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Abstract

Wachspress’coordinates are a generalization of barycentric coordinates to convex polygons with four
or more vertices. These coordinates, which were introduced in the context of the finite element method
correspond to rational functions in which the polynomial denominator is popularly known as the adjoint.
Corresponding to each element of the discretization, a class of Wachspress coordinates is defined such that
each class has a unique adjoint depending on the geometry of the element. In this paper, an interesting
property of Wachspress coordinates is investigated, viz.”two wedge functions which are linear on the
common adjacent side of the polygon, attain the same value at the mid point of that side”. Applying
this property, a more general form of Dasgupta’s recursive relation is derived. Moreover, this method is
extended to the polynomial approximation of higher degree over a polygon of any order. A Mathematica
program is also developed in view of the above assertions which enhance the application of the devised
tool.

1 Introduction

Partial differential equations play a key role in solving problems of mathematical physics in particular, related
to shapes or physical properties like conductivity, elasticity, stokes flow, etc. Since, in many cases, analytical
or exact solutions to these partial differential equations can be impossible or expensive to obtain, the process
of simulation is adopted to find approximate solutions [1, 17]. The idea of a test function whose functional
properties are already known were initiated by Galerkin [5, 9] for the simulation process. Later with the aid
of computers this idea was extensively applied on larger domains such as computation of stress/strain for
multi-storied buildings, for ships to study the sustainable conditions in all types of atmospheric variations,
bridges, aerospace engineering [6, 14, 2], etc. Nowadays, the finite element method (FEM) is the most
widely used simulation technique, and is applied in almost all branches of science and technology, whether
it is computer graphics [7], computer vision [20], image processing [18], computational mechanics [7] or
prediction of some unknown information [10, 16], to name a few applications.
In order to simplify the process of approximation, several tools were developed by the researchers including

the most popular tool of barycentric coordinates initially proposed by Möbius [13]. This tool has enormous
applications in the filed of computer aided designs [7], but it is restricted to an n-simplex in n-dimensional
Euclidean space. It is known that barycentric coordinates possess the following properties:

• Partition of unity.

• Linear reproduction property.

• Non negativity.
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• Lagrange property.

• Regularity (i.e. infinitely many times differentiable).

A generalization of barycentric coordinates to a convex [19] polygon with n > 3 vertices was introduced
by Wachspress and the construction was formally announced in the Proceeding of the Dundee conference
[22]. In FEM, the domain under consideration is divided into non-overlapping smaller sub-domains of R2
and corresponding to each sub-domain rational basis functions are defined [3], which in turn found to be a
powerful tool to approximate a given function or data. These basis functions appeared to be quite easy to
execute on a computer in comparison to other approximants. It may be noted that inter-element continuity
holds by virtue of construction in the case of FEM [21] whereas it has been imposed in the case of bi-variate
splines [15].
It is worth mentioning that, the basic problem which was encountered by researchers while dealing with

bi-variate splines was to resolve the issue of dimension and hence this tool of approximation could not attract
the users, although it was extensively studied theoretically by several mathematicians [15, 12].
Wachspress’ coordinates are defined in such a way that they satisfy all the conditions of barycentric

coordinates initiated by Möbius. Since the denominator (adjoint) of the rational wedge function depends
on the geometry of the element, its computation for some elements is not straight forward. Thus, the
computational time to determine rational wedge functions becomes quite complex. Meyer et. al. [11] have
initiated the formulation of wedge functions for arbitrary convex polygons for linear approximation.
In [2], Dasgupta has developed a simple recursive technique, independent of the geometry of the element,

by which the adjoint could be computed merely in few steps if the Cartesian coordinates of the vertices of the
element are known. This approach devised for convex polygons was identified by Dasgupta and Wachspress
[4] as best from a general-purpose algorithm point of view, and has been designated as GADJ (Gautam’s
Adjoint) algorithm.
The present paper explores the fact that “for linear approximation, the wedge functions corre-

