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Abstract

Intuitionistic fuzzy graph, belonging to fuzzy graphs family has good capabilities when facing with

problems that cannot be expressed by fuzzy graphs. Intuitionistic fuzzy graph can handle the vagueness

connected with the incompatible and determinate information of any real-world problem, where fuzzy

graphs may not succeed to bear satisfactory results. The previous restrictions in fuzzy graphs have led us

to propose new definitions in intuitionistic fuzzy graphs. Colouring problem in graphs theory is one of the

key issues that has many applications in computer science and social networks. Today, many researchers

are trying to prove its application in medical sciences and psychology. Hence, in this paper, new concept

of colouring of intuitionistic fuzzy graphs has been introduced. Also, some important terms like power

cut graph of intuitionistic fuzzy graphs, range-valued fuzzy colour, chromatic number of an intuitionistic

fuzzy graph colouring have been described. Some relevant results are proved. This technique is used

to colour world political map mentioning the strength of relationship among the countries. Also, a new

kind of traffic signal system has been proposed.

1 Introduction

In 1736, Euler first introduced the concept of graph theory. A graph is a convenient way of interpreting
information involving the relationship between objects. In the history of mathematics, the solution given by
Euler of the well known Konigsberg bridge problem was considered to be the first theorem of graph theory.
This has now become a subject generally regarded as a branch of combinatorics. The theory of graph
is an extremely useful tool for solving combinatorial problems in different areas such as logic, geometry,
algebra, topology, analysis, number theory, information theory, artificial intelligence, operations research,
optimization, neural networks, planning, computer science [18, 25], etc .

Colouring of graph is one of the most important research area of combinatorial optimization due to its
wide applications in real life, viz. management sciences, wiring printed circuits [24], resource allocation [16],
scheduling problems [7, 17, 23], etc. These problems are modelled by appropriate crisp graphs and solved
by colouring of these graphs. In the conventional graph colouring problem, minimum number of colours is
given to the vertices of the graphs such that no two adjacent vertices have the same colours. Several works
have been done in this topic [19, 20, 28, 42]. Intuitionistic Fuzzy graph representation is more appropriate to
reality than crisp graph representation. Every event in real world can be represented by intuitionistic fuzzy
graphs appropriately. Akram et al. [1, 2, 3, 4, 5, 6] investigated several concepts in fuzzy graphs.

Presently, science and technology are featured with complex processes and phenomena for which complete
information is not always available. For such cases, mathematical models are developed to handle types of
systems containing elements of uncertainty. A large number of these models are based on an extension
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of the ordinary set theory, namely, fuzzy sets. The notion of fuzzy sets, introduced by Zadeh in 1965, is a
mathematical tool for handling uncertainties like vagueness, ambiguity and imprecision in linguistic variables
[51]. Research on theory of fuzzy sets has been witnessing an exponential growth; both mathematics and its
application. Fuzzy set theory has emerged as a potential area of interdisciplinary research and fuzzy graph
theory is of recent interest.

In 1975, Rosenfeld [36] introduced the concept of fuzzy graphs. The fuzzy relations between fuzzy sets
were also considered by Rosenfeld and he developed the structure of fuzzy graphs, obtaining analogs of
several graph theoretical concepts. Later on, Bhattacharya gave some remarks on fuzzy graphs, and some
operations on fuzzy graphs were introduced by Mordeson and Peng [25]. Rashmanlou et al. [30, 31, 32, 33,
34, 35] studied new concepts in fuzzy graphs and intuitionistic fuzzy graphs. Fuzzy graphs are designed to
represent structures of relationships between objects such that the existence of a concrete object (vertex)
and relationship between two objects (edge) are matters of degree. A fuzzy graph can well describe the
uncertainty of all kinds of networks. Now, fuzzy graph theory is finding an increasing number of applications
in modeling real time systems where the level of information inherent in the system varies with different
levels of precision. Fuzzy models are becoming useful because of their aim of reducing the differences between
the traditional numerical models used in engineering and sciences and the symbolic models used in expert
systems.

In 1983, Atanassov [8] introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy
sets [51]. Atanassov added a new component (which determines the degree of non-membership) in the
definition of fuzzy set. The fuzzy sets give the degree of membership of an element in a given set (and
the nonmembership degree equals one minus the degree of membership), while intuitionistic fuzzy sets give
both a degree of membership and a degree of non-membership which are more-or-less independent from
each other, the only requirement is that the sum of these two degrees is not greater than 1. Intuitionistic
fuzzy sets have been applied in a wide variety of fields including computer science, engineering, mathematics,
medicine, chemistry and economics [9].

Early in the literature, one of useful problems, the traffic signal problem was solved by using crisp graph
colouring technique. But, in traffic signal problem, some paths are busy compared to the other paths and
some still deal with the traffic signal problem. Also, sometimes, two routes can be opened simultaneously
with some caution. Here ”crowder” and ”warning” are fuzzy terms. Munoz et al. [27] designed the traffic
signal problem by fuzzy graphs and introduced the method of colouring in fuzzy graphs. In that paper, the
fuzzy graphs are considered with crisp nodes and fuzzy edges. Then, α-cut [26] of these fuzzy graphs are
coloured by the technique of crisp graph colouring. For distinct values of α, we have dissimilar crisp graphs,
and these crisp graphs are coloured. Therefore, the chromatic number changes for similar fuzzy graphs
according to distinct values of α. Moreover, Bershtein, and Bozhenuk [10] planned a method to colour fuzzy
graphs. In that paper, a term separation degree of fuzzy graphs has been defined and based on the value of
separation degree, number of minimum colour is found.

