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Abstract

In this study, we investigate the evolution of a moving space curve with a modified orthogonal frame.
Firstly, the relations between the Frenet frame and the modified orthogonal frame is given. Later, the
time evolution equation and curvatures of a moving space curve according to the modified orthogonal
frame are obtained. Finally, some theorems and results are given according to the special cases of the
evolution of the moving space curve.

1 Introduction

In recent years, the connection between the motion of space curves and differential equations is a subject of
research attention. At the same time, the applications of this subject in differential geometry and physics
have attracted attention. The subject of how space curves change depending on time is of great interest and
has been explored by many researchers. The evolution of the Serret-Frenet equations and the evolution of
the curvatures of this moving frame have been studied in Euclidean 3-space and at the same time, nonlinear
differential equations have been obtained by using the evolution of the curvature and torsion under suitable
conditions [1, 2, 3]. The geometry of evolving plane curves, the evolution of inelastic plane curves, the
evolution of a helix curve and evolution of space curves in Rn are given in the studies [4, 5, 6, 7]. Also,
Richardson and King investigated the evolution of space curves by means of curvature and torsion [8].
Hasimoto showed that the evolution of the vortex filament, which is considered to be the motion of the space
curve, can be transformed into the nonlinear Schrodinger equation [9]. In addition, the Hasimoto surfaces
are obtained by evolving the regular space curve. The equation of the Hasimoto surface is given as follows:

rt (s, t) = rs ∧ rss (1)

where r (s, t) is a position vector of a moving space curve, s is the arc-length parameter, t denotes time
and the subscript denote the partial differential equation [10]. All the above studies have been examined
according to the Serret-Frenet frame and alternatively, the evolution of the space curve and characterization
of the inelastic curve according to Bishop frame are given in [11, 12]. Serret-Frenet frame is insuffi cient
at points where the curvature of a space curve is zero. Because at points where the curvature is zero, the
principal normal and binormal vector of a space curve becomes discontinuous. To find a solution to this
problem, Sasai defined the modified orthogonal frame as an alternative to the Frenet frame in his study
[13]. Then, the modified orthogonal frame was defined by Bükcü and Karaca for the curvature and torsion
non-zero of a space curve in Minkowski 3-space [14]. Some studies on spherical and some special curves have
been made using this modified orthogonal frame [15, 16, 17]. This study aims to investigate the geometric
properties of the evolution of the space curve according to the modified orthogonal frame. Primarily for this,
the time evolution equation and curvatures of a space curve according to the modified orthogonal frame are
obtained. Later, some theorems and results are given according to the special cases of the evolution of the
space curve. In addition, another purpose of this study is to contribute to the scientific world by examining
the evolution of the space curve from a different perspective.
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2 Preliminaries

Let E3 denote the Euclidean 3-space. The norm of a vector x ∈ E3 is defined by ‖x‖ = √< x, x >. Also, a
space curve r is called unit speed curve, if ‖r′(s)‖ = 1. Assume that r is a moving space curve with respect to
the arc-length s in Euclidean 3-space E3 and t, n, and b denote the tangent, principal normal and binormal
unit vectors at any point r(s) of the curve r, respectively. Then, there exists an orthonormal frame {t, n, b}
which satisfies the Frenet-Serret equation

t′ = κn,

n′ = −κt+ τb,
b′ = −τn

where κ and τ are the curvature and torsion of the curve r, respectively.
For the reason that the principal normal and binormal vectors of the Frenet frame of a space curve become

discontinuous at the points where the curvature is zero, the modified orthogonal frame was introduced by
Sasai as an alternative to the Frenet frame. In this sense, one assumes that the curvature κ (s) of the space
curve r is not zero and then the modified orthogonal frame {T,N,B} can be defined as follows:

T =
dr

ds
, N =

dT

ds
, B = T ∧N

where T ∧ N is the vector product of T and N . The relations between the modified orthogonal frame
{T,N,B} and Serret-Frenet frame {t, n, b} at non-zero points of κ are

T = t, N = κn, B = κb.

From these equations, it is known that the differentiation of the elements of the modified orthogonal frame
{T,N,B} satisfies

T ′ (s) = N (s) ,

N ′ (s) = −κ2T (s) + κs
κ
N (s) + τB (s) ,

B′ (s) = −τN (s) + κs
κ
B (s)

and the matrix form is given by  T
N
B


s

=

 0 1 0
−κ2 κs

κ τ
0 −τ κs

κ

 T
N
B


where κs denotes the differentiation with respect to the arc-length parameter s and τ =

det(r′,r′′,r′′′)
κ2 is the

torsion of the space curve r. Moreover, the modified orthogonal frame {T,N,B} satisfies

〈T, T 〉 = 1, 〈N,N〉 = 〈B,B〉 = κ2, 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0.