sponding to (i− 1)th node and ith node, attain the same value at the midpoint of the common
adjacent side joining the vertices (i − 1) and i of the polygonal element”. This observation leads
to derive a more general recurrence relation, which is a generalization of Dasgupta’s recurrence relation [2].
The formula derived by Dasgupta is applicable only on those polygons whose sides do not pass through the
origin whereas the proposed recurrence relation in this paper is free of all restrictions and easy to execute
on any polygonal discretization of the domain.
Moreover, a recursive method for the construction of degree-n approximation over an order-m polygon, is

also proposed. Using this method, wedge functions for any degree of approximation can be easily computed
if Cartesian coordinates of nodes and side nodes of the convex polygonal element are known. Our technique
is applicable to achieve higher degree approximation as well, which was not considered in [11].
A Mathematica program to compute the adjoint of the wedge function for a convex polygon of order

n (where n is a parameter defined by the user, n > 3) has been developed. Consequently, the linear
approximation for the given function or data can be computed with the aid of this program. To demonstrate
the performance of our method, two illustrative examples are presented in this paper.

2 Setup and Formulation

Let Ω ⊆ R2 be the domain discretized using polygons of order m, Pm be an arbitrary element of the domain
Ω with vertices i = 1, · · · ,m and edges si joining vertices i − 1 and i, {ij}n−1j=1 be the side nodes on side si

(such that ij 6= i − 1 or i for any j and ij 6= ik for j 6= k) and interior nodes {ck}
(n−1)(n−2)

2

k=1 (The interior
nodes have been chosen in such a way that there exists a unique curve of degree (n-3) passing through n(n−3)

2
number of interior nodes). Throughout this work, the ith node (vertex), ithj node (side node) and cthk node
(interior node) are considered to have Cartesian coordinates (xi, yi), (xij , yij ) and (xck , yck), respectively.
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Figure 1: Illustrating nodes, side nodes and interior nodes for m = 4 and n = 3.

In view of the generalized barycentric coordinates properties [8], for degree n approximation over an
m-gon, corresponding to each node (vertex, side node and interior node) i, the rational wedge function [2],

Wn
i =

Nn
i

D
(1)

(Nn
i is a polynomial of degree m + n − 3 and D is a polynomial of degree m − 3) is defined in such a way

that the class of wedge functions satisfies the following properties:

1. There is one node at each vertex of the polygon, (n−1) side nodes on every side and (n−1)(n−2)
2 interior

nodes (cf. [21]) (see Figure 1).

For each node of the polygon there corresponds a wedge

2. Wedge Wn
i (x, y) corresponding to node i is normalized to unity at i.

3. Wedge Wn
i (x, y) is of degree n on sides adjacent to i.

4. Wedge Wn
i (x, y) vanishes on all nodes j(6= i) lying on the boundary of Pm.

5. The wedges corresponding to Pm form a basis for degree n approximation over it. For the polygon Pm,
there must be at least mn boundary and (n−1)(n−2)

2 interior nodes. For these to suffi ce, we must have:

M∑
k=1

xiky
j
kW

n
k = xiyj , 0 ≤ i+ j ≤ n,

where M = mn+ (n−1)(n−2)
2 .

6. All the wedge functions are infinitely differentiable over the associated polygon.

3 Gautam’s Adjoint (GADJ)

In the traditional method of computing adjoint for the wedge functions corresponding to a convex polygon
(see [21]), one has to compute the Exterior Intersection Points (EIPs), which are the points where the
extended sides of the considered polygon meet. The curve of desired degree, passing through these EIPs
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is the required adjoint for the wedge functions. When any of these exterior intersection points lie on the
absolute line, the computation of adjoint becomes complicated.
Many of the researchers proposed alternative methods [4] for computing the adjoint function, and ul-

timately Dasgupta’s technique (GADJ) [2] was recognized to be the best [4], which is described briefly as
follows:

3.1 Dasgupta’s Algorithm

Consider Pm ∈ Ω. Let ldi be the linear form of the edge si,

ldi = 1 + aix+ biy. (2)

Here ldi stands for the linear forms considered by Dasgupta. The Wachspress coordinates (wedge functions)
for linear approximation over Pm, are defined as:

W 1
i =

N1
i

D
, i = 1, ...,m (3)

where

N1
i = ki

m∏
j 6=i,j 6=i+1

ldj .

