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Abstract

In this paper, we use Salagean and Ruscheweyh operator to introduce certain new classes of func-
tions with bounded radius rotation. Some interesting results including inclusion relation and geometric
properties of linear combinations of these functions are studied. Relevant connections to various known
results are also pointed out.

1 Introduction

Let A denote the class of functions f which are analytic in the open unit disc E = {z :| z |< 1} and are of
the form

f(z) = z +

∞∑
j=2

ajz
j , (z ∈ E). (1)

Let S∗(α) and C(α) denote the subclasses of A consisting of functions which are starlike and convex of order
α, 0 ≤ α < 1, respectively. Let p be a function analytic in E with p(0) = 1. Then p is said to be in the class
P (α), 0 ≤ α < 1, if and only if, <p(z) > α for z ∈ E. For α = 0, we obtain the class P of Caratheodory
functions of positive real part. It can easily be seen that, for p ∈ P (α), we can write

p(z) = (1− α)p1(z) + α, p1 ∈ P.

Also P (α) ⊂ P, 0 ≤ α < 1. The class P (α) is generalized in [5, 6] as follows: Let p : p(z) = 1 +
∑∞
j=1 cjz

j

be analytic in E. Then p is said to belong to the class Pm(α), if it satisfies the condition∫ 2π

0

∣∣∣∣<p(z)− α1− α

∣∣∣∣dθ ≤ mπ, m ≥ 2, z = reiθ.

The class Pm(0) = Pm has been introduced by Pinchuk in [7]. Also, for m = 2, we obtain P (α). For
p ∈ Pm(α), we can write

p(z) =

(
m

4
+
1

2

)
p1(z)−

(
m

4
− 1
2

)
p2(z), p1, p2 ∈ P (α).

In [11], a linear operator Dn
∗ :: A→ A is introduced as:

D0
∗f(z) = f(z), D′∗f(z) = zf ′(z)

and
Dn+1
∗ f(z) = z(Dn

∗ f(z))
′, for z ∈ E, f ∈ A, n ∈ N0{0, 1, 2, 3, ...}. (2)
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We note that, if f(z) is given by (1), then

Dn
∗ f(z) = z +

∞∑
j=2

jnajz
j , z ∈ E.

The operator Dn
∗ is called Salagean operator of order n. Also, Ruscheweyh differential operator D

n of order
n, n ∈ N◦, is defined as:

Dn : A→ A, f ∈ A, D0f(z) = f(z), D′f(z) = zf ′(z)

and

Dnf(z) =
z(zn−1f(z))(n)

n!
, see [9].

The following identity can easily be obtained for the operator Dn :

(n+ 1)Dn+1f(z) = z(Dnf(z))′nf(z), z ∈ E. (3)

Using these operators, we define:

Definition 1 Let f ∈ A. Then f ∈ Rm(n, α), m ≥ 2, n ∈ N0, α ∈ [0, 1), if and only if,

z(Dnf(z))′

Dnf(z)
∈ Pm(α), z ∈ E.

We note that R2(0, α) = S∗(α) and R2(0, 0) = S∗. The class Rm(0, α) will be denoted as Rm(α). The
class R∗m(n, α) is defined in similar way as:

Definition 2 Let f ∈ A. Then f is said to belong to the class R∗m(n, α), if and only if,

z(Dn
∗ f(z))

′

Dn
∗ f(z)

∈ Pm(α), z ∈ E.

We note

(i) R∗m(0, 0) = Rm is class of functions of bounded radius rotation, see [2].

(ii) R∗2(1, 0) = C the class of convex univalent functions and R∗2(0, α) = S∗(α).

2 Preliminary Results

Lemma 1 ([12]) Let a, d, k, ρ be reals with a > d ≥ 0, k > 0 and ρ ∈ (0, π). Suppose |u − a| ≤ d and
|v − a| ≤ d and set

w =
u

1 + keiρ
+

v

1 + k−1e−iρ
.

Then

<{w} ≥ a− d
(
sec

ρ

2

)
.