Over the years, many extensions of fuzzy graphs and their properties have been deeply studied by several
researchers, such as intuitionistic fuzzy graphs, interval valued fuzzy graphs, interval valued intuitionistic
fuzzy graphs, bipolar fuzzy graphs and etc [11, 12, 13, 14, 15, 21, 22, 29, 37, 38, 39, 40, 41, 43, 44, 45, 46,
47, 48, 49, 50, 52].

In the present paper, a new idea to colour an intuitionistic fuzzy graph is presented. Here, ”range-
valued fuzzy colour” is defined. An intuitionistic fuzzy graph is coloured by the range-valued fuzzy colour
depending on the power of an edge incident to a node. This latest colouring idea is used to colour the
political map and solve the latest type of traffic signal colouring problem. Likewise, the ”power cut graph”
of intuitionistic fuzzy graphs is measured. Some interesting theorems on this type of graph are considered,
then, ”range-valued fuzzy colouring of intuitionistic fuzzy graphs” is proposed.

2 Preliminaries

Definition 1 A graph is an ordered pair G∗ = (V, E), where V is the set of nodes of G∗ and E is the set of
edges of G∗. A graph G∗ is finite if its node set and edge set are finite.
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Definition 2 The node colouring of a graph G is the consignment of labels or colours to each node of a graph
such that no edge links two similarly coloured nodes. The general type of node colouring search minimizes
the number of colours for a graph. This type of colouring is known as least node colouring, and the lowest
number of colours with which the nodes of a graph G can be coloured is called the chromatic number. The
chromatic number of a graph G is denoted by χ(G).

Definition 3 Let X be a nonempty set. A fuzzy set A drawn from X is defined as A = {〈x, µA(x)〉 : x ∈ X},
where µA(x) : X −→ [0, 1] is the membership function of the fuzzy set. Fuzzy set is a collection of objects
with graded membership i.e. having degrees of membership.

Definition 4 A fuzzy graph G = (V, σ, µ) with the node set σ : V −→ [0, 1] and the edge set µ : V × V −→
[0, 1] such that for all x, y ∈ V , µ(x, y) ≤ σ(x)∧σ(y). σ(x) is the membership value of the node x and µ(x, y)
is the membership value of the edge (x, y). Here µ is a symmetric fuzzy relation on σ.

Definition 5 A path in a fuzzy graph is an arrangement of different nodes v1, v2, v3, ..., vn, such that
µ(vi−1, vi) > 0, 1 ≤ i ≤ n. The fuzzy path is said to be a fuzzy cycle if v0 and vn0 overlap. The original
crisp graph of the fuzzy graph G = (V, σ, µ) is denoted as G∗ = (V, σ∗, µ∗), where σ∗ = {x ∈ V | σ(x) > 0}
and µ∗ = {(x, y) ∈ V × V | µ(x, y) > 0}. For the original fuzzy graph, σ∗ = V .

Definition 6 A fuzzy graph G = (V, σ, µ) is said to be complete if µ(x, y) = σ(x) ∧ σ(y) for all x, y ∈ V ,
where (x, y) denotes the edge between nodes x and y.

Definition 7 The fuzzy graph H = (V, σH , µH) is called a fuzzy subgraph of G = (V, σ, µ) if σH(x) ≤ σ(x)
for all x ∈ V and µH(x, y) ≤ µ(x, y) for all edges (x, y) ∈ E.

Definition 8 Let X be a nonempty set. An intuitionistic fuzzy set (IFS) A in X is an object having the
form A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions µA(x), νA(x) : X −→ [0, 1] define respectively,
the degree of membership and degree of non-membership of the element x ∈ X to the set A, which is a subset
of X, and for every element x ∈ X, 0 ≤ µA(x) + νA(x) ≤ 1.

Definition 9 An intuitionistic fuzzy graph (IFG) is of the form IFG : (V, σ, µ), where σ = (σ1, σ2) and
µ = (µ1, µ2) such that

(i) The functions σ1 : V −→ [0, 1] and σ2 : V −→ [0, 1] denote the degree of membership and nonmember-
ship of the element x ∈ V , respectively and 0 ≤ σ1(x) + σ2(x) ≤ 1 for every x ∈ V ;

(ii) The functions µ1 : V × V −→ [0, 1] and µ2 : V × V −→ [0, 1] are the degree of membership and
nonmembership of the edge (x, y) ∈ E, respectively, such that µ1(x, y) ≤ min{σ1(x), σ1(y)} and
µ2(x, y) ≤ max{σ2(x), σ2(y)} and 0 ≤ µ1(xy) + µ2(xy) ≤ 1 for every (x, y) ∈ E.

Definition 10 An intuitionistic fuzzy graph G is said to be complete intuitionistic fuzzy graph if it is strong.
i.e., µ1(x, y) = min{σ1(x), σ1(y)}, µ2(x, y) = max{σ2(x), σ2(y)}, for all x, y ∈ V .