The wedge functions, defined as in (3), form partition of unity (cf. Property (5) in Section 2 with i = j = 0
), Dasgupta [2] utilized this property of the wedge functions and identified that the denominator of wedge
functions is the sum of the numerators, i.e. D =

∑m
i=1Ni. Further, he imposed property (3) on these wedge

functions, which insisted that the wedge functions W 1
i and W

1
i+1 corresponding to the vertices i and (i+ 1),

respectively, must be linear on the side si+1, which in turn yields the following recurrence relation:

ki+1 = ki
ai+2(xi − xi+1) + bi+2(yi − yi+1)
ai(xi+1 − xi) + bi(yi+1 − yi)

, i ∈ Zm. (4)

Remark 1 The restriction on the linear form (cf. (2)) forces the discretization that no side of any polygon
should pass through the origin which limits its implementation.

4 Governing Lemma

Let n = 1 and li be the linear form of the edges si (i = 1, · · · ,m) [21] defined as:

li = (yi − yi−1)x− (xi − xi−1)y − xi−1
(yi − yi−1) + yi−1(xi − xi−1)(i ∈ Zm). (5)

Then numerators of the wedge basis functions for degree one approximation are defined as [21]:

N1
i = k1i

m∏
j 6=i,j 6=i+1

lj ,

and the denominator D (same for all the wedges corresponding to an element) is the sum of all the numerators
[2].
In view of the above notations and the properties of wedge functions, the basic result of this paper is

established in the form of the following lemma:

Lemma 1 Let si be an edge of the m-gon Pm, joining the vertices i − 1 and i, mi be the mid point of si.
Let W 1

i−1(x, y) and W 1
i (x, y) be the wedges for linear approximation corresponding to the nodes i − 1 and i

respectively then

W 1
i−1(x, y)|mi = W 1

i (x, y)|mi . (6)
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Proof. By property (3), W 1
i−1(x, y), W 1

i (x, y) are linear functions on the edge si. By properties (4) and
(2), W 1

i−1(x, y) attains value 0 at the node i and 1 at the node i− 1. Similarly, W 1
i (x, y) attains value 1 at

the node i and 0 at the node i− 1. Thus, it forms a rectangle R with vertices i− 1, i, i′, (i− 1)′ (see Figure
2) whose diagonals mutually bisect at m′i. Let Pm

′
i be the perpendicular dropped from m′i on si. By trivial

geometry it can be seen that P = mi, i.e. the mid point of si and hence Wi−1 and Wi attain the same value
at mi (cf. Figure 2). Thus,

W 1
i−1(x, y)|mi = W 1

i (x, y)|mi .

Figure 2: Rectangle R.

5 Explicit Recurrence Relation

Dasgupta’s recurrence relation is an eminent result in the field of rational finite elements, as its application
makes the computation of adjoint quite smooth in comparison to other techniques. It is interesting to note
that merely substituting the Cartesian coordinates of vertices of the polygon in recurrence relation, the value
of adjoint can be obtained readily, but with the restriction that no side of the polygon should be a segment
of a line through the origin.
In this section, a generalized recurrence relation is derived, which holds for an arbitrary polygonal dis-

cretization Ω ∈ R2. In order to establish this recurrence relation, we assume that

D =

m∑
i=1

N1
i , (7)

where N1
i is the numerator of the wedge function W

1
i for the linear approximation over Pm.