Lemma 2 Let f ∈ Rm, m ≥ 2. Then, for z ∈ E,

(i) |argf(z)| ≤ m sin−1 r, see [1].

(ii) | zf
′(z)

f(z) −
1+r2

1−r2 | ≤
mr
1−r2 , see [8].
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Let ∗ denote the convolution (Hadamard product). Then, using convolution techniques given in [10], we
have the following.

Lemma 3 Let β > 0, γ ≥ 0 and an analytic function p(z) satisfying p(0) = 1. Then

p(z) ∗
φβ,γ(z)

z
= p(z) +

zp′(z)

βp(z) + γ
,

where

φβ,γ(z) =

∞∑
j=1

(
β + γ

βj + γ
)zj .

Lemma 4 ([3]) Let u = u1 + iu2, v = v1 + iv2 and let ψ(u, v) be a complex-valued function satisfying the
conditions:

(i) ψ(u, v) is continuous in a domain D ⊂ C2,

(ii) (1, 0) ∈ D and ψ(1, 0) > 0

(iii) <{ψ(iu2, v1)} ≤ 0 whenever (iu2, v1) ∈ D and v1 ≤ − 12 (1 + u
2
2).

If h(z) = 1+c1z+c2z2+... is an analytic function in E such that (h(z), zh′(z)) ∈ D and <{ψ[h(z), zh′(z)]} >
0 for z ∈ E, then <{h(z)} > 0 in E.

3 Main Results

In this section, we obtain the main results.

Theorem 5 For m ≥ 2, n ∈ N0,

Rm(n+ 1, βn+1) ⊂ Rm(n, βn) ⊂ ... ⊂ Rm,

where
βn =

2

λn+1 +
√
λ2n+1 + δ

, λn+1 = (2n− 2βn+1 + 1). (4)

Proof. Let f ∈ Rm(n+ 1, βn+1). Then

z(Dn+1f)′

Dn+1f
∈ Pm(βn+1), z ∈ E.

Set
z(Dnf(z))′

Dnf(z)
= H(z) = (1− βn)

{(
m

4
+
1

2

)
h1(z)−

(
m

4
− 1
2

)
h2(z)

}
+ βn, (5)

We note that hi(z) is analytic in E with hi(0) = 1, i = 1, 2. Using identity (3), Lemma 3 and from (5)
together with some simple computations (see [4]), we obtain

z(Dn+1f(z))′

Dn+1f(z)
= H(z) +

zH ′(z)

H(z) + δn

=

(
m

4
+
1

2

){
(1− βn)h1(z) +

zh′1(z)

h1(z) + δn
+ βn}

−
(
m

4
− 1
2

){
(1− βn)h2(z) +

zh′2(z)

h2(z) + δn
+ βn

}
, (6)
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where

δn =
n+ βn
1− βn

. (7)

Since f ∈ Rm(n+ 1, βn+1), it follows from (6) that, for i = 1, 2

<
{
(1− βn)hi(z) +

zhi(z)

hi(z) + δn
+ (βn − βn+1)

}
> 0, z ∈ E. (8)

We construct the functional ψ(u, v) with u = hi, v = zh′i in (8) and have

ψ(u, v) = (1− βn)u+
v

u+ δn
+ βn − βn+1.

The first two conditions of Lemma 4 can easily be verified. For condition (3), we proceed as follows:

<{ψ(iu2, v1)} = (βn − βn+1) + <
(

v1
iu2 + δn

)
≤

2(βn − βn+1)[(n+ βn)2 + (1− βn)2u22]− (n+ βn)(1− βn)(1 + u22)
2[(1− βn)2u22 + (n+ βn)2]

=
A+Bu22
2C

, with v1 ≤ −
(1 + u22)

2
, δn given in (7)

≤ 0,

if A ≤ 0, B ≤ 0 where as C is obviously positive. From A ≤ 0, we compute the value of βn, which is as in
(4) and B ≤ 0 ensures that βn ∈ [0, 1). Thus condition (iii) of Lemma 4 also holds and we apply it to have
<hi(z) > 0, i = 1, 2, z ∈ E.
Consequently, it follows from (5), that H ∈ Pm(βn), where βn is defined by (4). This completes the

proof.