Definition 11 For 0 ≤ α ≤ 1, α - cut graph of intuitionistic fuzzy graph IFG : (V, σ, µ) is a crisp graph
IFG∗

α : (Vα, Eα) such that Vα = {x ∈ V | σ1 ≥ α, σ2 ≥ α} and Eα = {(x, y) | µ1 ≥ α, µ2 ≥ α}.

Definition 12 Intuitionistic fuzzy neighbourhood of a node x of an intuitionistic fuzzy graph IFG = (V, σ, µ)
is an intuitionistic fuzzy set N(x) = (Vx, mx), where Vx = {y|(µ1(x, y), µ2(x, y) > (0, 0)) and mx : Vx −→
[0, 1] is defined by mx(y) = µ(x, y).

Definition 13 A fuzzy graph G = (V, σ, µ) is said to be a fuzzy star if every vertex of G has exactly one
strong neighbour x (say) in V (G).

Definition 14 A power neighbourhood of a node x is a node y such that (x, y) is a power full edge. An
intuitionistic fuzzy graph IFG is said to be the intuitionistic fuzzy star if each node of IFG has precisely
one power neighbour in IFG.
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3 Power Cut Graph of Intuitionistic Fuzzy Graphs

In this part, the α-power cut graph of IFG is defined with an example.
For an intuitionistic fuzzy graph IFG = (V, σ, µ), an edge (x, y); x, y ∈ V is said to be independently pow-

erful if (0.5)min{σ1(x), σ2(x), σ1(y), σ2(y)} ≤ µ1(x, y) and (0.5)min{σ1(x), σ2(x), σ1(y), σ2(y)} ≤ µ2(x, y).
Otherwise, it is independent and powerless. The power of an edge (x, y) in an intuitionistic fuzzy graph
IFG = (V, σ, µ) is denoted by τ(x,y) and is defined as τ(x,y) = (τ1(x,y), τ2(x,y)), where

τ1(x,y) =
µ1(x, y)

min{ψ2(x), ψ2(y)}
, τ2(x,y) =

µ2(x, y)

min{ψ2(x), ψ2(y)}
,

ψ1(x) = min{σ1(x), σ2(x)} and ψ2(x) = max{σ1(x), σ2(x)}.

Again, the power of a node x is denoted by τx and defined as τx = (τ1x, τ2x), where τ1x is the maximum
value along its membership value ψ1(x), and the powers τ1(x,y) of edges (x, y) incident to x and τ1x are the
maximum values along its membership value ψ2(x) and powers τ2(x,y) of edges (x, y) incident to x.

Definition 15 Let IFG = (V, σ, µ) be an intuitionistic fuzzy graph. For 0 ≤ α ≤ 1, the α-power cut graph
of IFG is defined to be the crisp graph IFGα = (V α, Eα) such that V α = {x ∈ V | τx ≥ (α, α)} and
Eα = {(x, y) | x, y ∈ V, τ(x,y) ≥ (α, α)}.

Example 1 Let IFG = (V, σ, µ) be an intuitionistic fuzzy graph, where V = {u, v, w, x, y}, as shown in
Figure 1. The node membership values are considered to be (u, (0.4, 0.6)), (v, (0.2, 0.3)), (w, (0.5, 0.49)),
(x, (0.4, 0.5)), (y, (0.55, 0.45)). The edge membership values are considered to be ((u, v), (0.2, 0.29)), ((u, w),
(0.3, 0.35)), ((u, x), (0.4, 0.45)), ((u, y), (0.4, 0.5)), ((v, w), (0.1, 0.2)), ((v, x), (0.15, 0.25)), ((v, y), (0.17, 0.23)),
((w, x), (0.42, 0.47)), ((w, y), (0.48, 0.42)), ((x, y), (0.4, 0.42)).

Figure 1: An intuitionistic fuzzy graph IFG.

Now the resultant 0.4-cut graph and 0.4-power cut graph are shown in Figure 2 and Figure 3, respectively.

The relation among dissimilar α-power cut graphs of an intuitionistic fuzzy graph is demonstrated using
the following theorems.

Theorem 1 Let IFG be an intuitionistic fuzzy graph. If 0 ≤ α ≤ β ≤ 1, then IFGβ ⊆ IFGα.
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Figure 2: 0.4-cut graph of IFG. Figure 3: 0.4-power cut graph of IFG.

Proof. Suppose IFG = (V, σ, µ) is an intuitionistic fuzzy graph and 0 ≤ α ≤ β ≤ 1. Now, IFGα = (V α, Eα)
such that V α = {x ∈ V | τx ≥ (α, α)} and Eα = {(x, y) | x, y ∈ V, τ(x,y) ≥ (α, α)}. Additionally,

IFGβ = (V β, Eβ), where

V β = {x ∈ V | τx ≥ (β, β)} and Eβ = {(x, y) | x, y ∈ V, τ(x,y) ≥ (β, β)}.

Let p ∈ V β, then τp ≥ β ≥ α and we have p ∈ V α. Similarly, for any element (p, q) ∈ Eβ gives (p, q) ∈ Eα.
Therefore, IFGβ ⊆ IFGα.

The connection between α-cut graph IFGα of an intuitionistic fuzzy graph IFG and power cut graph
IFGα of an intuitionistic fuzzy graph IFG is provided in the subsequent theorem.