In view of Lemma 1, it is clear that
W 1
i−1|mi = W 1

i |mi (8)

where
W 1
i−1 = k1i−1li+1li+2 · · · li+m−2 and W 1

i = k1i li+2li+3 · · · li+m−1. (9)

Substituting the values of Wi−1 and Wi from (9) in (8), the following recurrence relation is obtained:

k1i = k1i−1
li+1
li−1
|mi i = 1, ...,m (10)
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and li+m−1 = li−1 (as i+m− 1 = i− 1 under modulo m).
As described in the technique of Dasgupta [2], on substituting the values k1i (i = 1, · · · ,m) in (7), the

adjoint (denominator of wedge function) may be computed.
We have used Mathematica to develop a general program that computes a linear approximation over a

convex polygon of order m. The code can be downloaded on Program and executed using the following user
defined parameters:

• Order of polygon.

• Cartesian coordinates of vertices of the polygon.

• Function to be approximated.

In support of our assertion, we now consider an example of an element of the pentagonal discretization,
whose sides pass through the origin.

Example 1 Let the domain Ω ⊆ R2 be discretized by pentagons (m = 5), P5 = (1, 2, 3, 4, 5) ∈ Ω such that the
Cartesian coordinates of the vertices are (cf. Figure 3): 1 = (0, 0), 2 = (1, 0), 3 = (7/5, 3/5), 4 = (3/5, 7/5),
5 = (0, 1).

First, it can be seen that the recurrence relation derived by Dasgupta [2] is not applicable in this case.
Indeed, the linear form l2 of s2 (see Figure 3) is given by y, whereas the linear form considered by Dasgupta
is 1 + a2x+ b2y. In order to apply the recurrence relation obtained in this paper, the following linear forms

Figure 3: Polygon of order 5.

are needed: l1 ∼= −x, l2 ∼= −y, l3 ∼= − 35 + 3
5x−

2
5y, l4

∼= − 85 + 4
5x+ 4

5y and l5
∼= − 35 −

2
5x+ 3

5y. By virtue of
(10) the normalizing constants k1i s are: k

1
1 = 1, k12 = 3

5 , k
1
3 = 4

5 , k
1
4 = 4

5 and k
1
5 = 3

5 . Hence by (7),

D =
24

125
x2 +

24

125
y2 − 32

125
xy − 12

125
x− 12

125
y − 72

125
.

It can be easily verified that D is the unique curve passing through EIPs.

https://github.com/Rtiwari291/Approximation-over-a-polygon.git


Powar et al. 351

6 Extension of Recurrence Relation for Higher Degree Approxi-
mation

In this section, a method to compute a higher degree approximation has been formulated. The technique
defined previously for computation of wedge functions for higher degree approximation were lengthy and
dependent on the Wachspress approach of EIP, for the computation of the unknowns k′is, while the method
proposed here is based on the Dasgupta’s approach.
Referring the notations described in Section 2, the linear forms lij (j = 1, 2, ..., n − 1) joining nodes

(i + 1)n−j and (i)j are now considered. Also, let γck (k = 1, · · · , (n−1)(n−2)2 ) be the unique curve of

degree (n − 3) passing through the n(n−3)
2 interior nodes {cν}ν 6=k. Then, the wedge functions for degree n

approximation over Pm, are defined using properties mentioned in Section 2 as follows:
For i = 1, 2, ...,m

Wn
i = kni

( m∏
j 6=i,i+1

lj

)( n−1∏
j=1

lij

)
D

. (11)

For ij , (j = 1, · · · , (n− 1)) and i = 1, 2, ...,m

Wn
ij = knij

( m∏
ν 6=i

lν

)( n−1∏
ν 6=j

liν

)
D

. (12)

For ck, (k = 1, · · · , (n−1)(n−2)2 )

Wn
ck

= knck

( m∏
ν=1

lν

)
γck

D
. (13)