3 Evolution of Space Curves with Modified Orthogonal Frame

In this section, we study the evolution of a moving space curve using a modified orthogonal frame. We derive
the time evolution equation and curvatures of a space curve for the modified orthogonal frame.
Let r(s, t) be a position vector of a moving space curve r which a unit speed curve for all t parameters

in Euclidean 3-spaces. Then, the time evolution of the modified orthogonal frame {T,N,B} can be written
in matrix form as follows:  T

N
B


t

=

 0 α β
−α κκt γ
−β −γ κκt

 T
N
B


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where α, β and γ are smooth functions for s and t. These functions define the evolution according to the
parameter t on the space curve r. Under compatibility conditions Tst = Tts, Nst = Nts, Bst = Bts, we obtain

αs = τβ − κs
κ α+ κκt,

βs = γ − τα− κs
κ β,

γs = τ t − β.
(2)

We suppose that the velocity vector rt = dr
dt of a moving space curve r is given by

rt =
dr

dt
= aT + bN + cB. (3)

From the imposition of condition rst = rts, we find the following equations

0 = as − bκ2,
α = a+ bs +

κs
κ b− τc,

β = τb+ cs +
κs
κ c

(4)

where a, b and c as functions of the parameters s and t correspond to the tangent, normal and binormal
vectors of the velocity, respectively. Substituting the equations (4) into the second equation of (2), we get

γ =
(
τb+ cs +

κs
κ
c
)
s
+ τ

(
a+ bs +

κs
κ
b− τc

)
+
κs
κ

(
τb+ cs +

κs
κ
c
)
. (5)

Also, considering the equation (2), we find the time evolution equations of the curvature and torsion of the
curve r as

κt =
1
κ

(
αs +

κs
κ α− τβ

)
,

τ t = γs + β.
(6)

This equation is the main result of this paper. The motion of the space curve via the modified orthogonal
frame is determined from these equations for {α, β, γ}. Now, let’s express the special cases with respect to
the coeffi cients a, b, c of the velocity of a curve r indicated in equation (3).

Theorem 1 Let r(s, t) be a position vector of a moving space curve r which is a unit speed curve for
all t parameters in Euclidean 3-space and the velocity vector of r(s, t) be rt = B, then with respect to
the modified orthogonal frame the evolution equation of the curvature and the torsion of the curve r are
κt = − 1

κ

(
2τ κsκ + τs

)
and τ t =

(
κss
κ − τ

2
)
s
+ κs

κ , respectively.

Proof. If we assume that the velocity vector of r(s, t) is rt = B, then from the equation (3), we get
a = 0, b = 0 and c = 1. Then the time evolution of the modified orthogonal frame {T,N,B} is found as
follows:  T

N
B


t

=

 0 −τ κs
κ

τ κκt
κss
κ − τ

2

−κsκ −κssκ + τ2 κκt

 T
N
B


such that α = −τ , β = κs

κ , γ =
κss
κ − τ

2. Finally, considering the equation (6) completes the proof.
If we recall the equation of the hasimoto surface that rt (s, t) = rs ∧ rss = B is satisfied with respect to

the modified orthogonal frame, the following corollary is given immediately.

Corollary 2 If a moving space curve r(s, t) generates a Hasimoto surface, then with respect to the mod-
ified orthogonal frame the evolution equation of the curvature and the torsion of the curve r are κt =
− 1
κ

(
2τ κsκ + τs

)
and τ t =

(
κss
κ − τ

2
)
s
+ κs

κ , respectively, see Figure 1.

Theorem 3 Let r(s, t) be a position vector of a moving space curve r which is a unit speed curve for all t
parameters in Euclidean 3-space and the velocity vector of r(s, t) be rt = T , then with respect to the modified
orthogonal frame the evolution equation of the curvature and the torsion of the curve r are κt = κs

κ2 and
τ t = τs, respectively.
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Figure 1: A Hasimoto Surface.