Theorem 2 Let IFG be an intuitionistic fuzzy graph. If 0 ≤ α ≤ 1, then IFGα ⊆ IFGα.

Proof. Suppose IFG = (V, σ, µ) is an intuitionistic fuzzy graph, it follows IFGα = (Vα, Eα), where
Vα = {x ∈ V | σ1 ≥ α, σ2 ≥ α} and Eα = {(x, y) | µ1 ≥ α, µ2 ≥ α}. Again, IFGα = (V α, Eα) such that
V α = {x ∈ V | τx ≥ (α, α)} and Eα = {(x, y) | x, y ∈ V, τ(x,y) ≥ (α, α)}. Let x, y ∈ Vα and (x, y) ∈ Eα,
therefore (σ1(x) ≥ α, σ2(x) ≥ α and µ1(x, y) ≥ α, µ2(x, y) ≥ α. These results along with α ≤ 1. Give

(
µ1(x, y)

min{ψ2(x), ψ2(y)}
,

µ2(x, y)

min{ψ2(x), ψ2(y)}
) ≥ (α, α) and τ(x,y) ≥ α,

so (x, y) ∈ Eα. It shows that for every edge IFGα, there is an edge IFGα. Clearly, from the definition of
power of nodes, we have Vα ⊆ V α. It follows, the result IFGα ⊆ IFGα is true.

4 Range-Valued Fuzzy Colouring of an Intuitionistic Fuzzy Graph

In our latest plan, the colouring method of intuitionistic fuzzy graph is coloured by the range-valued fuzzy
colour. The range-valued fuzzy colour is defined below.

4.1 Range-Valued Fuzzy Colour

Definition 16 The combination of two dissimilar colours makes a new colour. However, the combination
of any colour with a white colour decreases the brightness of that colour. Now, brightness is a fuzzy term.
Assume that T (≤ 1) units of a colour Cm is combined with 1 − T units of white colour, that combination is
called a standard mixture of the colour Cm. The consequential colour is called a fuzzy colour of the colour
Cm with membership value T , whereas Cm is called the fundamental colour. Yellow, Red, Black, Green, and
so on are examples of fundamental colours.
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Definition 17 Suppose that C = {C1, C2, ..., Cn}, n ≥ 1 are the set of fundamental colours. The intu-
itionistic fuzzy set (C, (g1, g2)) is called the set of range- valued fuzzy colours if (g1 : C −→ [0, 1] and
(g2 : C −→ [0, 1]; with (g1(Ck), g2(Ck)), the membership value of the colour Ck is the amount per unit
of standard mixture. The colour Ĉk = (Ck, (g1(Ck), g2(Ck)) is called the range-valued fuzzy colour, which
corresponds to the fundamental colour Ck. In view of range-valued fuzzy colour (1, 1), is the membership
value for a range-valued fuzzy fundamental colour.

From Definition 17, range-valued fuzzy colour, we can make different range-valued fuzzy colours beginning
from a fundamental colour. For example, Green is a fundamental colour. A ”range-valued fuzzy Green”
colour may be designed from Green by combining (0.7, 0.23) units of Green with (1−0.7, 1−0.23) = (0.3, 0.77)
units of white. This ”range-valued fuzzy Green” colour is denoted by (Green, (0.7, 0.23)). Similarly, another
range-valued fuzzy Green colour (Green, (0.6, 0.3) may be formed by combining (0.6, 0.3) Green units with
(0.4, 0.7) white units, and others. As a reminder, the range-valued fundamental Green colour is represented
by (Green, (1, 1)).

Now, the range-valued fuzzy colouring of intuitionistic fuzzy graphs can be given below.

4.2 Working Rule of an Intuitionistic Fuzzy Graph Colouring

In crisp graph colouring, if any two nodes are adjacent, these two nodes receive distinct colours; if not, the
colour is the same. Here, an intuitionistic fuzzy graph is coloured by the range-valued fuzzy colour. In this
way, two nodes have distinct fundamental colours if they are adjacent to an independent power full branch.
If not, they have distinct range-valued fuzzy colours.

Suppose IFG = (V, σ, µ) is a connected intuitionistic fuzzy graph and C = {C1, C2, ..., Cn} is a set of
fundamental colours. We observed that there are two types of intuitionistic fuzzy edges in intuitionistic
fuzzy graphs, Viz. independent power engineering edges and independent non power engineering edges.
The independent power less edge is less significant than the independent power full edge. As a result, the
relationship between the corresponding nodes is independent power less. Our latest colouring idea is like
conventional graph colouring, which depends on independent power full and independent power less edges.
The planned intuitionistic fuzzy graph colouring can be divided into three groups that depend on the power
of the edges.

Viz. (1) All edges are independent power full, (2) some edges are independent power full and (3) all edges
are independent power less.

Case 1 The intuitionistic fuzzy graph contains all independent power full edges.

If an intuitionistic fuzzy graph contains all independent power full edges, the colouring of this intuitionistic
fuzzy graph is identical to the colouring of crisp graphs, such that two nodes can be coloured by two different
range-valued fuzzy fundamental colours if there is an independent power full edge between the nodes.

Case 2 The intuitionistic fuzzy graph contains some independent power full edges.

