Γ(α)

+
|u1|

ραΓ(α+ 1)
+MΛ0,

hence,
1

θ

[
|u0|

ρα−1Γ(α)
+

|u1|
ραΓ(α+ 1)

+MΛ0

]
≥ 1,

which contradicts (25). Consequently, by the nonlinear alternative of Leray-Schauder Fixed Point Theorem
6, the problem (1)—(3) has at least one solution on [0, 1].
Finally, we will prove the existence and uniqueness result of the solution for the problem (1)—(3), which

is based on Banach’s Fixed Point Theorem.
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4.4 Uniqueness of Solution

In this subsection, we show the last existence result which is based on the Banach’s contraction principle.

Theorem 10 Assume that (H1)—(H2) hold for α, β ∈ (0, 1), ρ, λ > 0. Then the problem (1)—(3) has a
unique solution on [0, 1], provided that

0 < LΛ0 < 1. (27)

Proof. Consider the operator F : C([0, 1],R) → C([0, 1],R) given by (23), we shall show that F is a
contraction mapping. Let u, v ∈ C([0, 1],R), for any t ∈ [0, 1], according to (H2) and by equation (16), we
obtain

|Fu(t)− Fv(t)| =

∣∣∣∣∫ 1

0

K (t, τ) f(τ , u(τ))dτ −
∫ 1

0

K (t, τ) f(τ , v(τ))dτ

∣∣∣∣
≤

∫ 1

0

K (t, τ) |f(τ , u(τ)− f(τ , v(τ))| dτ

≤ L

∫ 1

0

K (t, τ) |u(τ)− v(τ)| dτ.

Then
‖Fu− Fv‖∞ ≤ LΛ0 ‖u− v‖∞ .

By the condition (27), F is a contraction mapping, using the principle of Banach Fixed Point Theorem 4,
we deduce that there exists a unique solution of the problem (1)—(3) on [0, 1].

5 Ulam-Hyers Stability

In this section, we discuss the Ulam-Hyers stability of problem (1)—(3).
Let ε̃ > 0 and f : [0, 1]× R −→ R be a continuous function.
For the mixed fractional BVP (1)-(3), we emphasize on the following inequality∣∣∣CKDβ,ρ

1−

(
KDα,ρ

0+ + λ
)
w(t)− f(t, w(t))

∣∣∣ ≤ ε̃, t ∈ [0, 1]. (28)

In a similar way as in [17, 18, 19], we introduce the following definition and remark.

Definition 7 The mixed fractional boundary value problem (1)—(3) is Ulam-Hyers stable if there exists a
constant δ0 > 0 such that for each ε̃ > 0 and for each solution w ∈ C([0, 1],R) of inequality (28) there exists
a solution u ∈ C([0, 1],R) of (1)—(3) with

|w(t)− u(t)| ≤ δ0ε̃, t ∈ [0, 1].

Remark 1 A function w ∈ C([0, 1],R) is a solution of inequality (28) if and only if there exists a function
ϕ ∈ C([0, 1],R) such that

(i) |ϕ(t)| ≤ ε̃, t ∈ [0, 1],

(ii) CKDβ,ρ
1−

(
KDα,ρ

0+ + λ
)
w(t) = f(t, w(t)) + ϕ(t), t ∈ [0, 1].

Theorem 11 Suppose that (H1) and (H2) hold, then the mixed fractional BVP (1)—(3) is Ulam-Hyers stable
if LΛ0 < 1.
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Proof. Let 0 < α, β < 1 and let w ∈ C([0, 1],R) be a solution of inequality (28) with
(
KI1−α,ρ

0+ w
)

(0) = u0,(
KDα,ρ

0+ + λ
)
w(1) = u1. Then by Remark 1, we have

CKDβ,ρ
1−

(
KDα,ρ

0+ + λ
)
w(t) = f(t, w(t)) + ϕ(t), t ∈ [0, 1].

By adopting the same arguments as in the proof of Lemma 3, we can write

w(t) = u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
+ u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
+

∫ 1

0

K (t, τ) f(τ , w(τ))dτ +

∫ 1

0

K (t, τ) ϕ(τ)dτ.