Special case:
Let βn+1 = 0. Then, from (4), we have

βn =
2

(2n+ 1) +
√
4n2 + 4n+ 9

and β1 = 0 gives us β0 =
1
2 , for n = 0. Therefore

(zf ′(z))′

f ′(z)
∈ Pm implies

zf ′(z)

f(z)
∈ Pm

(
1

2

)
.

Next we prove an inclusion result for R∗m(n, α).

Theorem 6 For n ∈ N◦, m ≥ 2 and z ∈ E,

R∗m(n+ 1, γn+1) ⊂ R∗m(n, γn) ⊂ ... ⊂ R∗m(1, γ1) ⊂ Rm,

where
γn =

2

(1− 2γn+1) +
√
(1− 2γn+1)2 + 8

. (9)

Proof. We follow the similar procedure of Theorem 5 and let

z(Dn
∗ f(z))

′

Dn
∗ f(z)

= p(z) =

(
m

4
+
1

2

){
(1− γn)p1(z) + γn

}
−
(
m

4
− 1
2

){
(1− γn)p2(z) + γn

}
. (10)
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Here p(z) is analytic in E with p(0) = 1. From (10), we have

z(Dn
∗ f(z))

′n
∗ f(z))p(z),

and this leads to
z(Dn+1

∗ f(z))′

Dn+1
∗ f(z)

= p(z) +
zp′(z)

p(z)
. (11)

Following the same technique, we have from (10) and (11)

<
{
(1− γn)pi(z) +

zp′i(z)

pi(z) +
γn
1−γn

+ (γn − γn+1)
}
> 0, for i = 1, 2., z ∈ E.

Now, constructing the functional ψ(u, v) as

ψ(u, v) = (1− γn)u+
v

u+ γn
1−γn

+ (γn − γn+1).

We verify the three conditions of Lemma 4 and apply it to get <pi(z) > 0, i = 1, 2.While verifying condition
(iii), we also obtain the value of γn given by (9). Since f ∈ R∗m(γm+1), it implies from (11) that{

p(z) +
zp′(z)

p(z)

}
∈ Pm(γn+1)

and hence p ∈ Pm(γn), where γn is given by (9). This completes the proof.
As a special case, we have

R∗m(n+ 1, 0) ⊂ R∗m
(
n,
1

2

)
, z ∈ E.

Remark 1 From Definition 1, Definition 2, Theorem 5 and Theorem 6, we can easily deduce that R2(n, α)
and R∗2(0, α) are subclasses of S

∗ of starlike functions.

We have

Theorem 7 Let
F (z) = λf(z) + (1− λ)g(z), (12)

where 0 ≤ arg λ
1−λ ≤ σ < π, f ∈ Rm(n, α), g ∈ R∗m(0, α) in E. Then F ∈ S∗ in |z| < rm, where rm is the

smallest positive value of r satisfying the equation

T (r) = Am(1 + r
2)−mr = 0, Am = cos

(
σ

2
+m sin−1 r

)
Proof. Differentiating (12), we get

zF ′(z)

F (z)
=

λzf ′(z) + (1− λ)zg′(z)
λf(z) + (1− λ)g(z)

=
zf ′(z)

f(z)

[
1 +

(
λ

1− λ
f(z)

g(z)

)−1]−1
+
zg′(z)

g(z)

[
1 +

(
λ

1− λ
f(z)

g(z)

)]−1
. (13)

Let

u =
zg′(z)

g(z)
, v =

zf ′(z)

f(z)
, k =

∣∣∣∣ λ

1− λ
f(z)

g(z)

∣∣∣∣. (14)

Then, from (13) and (14), we have

w(z) =
zF ′(z)

F (z)
=

u

1 + keiρ
+

v

1 + k−1e−iρ
.
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We now apply Lemma 1 and Lemma 2 to obtain

<zF
′(z)

F (z)
≥ 1 + r

2

1− r2 −
mr

1− r2 sec
(
ρ

2

)
, (15)

where

ρ = arg
λ

1− λ
f(z)

g(z)
= 2nπ + arg

λ

1− λ + arg f(z)− arg g(z).