Suppose x is a node and the set of all neighbourhoods of node x is N(x) = {yi, i = 1, 2, ..., n}. For
simplicity, we assume that y1, y2 are two nodes such that (x, y1), (x, y2) are only the two independent power
full edges incident on x and all remaining edges (x, yi), i = 3, 4, ..., n are independent power less edges. In
this case, we colour x by the colour (C, (1, 1)) and y1 by a different colour (C2, (1, 1)). Similarly, y2 will
achieve a distinct colour other than the colour of x.

Now, we consider the node y3 for colouring. Notice that (x, y3) is an independent power less edge.

Subcase 2.1: None of the adjacent nodes of y3 are coloured.

As (x, y3) is an independent power less edge, y3 has a range-valued fuzzy colour corresponding to the
colour of x. If the colour of x is (C, (1, 1)), the intuitionistic fuzzy colour of y3 is (C, (g1(C), g2(C))), where
(g1(C), g2(C)) can be calculated as (g1(C), g2(C)) = (1 − τ1(x,y3), 1− τ2(x,y3)).
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Subcase 2.2: All adjacent nodes of y3 are coloured.

If an edge (y3, z) incident to y3 is independent power full, then y3 cannot be coloured by the colour of z.
That is, if the colour of z is (Cz, (g1(Cz), g2(Cz))), y3 cannot be coloured by any range-valued fuzzy colour of
Cz. Suppose that y3 has some independent power less incident edges, then (y3, zi), i = 1, 2, ..., k. Without a
loss of generality, we assume that the colour of zi is (yi, (g1(yi), g2(yi))), i = 1, 2, ..., k, where (g1(yi), g2(yi)),
i = 1, 2, ..., k are the membership values of the colour yi, i = 1, 2, ..., k and yi, i = 1, 2, ..., k may be the
different or same. Now, to determine the colour of y3, calculate |τ2(y3,z1) − τ1(y3,z1)|, |τ2(y3,z2) − τ1(y3,z2)|, ...,
|τ2(y3,zk) − τ1(y3,zk)| and |τ2(x,y3) − τ1(x,y3)|, to determine the maximum amount and then take the ordered
pair as L, corresponding to the maximum amount.

Let L contribute to the edge (y3, zp), i.e., L = (1− τ1(y3,zp), 1− τ2(y3,zp)). If the colour of zp is (yp, g(yp)),
then y3 receives the colour(yp, L). If the amounts are the same, an arbitrary choice can be made.

Subcase 2.3: Some of the adjacent nodes of y3 are coloured.

The adjacent nodes that are not coloured, do not affect the colouring of y3. Then, the adjacent nodes
that are coloured will be considered for the colouring of y3. The process of colouring y3 is comparable to the
subcase 2.2.

After colouring y3, all of the other nodes are coloured in the same manner.

Case 3 Intuitionistic fuzzy graph contains all independent power less edges.

If IFG contains all independent power less edges, only one fundamental colour is needed to colour the
nodes of IFG. Arbitrarily, consider any node (say x) and assign the fundamental colour to this node
(Cx, (1, 1)), for the remaining nodes, assign the range-valued fuzzy colours corresponding to (Cx, (1, 1))
similar to the above subcase 2.2.

Notation 1 If an intuitionistic fuzzy graph has more than one component, then each component is coloured
by the above described method.

5 Chromatic Number of an Intuitionistic Fuzzy Graph Colouring

The lowest number of fundamental colours used to colour an intuitionistic fuzzy graph is known as a fuzzy
chromatic number. A fuzzy chromatic number of an intuitionistic fuzzy graph IFG is denoted by γ(IFG).
Here, we provide two examples for various fuzzy chromatic numbers.

Suppose, we consider two intuitionistic fuzzy graphs in which Figure 4(a) contains all independent power
less edges. As all of the edges are independent power less, one fundamental colour is sufficient to colour
all of the nodes. Here, the central node is coloured by (R, (1, 1)) and the other nodes are coloured by
different range-valued fuzzy colours (R, (0.p1, 0.p2)), (R, (0.q1, 0.q2)), (R, (0.r1, 0.r2)) and (R, (0.s1, 0.s2)) of
G, where p1, p2, q1, q2, r1, r2, s1 and s2 are natural numbers. Therefore, the fuzzy chromatic number of
this intuitionistic fuzzy graph is one. In Figure 4(b), all of the edges are independent power full. Here, the
fuzzy chromatic number is two, which is equal to the chromatic number of the original crisp graph. In the
Figure 5.1, range-valued fuzzy colours with membership values are shown in parentheses.

Assume that we take four intuitionistic fuzzy graphs whose original crisp graph is K4. In Figure 5(a), an
intuitionistic fuzzy graph is measured such that all of its edges are independent power full. At that point,
the intuitionistic fuzzy graph is four chromatic, as for K4. In Figure 5(b), an intuitionistic fuzzy graph is
considered where edges incident to exactly one node (say u) are independent power less and the remaining
are independent power full. Again, colouring of one node depends on this type of independent power less
incident edges whose other end nodes are coloured. That node is coloured by a range-valued fuzzy colour
that is determined by measuring the powers of such independent power less edges. Let the minimum of the
powers be (m, n) (here m = 0.3, n = 0.6, corresponding to the branch (u, v), and v is coloured by (G, (1, 1)).
Then, node u will be coloured by the range-valued fuzzy colour (G, (1−m, 1−n)), i.e., (G, (0.7, 0.4)). Hence,
it is triple-chromatic. Similarly, two other intuitionistic fuzzy graphs are coloured (see Figure 5(c) and Figure
5(d)).
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(a) Fuzzy chromatic numbers 1 (b) Fuzzy chromatic numbers 2

Figure 4: Fuzzy chromatic numbers graphs.