From this equation and by (16), it follows that∣∣∣∣∣w(t)− u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
−u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
−
∫ 1

0

K (t, τ) f(τ , w(τ))dτ

∣∣∣∣
=

∣∣∣∣∫ 1

0

K (t, τ) ϕ(τ)dτ

∣∣∣∣
≤

∫ 1

0

K (t, τ) | ϕ(τ)| dτ

≤ Λ0ε̃. (29)

Now, let u ∈ C([0, 1],R) be a unique solution of (1)—(3). Then for each t ∈ [0, 1], we have

|w(t)− u(t)| =

∣∣∣∣∣w(t)− u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
−u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
−
∫ 1

0

K (t, τ) f(τ , u(τ))dτ

∣∣∣∣
≤

∣∣∣∣∣w(t)− u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
−u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
−
∫ 1

0

K (t, τ) f(τ , w(τ))dτ

+

∫ 1

0

K (t, τ) f(τ , w(τ))dτ −
∫ 1

0

K (t, τ) f(τ , u(τ)) dτ

∣∣∣∣
≤

∣∣∣∣∣w(t)− u0

(
tρ

ρ

)α−1

Eα,α

(
−λ
(
tρ

ρ

)α)
−u1

(
tρ

ρ

)α
Eα,α+1

(
−λ
(
tρ

ρ

)α)
−
∫ 1

0

K (t, τ) f(τ , w(τ))dτ

∣∣∣∣
+

∫ 1

0

K (t, τ) |f(τ , w(τ))− f(τ , u(τ))| dτ.

From (H2) , (29) and (16), we obtain

‖w − u‖ ≤ Λ0ε̃+ LΛ0 ‖w − u‖ ,
which implies

‖w − u‖ ≤ δ0ε̃,

where δ0 = Λ0

1−LΛ0
> 0. Then the mixed fractional boundary value problem (1)—(3) is Ulam-Hyers stable.
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6 Examples

In this section, we present two examples to explain the applicability of our main result.

Example 1 Consider the following boundary value problem with two different fractional derivatives
CKD

1
5 ,1

1−

(
KD

1
3 ,1

0+ + 5
4

)
u(t) = cos(t)

1+u2 , t ∈ J = [0, 1],(
KI

2
3 ,1

0+ u
)

(0) = 1
2 ,
(
KD

1
3 ,1

0+ + 5
4

)
u(1) = 1.

(30)

Here, f(t, u(t)) = cos(t)
1+u2 , α = 1

3 , β = 1
5 , α + β = 8

15 < 1, λ = 5
4 , ρ = 1, u0 = 1

2 and u1 = 1. The function f
is continuous for any t ∈ [0, 1] and we have |f(t, u)| ≤M = 1, ∀ (t, u) ∈ [0, 1]×R. Hence the condition (H3)
holds. It follows from Theorem 7 and Theorem 8, that the problem (30) has at least one solution.

Example 2 Consider the following mixed fractional boundary value problem
CKD

1
4 ,1

1−

(
KD

1
2 ,1

0+ + 2
)
u(t) = t+ u(t)

5et(1+u(t)) , t ∈ J = [0, 1],(
KI

1
2 ,1

0+ u
)

(0) = u0,
(
KD

1
2 ,1

0+ + 2
)
u(1) = u1.

(31)

Here, α = 1
2 , β = 1

4 , α + β = 6
8 < 1, λ = 2, ρ = 1 and f(t, u(t)) = t + u(t)

5et(1+u(t)) . The function f is

continuous for any t ∈ [0, 1], then we have |f(t, u)− f(t, v)| ≤ 1
5 |u− v| , L = 1

5 , Λ0 = 2
Γ( 14+1)Γ( 12+1)

≈ 2.49

and LΛ0 ≈ 0.50 < 1. By Theorem 10, the problem (31) has a unique solution u on [0, 1].
Now, let w ∈ C([0, 1],R) be a solution of the inequality∣∣∣∣CKD 1

4 ,1

1−

(
KD

1
2 ,1

0+ + 2
)
w(t)−

(
t+

w(t)

5et (1 + w(t))

)∣∣∣∣ ≤ ε̃, ε̃ > o, t ∈ J = [0, 1].

Then, from Theorem 11, the mixed fractional BVP (31) is Ulam-Hyers stable with

δ0 =
Λ0

1− LΛ0
=

2.49

0.5
= 4.98 > 0.

7 Conclusion

In this paper, we have discussed the existence and uniqueness of solution for the nonlinear mixed-type
FDEs with boundary conditions by applying some fixed point theorems (Banach’s contraction principle,
Schauder’s Fixed Point Theorem, the nonlinear alternative of Leray-Schauder type and Schaefer’s Fixed
Point Theorem). We have also studied the Ulam-Hyers stability of our problem. The differential operators
we have considered are the Katugampola and Caputo-Katugampola, so the Reimann-Lioville, Hadamard,
Caputo and Caputo-Hadamard operators can be considered as special cases from our generalized problem.
This study serves as a new way for the researchers to discuss interesting problems in fractional differential
and integral calculus.

Acknowledgment. The authors are deeply grateful to the anonymous referees for their kind comments.
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