It may be easily verified that even if we increase the degree of approximation, the degree of the de-
nominator remains unchanged for fixed order of polygon. Hence, it has been considered that for degree n
approximation over a convex polygon of order m, the degree adjoint is m − 3 and for fixed polygon Pm, D
is invariant. Thus, the adjoint D will be the same, while kr’s (r = i, ij ,ck) will change. With the help of
equation (8) and the property (2) that Wn

r (x, y) = 1 on the rth node, these new knr ’s can be computed:

kni =
k1i( n−1∏

j=1

lij

)∣∣∣
i
, (14)

knij =
k1i li−1 + k1i−1li+1

li−1li+1

( n−1∏
ν 6=j

liν

)∣∣∣
ij
∀i and j, (15)

knck =
1

γck

m∑
ν=1

k1ν
lν lν+1

∣∣∣
ck
. (16)

The application of (14)—(16) has been elaborated through the following example.

Example 2 In order to obtain degree 3 approximation the pentagon has been referred as described in Example
1 with additional side nodes {ij}n−1j=1 (i = 1, ...,m), and interior node c1 with Cartesian coordinates 11 =

(0, 13 ), 12 = (0, 23 ), 21 = ( 23 , 0), 22 = (13 , 0), 31 = ( 1915 ,
2
5 ), 32 = ( 1715 ,

1
5 ), 41 = ( 1315 ,

17
15 ), 42 = ( 1715 ,

13
15 ),

51 = ( 15 ,
17
15 ), 52 = ( 25 ,

19
15 ), and c1 = ( 12 ,

1
2 ) (see Figure 4). By using Equations (11)—(13), the wedge

functions corresponding to the nodes 1, 11 and c1 have been defined as:

W 3
1 =

k31l3l4l5l11 l12
D

, W 3
11 =

k311 l2l3l4l5l12
D

and Wc1 =
k3c1 l1l2l3l4l5

D
,
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Figure 4: Degree 3 approximation over polygon of order 5.

where l11 ∼= −3x−3y+1, l12 ∼= −3x−3y+2, l21 ∼= − 7
15y+ 1

5x−
2
15 , l22

∼= 2
5x−

14
15y−

2
15 , l31

∼= 7
15x+ 2

15y−
29
45 ,

l32
∼= 4

15y+ 14
15x−

10
9 , l41

∼= 7
15y+ 2

15x−
29
15 , l42

∼= 4
15x+ 14

15y−
10
9 , l51

∼= − 7
15x+ 1

5y−
2
15 , l52

∼= 2
5y−

14
15x−

2
15 ,

and li’s have been already calculated in Example 1. Similarly, wedges corresponding to other nodes can be
defined.
Considering the value of k1i ’s and adjoint computed in Example 1, the other normalizing constants k

3
r’s

have been obtained by using the recurrence relations (14)—(16):
k31 = 1

2 , k
3
2 = 135

4 , k
3
3 = 405

16 , k
3
4 = 405

16 , k
3
5 = 135

4 , k
3
11 = −9

2 , k
3
12 = 9

2 , k
3
21 = −135

4 , k322 = 135
2 , k

3
31 = −405

16 ,
k332 = 405

8 , k
3
41 = −405

16 , k
3
42 = 405

8 , k
3
51 = −135

4 , k352 = 135
2 , and k

3
c1 = 199

50 .
With the aid of these k3r’s the wedge functions for degree three approximation over P5 can be readily

defined.

7 Conclusion

GADJ is one of the ingenious way to compute the adjoint function of Wachspress’ coordinates for the
polygon of order m(m > 3). A more general form of GADJ is established in this paper, which enhances
GADJ algorithm. The significant property of Wachspress coordinates explored in this paper, makes the
derivation of recurrence relation more elegant, which is a generalization of GADJ. Moreover, with the help
of this new approach, the process of computation of normalizing constants for the wedge functions of degree
n approximation over the m-gon has also been demonstrated.
This method of getting wedge functions for higher degree approximation can be adopted in the case of

higher dimensional elements (polyhedra), to approximate a function or data dependent on multiple variables
with more accuracy.
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