Proof. Suppose IFG = (V, σ, µ) is an intuitionistic fuzzy graph. Let the original crisp graph of IFG be
G = (V, E). Hence, E = {(x, y) | (µ1(x, y), µ2(x, y)) ≥ (0, 0)}. Suppose G contains p edges and χ(G) = q,
where q ≤ p. Therefore, IFG has at most p independent power full edges.

It is easy to consider whether all of the edges of IFG are independent power full, then the fuzzy chromatic
number of IFG is the same as the chromatic number of its equal original crisp graph. In addition, we observe
that two end nodes of an edge can be coloured by two range-valued fuzzy colours that are equivalent to the
same fundamental colour if the edge is independent power less. As a result, if IFG has a lower number
of independent power full edges than p, γ(IFG) may be less than or equal to p. γ(IFG) ≤ p. Hence,
γ(IFG) ≤ χ(G).

Remark 1 If we know the fuzzy chromatic number of an intuitionistic fuzzy graph and chromatic number
of an original crisp graph, we can easily calculate the minimum number of independent power less edges in
the intuitionistic fuzzy graph. Above statement supports the following theorem.

Theorem 3 Let IFG be an intuitionistic fuzzy graph and G is its original crisp graph, χ(G) − γ(IFG)
represents the minimum number of independent power less edges in IFG.

Proof. Let m = χ(G) − γ(IFG). Here two cases arise.
Case 1. If m = 0, χ(G) = γ(IFG). This suggests that all of the edges of IFG are independent power

full. As a result, the graph has no independent power less edge.
Case 2; m > 0. Let (x, y) be an edge in G and (x́, ý) be the corresponding edge in IFG. In G, two

distinct colours are needed to colour the nodes x, y. In IFG, if (x́, ý) is an independent power full edge,
x́, ý are also coloured by two different fundamental colours. If the edge is not independent power full, x́ and
ý can be coloured by range-valued fuzzy colours of same fundamental colour; otherwise, any independent
power full edge is related to x́. Therefore, x́ and ý are coloured by range-valued fuzzy colours of the same
fundamental colour if all edges incident to x́ or ý are not independent power full edges. Hence, two end
nodes in an intuitionistic fuzzy graph are coloured by range-valued fuzzy colours of the same fundamental
colour if, at least, the corresponding edge of the end nodes is independent power less. This implies that IFG
has at least m = χ(G)− γ(IFG) independent power less edges. As a result, χ(G)− γ(IFG) is the minimum
number of independent power less edges.

The connection along chromatic numbers of dissimilar power cut graphs of an intuitionistic fuzzy graph
is built up below.

Theorem 4 Let IFG be an intuitionistic fuzzy graph. If 0 ≤ α ≤ β ≤ 1, then χ(IFGβ) ≤ χ(IFGα).
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(a) γ(IFG) = 4 (b) γ(IFG) = 3

(c) γ(IFG) = 2 (d) γ(IFG) = 1

Figure 5: Intuitionistic fuzzy graph

Proof. It is evident that the chromatic number of a crisp graph is greater than or equal to the chromatic
number of any subgraph. Additionally, from Theorem 1, if 0 ≤ α ≤ β ≤ 1, then IFGβ ⊆ IFGα, so the
theorem demonstrates that χ(IFGβ) ≤ χ(IFGα) for 0 ≤ α ≤ β ≤ 1.

The connection between the chromatic number of power cut graphs and intuitionistic fuzzy graphs can
be found from the accompanying hypothesis. It is not probable to create a connection between the chromatic
number of cut graphs and corresponding interval-valued fuzzy graphs. This is additionally outlined in note
taking after the hypothesis.

Theorem 5 If IFG is an intuitionistic fuzzy graph, then χ(IFG0.5) = γ(IFG).

Proof. Let IFG = (V, σ, µ) be an intuitionistic fuzzy graph. Now, IFG0.5 = (V 0.5, E0.5), where V 0.5 =
{x ∈ V | τx ≥ (0.5, 0.5)} and E0.5 = {(x, y) | x, y ∈ V, τ(x,y) ≥ (0.5, 0.5)}. All independent power full edges
of IFG are edges of IFG0.5. Thus, there is a one to one connection between the independent power full
edges in IFG and the edges in IFG0.5, i.e., there is one edge in IFG0.5 for all independent power full edge
in IFG. Thus, χ(IFG0.5) = γ(IFG).

Notation 2 The chromatic number of 0.5-cut graph of an intuitionistic fuzzy graph may not equal that of
an intuitionistic fuzzy graph. Theorem 2 implies that IFGα ⊆ IFGα. Moreover, Theorem 5 implies that
χ(IFG0.5) = γ(IFG). Thus χ(IFG0.5) ≤ γ(IFG).
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Notation 3 We know that for complete crisp graph Kn; χ(Kn) is the number of its nodes. This result
gives the following statement. If all of the edges of a complete intuitionistic fuzzy graph IFG = (V, σ, µ) are
independent power full, then γ(IFG) is the number of nodes of IFG.