Proof. Assume that the velocity vector of a moving space curve r is rt = T . a = 1, b = 0 and c = 0 have to
satisfied in the equation (3). Thus the time evolution of the modified orthogonal frame {T,N,B} is found
as follows:  T

N
B


t

=

 0 −1 0
1 κκt τ
0 −τ κκt

 T
N
B


such that α = 1, β = 0, γ = τ . From the equation (6), the evolution equation of the curvature and the torsion
of the curve r are κt = κs

κ2 and τ t = τs.

Theorem 4 Let r(s, t) be a position vector of a moving space curve r which is a unit speed curve for all t
parameters in Euclidean 3-space and the velocity vector of r(s, t) be rt = N , then with respect to the modified
orthogonal frame the evolution equation of the curvature and the torsion of the curve r are κt = 1

κ

(
κss
κ − τ

2
)

and τ t =
(
τs + τ

κs
κ

)
s
+ τ , respectively.

Proof. If rt = N is assumed then a = 0, b = 1 and c = 0, then, the time evolution of the modified orthogonal
frame {T,N,B} is found as follows: T

N
B


t

=

 0 κs
κ τ

−κsκ κκt τs + τ
κs
κ

−τ −τs − τ κsκ κκt

 T
N
B


such that α = κs

κ , β = τ , γ = τs + τ κsκ . From the equation (6), the evolution equation of the curvature and
the torsion of the space curve r are κt = 1

κ

(
κss
κ − τ

2
)
and τ t =

(
τs + τ

κs
κ

)
s
+ τ .

Theorem 5 Let r(s, t) be a position vector of a moving space curve r which is a unit speed curve for all
t parameters in Euclidean 3-space and the velocity vector of r(s, t) be rt = λT + B

λ where λ is a non-zero
constant, then with respect to the modified orthogonal frame the evolution equation of the curvature and
the torsion of the curve r are κt = 1

λκ2

(
−κτs + κs

(
λ2 − 2τ

))
and τ t = 1

λ

((
κss
κ + τ

(
λ2 − τ

))
s
+ κs

κ

)
,

respectively.

Proof. Let r(s, t) be the position vector of a moving space curve r and a = constant = λ 6= 0, b = 0 and
c = 1

λ , then the time evolution of the modified orthogonal frame {T,N,B} is found as follows:

 T
N
B


t

=


0 λ2−τ

λ
κs
λκ

τ−λ2
λ κκt

(
κss+τκ(λ2−τ)

λκ

)
− κs
λκ −

(
κss+τκ(λ2−τ)

λκ

)
κκt


 T
N
B


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such that α = λ2−τ
λ , β = κs

λκ , γ =
κss+κτ(λ2−τ)

λκ . From the equation (6), the evolution equation of the curvature
and the torsion of the curve r are κt = 1

λκ2

(
−κτs + κs

(
λ2 − 2τ

))
and τ t = 1

λ

((
κss
κ + τ

(
λ2 − τ

))
s
+ κs

κ

)
.

Corollary 6 If a moving space curve r(s, t) generates a Dini surface, then with respect to the modified orthog-
onal frame the evolution equation of the curvature and the torsion of the curve r are κt = 1

λκ2

(
−κτs + κs

(
λ2 − 2τ

))
and τ t = 1

λ

((
κss
κ + τ

(
λ2 − τ

))
s
+ κs

κ

)
, respectively, see Figure 2.

Figure 2: A Dini Surface.

Theorem 7 Let r(s, t) be a position vector of a moving space curve r which is a unit speed curve for all t
parameters in Euclidean 3-space and the velocity vector of r(s, t) be rt = T + N , then with respect to the
modified orthogonal frame the evolution equation of the curvature is κt = κss+κs

κ2 and the torsion is τ t = 0.

Proof. If the velocity vector of the moving curve r is rt = T +N , then a = 1, b = 1 and c = 0. So, τ = 0,
β = 0 and γ = 0 are obtained, then the time evolution of the modified orthogonal frame is found as follows:[

T
N

]
t

[
0 α
−α κκt

] [
T
N

]
such that α = a+ bs +

κs
κ b. From the equation (6), the evolution equation of the curvature and the torsion

of the curve r are κt = 1
κ

(
αs +

κs
κ α
)
and τ t = 0. Here the curvature of the curve r is κt = κss+κs

κ2 .

Corollary 8 Let r(s, t) be the position vector of a moving planar curve, then concerning the modified or-
thogonal frame, the evolution equation of the curvature is κt = κss+κs

κ2 .
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