This gives us |ρ| ≤ σ + 2m sin−1 r. Therefore

<
{
zF ′(z)

F (z)

}
> 0,

if T (r) = (1 + r2) cos
(
σ
2 +m sin

−1 r
)
−mr > 0. We note that

T (r) = cos
σ

2
, for r = 0

and
T (r) = −m sin(π − σ

2m
) < 0, when r = sin(

π − σ
2m

).

This implies T (r) = 0 has a root in the interval (0, sin(π−σ2m )) and right hand side of (15) is positive in the
dics |z| < rm, where rm is the least positive value of r satisfying T (r) = 0. This gives

rm =
m+

√
m2 − 4A2m
2Am

, Am = cos(
σ

2
+m sin−1 r),

and the proof is complete.

We have the following special cases

Corollary 8 Let m = 2. Then f and g are starlike in E and

A = A2 = cos
(σ
2
+ 2 sin−1 r

)
.

From Theorem 7, it follows that the linear combination of two starlike functions is starlike in the disc

|z| < r2 =
1−
√
1−A2

2

A2
.

Corollary 9 Let, for m = 2, F be defined as in Theorem 7. Then, F maps the disc |z| < rσ onto a convex
domain, where rσ is the least positive root of the equation

Tσ(r) = Dr2 − 2rr1 +Dr21, r1 = 2−
√
3,

and

D = cos

(
σ

2
+ 2 sin−1

(
r

r1

))
.

It is well known that every starlike function is convex in the disc |z| < r1 = 2−
√
3. Therefore we proceed

with similar technique as follows.
We can write

(zF ′(z))′

F ′(z)
=

(zf ′(z))′

f ′(z)

[
1 +

(
λ

1− λ
f ′(z)

g′(z)

)−1]−1
+
(zg′(z))′

g′(z)

[
1 +

(
λ

1− λ
f ′(z)

g′(z)

)−1]−1
.
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With

u =
(zg′(z))′

g′(z)
, v =

(zf ′(z))′

f ′(z)
, r1 = 2−

√
3

and

k = | λ

1− λ
f ′(z)

g′(z)
|, ρ = arg(

λ

1− λ
f ′(z)

g′(z)
),

we have ∣∣∣∣u− r21 + r
2

r21 − r2

∣∣∣∣ ≤ 2rr1
r21 − r2

,

and ∣∣∣∣v − r21 + r
2

r21 − r2

∣∣∣∣ ≤ 2rr1
r21 − r2

.

We construct

w(z) =
(zF ′(z))′

F ′(z)
=

u

1 + keiρ
+

v

1 + k−1e−iρ
.

Then, as in Theorem 7,

ρ = arg

(
λ

1− λ
f ′(z)

g′(z)

)
= 2nπ arg

(
λ

1− λ

)
+ arg f ′(z)− arg g′(z)

and this gives us
|ρ| ≤ σ + 4 sin−1

( r
r1

)
,

since f and g are convex in |z| < r1. Combining these facts together, it follows that

<
[
(zF ′(z))′

F ′(z)

]
> 0,

if

Tσ(r) = Dr2 − 2r1r +Dr21, D = cos

(
σ

2
+ 2 sin−1

(
r

r1

))
.

This gives us

rσ =
r1 −

√
r21 −D2r21
D

.

It can easily be checked that

rσ ∈
(
0, r1 sin

(
π − σ
4

))
.

Hence F maps the disc |z| < rσ onto a convex domain.

Conclusion

In this paper, certain new classes of functions with bounded radius rotation using Salagean and Ruscheweyh
operators are introduced. Several interesting results including inclusion relation and geometric properties
of linear combinations of these functions are studied. Several special cases are considered as applications
of these new results. The ideas and techniques of this paper may be starting point for further research in
Geometric Function Theory and related areas.
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