6 Application of a Range-Valued Fuzzy Colouring of the Intu-

itionistic Fuzzy Graph

A few applications are accessible in determining the intuitionistic fuzzy graph colouring. Here, two applica-
tions are depicted. Political map colouring and traffic signal problems are portrayed in the accompanying
subsections.

6.1 Colouring of a Political Map

Political maps are intended to indicate legislative limits of nations, states and the area of rural and urban
areas, and they typically incorporate critical water ways. To evaluate a certain region of nations, it will be
more important to colour it as a fundamental of political boundaries and political relationships along such
nations. In general, it is seen that the ”relationships” are indefinite. As a result, the range-valued fuzzy
colouring of an intuitionistic fuzzy graph is an essential problem.

Here, we model an intuitionistic fuzzy graph by taking nations P,Q,R, S, T, U, V,W,X, Y and W as
nodes, and there is an edge if they share a border (see Figure 6). Here, the edges were (P,R), (P, S),
(P, T ), (P, U), (P, V ), (P,W ), (Q,R), (Q, Y ), (R, S), (S, T ), (U, V ), (U,X) and (V,W ). The membership
values of the nodes are the power of a nation (with respect to wealth, weapon, teaching, cooking facility,
known branch, etc.), and the membership value of an edge is the degree of political connection in a confi-
dent approach. Because, we only concentrated on the model, we have to consider nodes with membership
values of (P, (0.p1, 0.p2)), (Q, (0.q1, 0.q2)), (R, (0.r1, 0.r2)), (S, (0.s1, 0.s2)), (T, (0.t1, 0.t2)), (U, (0.u1, 0.u2)),
(V, (0.v1, 0.v2)), (W, (0.w1, 0.w2)), (X, (0.x1, 0.x2)) and (Y, (0.y1, 0.y2)). Let (P,R), (P, S), (P, U), (Q, Y ) and
(V,W ) be independent power full edges, while (P, T ), (P, V ), (P,W ), (Q,R), (R, S), (S, T ), (U, V ) and
(U,X) are power less edges. The graphical representation is shown in Figure 7.

Figure 6: Iran political map of some nations.

Now the intuitionistic fuzzy graph IFG has both independent power full and independent power less
edges. As a result, the colouring plan of Case 2 of Section 4.2 is applied. First, p is coloured with an
arbitrary fundamental colour, such as Green. Because the edges (P,R), (P, S) and (P, U) are independent
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Figure 7: Intuitionistic fuzzy graph of IFG.

power full edges incident to P,R, S and U , they are coloured by different fundamental colours. However,
(R, S) is an independent power less edge. As a result, we first colour any of R and S, node R coloured by the
fundamental colour, namely Red. As the edge (R, S) is independent power less, the node S coloured by range-
valued fuzzy colour (Red, (0.a1, 0.a2)) is similar and the other nodes Q, T, U, V,W,X and Y are coloured by
(Green, (1, 1)), (Green, (0.b1, 0.b2)), (Red, (1, 1)), (Green, (0.c1, 0.c2)), (Red, (1, 1)), (Green, (1, 1)) and (Red, (1, 1)),
respectively. Finally, IFG becomes coloured by range-valued fuzzy colours (Figure 8). This colouring is not
only used to be visually pleasing; it has an important meaning regarding the political relationship. Here,

Figure 8: Iran political colour map.

the graph IFG is 2-chromatic because we utilized two fundamental colours (Red and Green) alone.

6.2 Traffic Signal Problem

The traffic signalling framework is at the junction and uses bright signals, mainly red and green. They
twinkle in an organized pattern at the intersection of the paths for the safety of the people. Red means stop,
and Green means go. Occasionally, a third colour is utilized to open some paths with a warming. Yet, this
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third colour is unable to analyse the amount of threat on the paths.

These traffic signal frameworks can be visualized as a graph. In this graph, every path is considered to
be nodes of the graph and there is an edge if paths intersect. This graph model can account for impacts
at the intersections of paths. Furthermore, the issue strikes some paths, which are crowder contrasted with
different paths. At some locations, a large number of individuals need to wait for long times because of
traffic signals. Likewise, some paths impact hazards in contrast with different paths. Here, the expressions
”crowder”, ”warning”, and so forth do not represent the crisp graphs or intuitionistic fuzzy graphs with crisp
nodes. As a result, straightforward graphs or intuitionistic fuzzy graphs with crisp nodes do not completely
encompass the traffic signal framework. In this part, we acquainted another arrangement for the traffic
signal issue.

As a traffic signal uses only red and green colours, we chose a slightly different approach to colour the
corresponding intuitionistic fuzzy graph of the traffic signal system. Here, between any two nodes, if an
independent power full edge exists, two nodes will be coloured red and green. The intuitionistic fuzzy graph
is constructed so that if two paths have a slight chance to crash into one another, there is an edge between
two paths, i.e., two nodes. As a result, the existence of the independent power less edge implies that there is
some chance of a crash. Hence, two end nodes of an independent power less edge are given two range-valued
fuzzy colours of two different fundamental colours.

We considered every path in terms of intuitionistic fuzzy nodes. Depending on the crowdedness on the
path, we assign membership values to the nodes.

At the same time, opening some paths can contribute to accidents. Calculating the probability of acci-
dents, an edge between two nodes (paths) is drawn if the paths collide. The membership values of the edges
are calculated from the probability of accidents if the paths are opened. Then, the traffic signal system
indicates an intuitionistic fuzzy graph. Here, red indicates the full stoppage of the path, and green indicates
the full opening of the path. Range-valued fuzzy red will indicate certain danger compared to the safety of
the path, and range-valued fuzzy green will represent certain safety over the danger of the path. In such
intuitionistic fuzzy graphs, independent power full edges indicate that two paths, corresponding to the end
nodes, are not opened at the same time, i.e., the nodes will have to be given distinct colours, i.e., red and
green. Therefore, one path will be opened and the other will be closed. Independent power less edges in
the intuitionistic fuzzy graph indicate that some danger is present between the paths of the corresponding
nodes. As a result, if one end node is given red (or green), the other end node will be given range-valued
fuzzy green (or range-valued fuzzy red). Now, we describe a specific traffic signal problem as follows.

Let some courses assemble at a particular point. We denote the north fixed path as N , south fixed path
as S, east as E and west as W .

For simplicity, let E be a fixed path, i.e., the journey is imaginable from path E to other paths and
traveling is not possible between any other paths and path E. We denote a path from north to south as NS,
likewise for the other directions. As a result, the number of likely paths is NS, NW , WN , WS, SN , SW ,
EN , ES and EW (see Figure 9(a)).

For simplicity, we use D = NS, F = NW , G = WN , H = WS, I = SN , J = SW , K = EN , L = ES

and M = EW .

These are taken as the nodes of the proposed intuitionistic fuzzy graph. Suppose that in a specific time,
course W is not crowded relative to the other paths. Determining the on crowd, let the colours of the nodes be
given as (D, (0.d1, 0.d2)), (F, (0.f1, 0.f2)), (G, (0.g1, 0.g2)), (H, (0.h1, 0.h2)), (I, (0.i1, 0.i2)), (J, (0.j1, 0.j2)),
(K, (0.k1, 0.k2)), (L, (0.l1, 0.l2)) and (M, (0.m1, 0.m2)). Observing the probability of accidents along crowds,
the nodes (paths) are linked by edges. The edges (K,D), (M,D), (M, I), (L, I), (D, J), (F, I), (F,G) and
(H, J) are calculated with membership values.

After calculating the powers of the paths, suppose that only the (M,D) and (M, I) paths are independent
power full edges. The equivalent intuitionistic fuzzy graph is shown in Figure 9(b).

Now, the colouring of this intuitionistic fuzzy graph is completed by only two fundamental colours, viz.
red and green. Here, M is coloured with a fundamental colour green. As a result, course M is opened. Now,
we colour D and I. Here, (M,D) and (M, I) are independent power full edges. Therefore, D and I each
receive a fundamental colour red. Now, K neighbors D, which is coloured red. Then, K receives the range-
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(a) Fuzzy chromatic numbers 1 (b) Fuzzy chromatic numbers 2

Figure 9: Traffic signal fuzzy graph.

valued fuzzy colour of Green. Suppose that K receives a range-valued fuzzy colour (G, (0.k′1, 0.k
′

2)), similarly,
other nodes J, F, and L receive the colours (G, (0.j′1, 0.j

′

2)), (G, (0.f
′

1, 0.f
′

2)), and (G, (0.l′1, 0.l
′

2)), respectively.
Finally, G receives the range-valued fuzzy red colour (R, (0.g′1, 0.g

′

2)) and H receives range-valued fuzzy red
(R, (0.h′1, 0.h

′

2)).

7 Conclusion

Intuitionistic fuzzy models give more precision, flexibility, and compatibility to the system as compared to
the fuzzy models. There are several different ideas regarding the quality of an edge in an intuitionistic fuzzy
graph. We connected one of those notations. Cut label graphs are vital for intuitionistic fuzzy graphs. Here,
power cut label graphs are presented. Connections between the power cut label graphs and cut label graphs
are established. Additionally, few fundamental outcomes of graph theory have been demonstrated. The
connection between the chromatic number of intuitionistic fuzzy graphs and its original graphs as well as
connection between the chromatic number of intuitionistic fuzzy graphs and its power cut graphs are also
recognized. Intuitionistic fuzzy graphs appropriately signify a few public problems. One of them is world
political map. The current maps do not give information on the political connection among neighbouring
nations. However, the intuitionistic fuzzy graph gives a genuine picture of the political connections. This
introduced the colouring of intuitionistic fuzzy graphs and showed the political connection among the nations.
In addition, straight traffic signals, red, green, and so on, do not suitably represent traffic systems. Hence,
range-valued fuzzy colours are used to simplify the available systems. Thus, the traffic signal problem is
explained here by colouring intuitionistic fuzzy graphs. Edge colouring is also significant for some genuine
events. We are working on the edge colouring and total colouring of intuitionistic fuzzy graphs as an added
layer of this subject. Also, since the concept of colouring fuzzy graphs has useful and wide applications in
various sciences and life today, so, in our future work, we will study the concepts of colouring single valued
neutrosophic graphs, colouring interval-valued neutrosophic graphs, and colouring neutrosophic cubic graphs
with several examples.
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