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Abstract

We use a weaker Newton—Kantorovich theorem for solving equations, introduced in [3] to analyze
interior point methods. This way our approach extends earlier works in [6] on Newton’s method and
interior point algorithms.

1 Introduction

In this study we are concerned with the problem of approximating a locally unique solution x? of equation

F (x) = 0, (1)

where, F is a differentiable operator defined on a convex domain D of Ri (i an integer) with values in Ri.
The famous Newton-Kantorovich theorem [4] has been used extensively to solve equation (1). A survey

of such results can be found in [1] and the references therein. Recently, in [1]—[3], we improved the Newton-
Kantorovich theorem. We use this development to show that the results obtained in the elegant work in [6]
in connection to interior point methods can be extended, if our convergence conditions simply replace the
stronger ones given there.
Finally a numerical example is provided to show that fewer iterations than the ones suggested in [6] are

needed to achieve the same error tolerance.

2 An Improved Newton—Kantorovich Theorem

Let ‖ · ‖ be a given norm on Ri, and x0 be a point of D such that the closed ball of radius r centered at x0,
U(x0, r) = {x ∈ Ri : ‖x− x0‖ ≤ r} is included in D, i.e., U(x0, r) ⊆ D. We assume that the Jacobian F ′(x0)
is nonsingular and that the following affi ne-invariant Lipschitz condition is satisfied:

‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ w ‖x− y‖ for some w ≥ 0, and for all x, y ∈ U(x0, r). (2)

Our technique extends other methods using inverses along the same lines [1, 2, 3].
The famous Newton—Kantorovich Theorem [4] states that if the quantity

α := ‖F ′(x0)−1F (x0)‖ (3)

together with w satisfy

k = αw ≤ 1

2
, (4)
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274 Extended Newton’s Method with Applications

then there exists x? ∈ U(x0, r) with F (x?) = 0. Moreover the sequences produced by Newton’s method

xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0), (5)

and by the modified Newton’s method

yn+1 = yn − F ′(y0)−1F (yn), y0 = x0 (n ≥ 0) (6)

are well defined and converge to x?. Notice that we assume that F ′(x0) is invertible, so it does not become
zero on U(x0, r).

In [1]—[3] we introduced the center—Lipschitz condition

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ w0 ‖x− x0‖, for some w0 ≥ 0, and for all x ∈ U(x0, r). (7)

This way, we provided a finer local and semilocal convergence analysis of method (5) by using the combination
of conditions (2) and (7) given by

`0 = αw ≤ 1

2
, (8)

where,

w =
1

8
(w + 4 w0 +

√
w2 + 8 w0 w) [3]. (9)

In general
w0 ≤ w ≤ w (10)

holds, and w
w0
, w
w0
, ww can be arbitrarily large [1]. Note also that

k ≤ 1

2
⇒ `0 ≤ 1

2
(11)

but not vice versa unless if w0 = w. Examples where weaker condition (8) holds but (4) fails have been also
given in [1]—[3].
We can do even better as follows:

Set

U0 := Ū(x0, r) ∩ U(x0,
1

w0
− ‖F ′(x0)−1F (x0)‖).

Suppose there exists w1 > 0 such that for each x, y ∈ U0 :

‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ w1‖x− y‖, (12)

and there exist β > 0, γ > 0 such that for each x ∈ U0 and θ ∈ [0, 1],

‖F ′(x0)−1(F ′(x0 + θ(x1 − x0))− F ′(x0))‖ ≤ γθ‖x1 − x0‖, (13)

‖F ′(x0)−1(F ′(x1)− F ′(x0))‖ ≤ β‖x1 − x0‖,

where
x1 = x0 − F ′(x0)−1F (x0). (14)

Notice that
β ≤ γ ≤ w0 ≤ w and w1 ≤ w. (15)

Define

δ =
2w1

w1 +
√
w21 + 8w0w1

(16)
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and

δ1 =


1

w0+β
, if q = w1γ + δw0(γ − 2β) = 0,

2
−δ(w0+β)+

√
δ2(w0+β)2+δ(w1γ+2δw0(γ−2β))

q , if q > 0,

− 2δ(w0+β)+
√
δ2(w0+β)2+δ(w1γ+2δL0(γ−2β))

q , if q < 0.

(17)

In [3], we presented a semi-local convergence analysis using the conditions below (11) and the condition

k0 = αδ ≤ 1

2
, (18)

replacing (8). In view of (15)—(18), we have that

w0 ≤ δ ≤ w̄, (19)

so
`0 ≤ 1

2
=⇒ k0 ≤ 1

2
. (20)

Notice that by (18) αw0 < 1, so the set U0 is defined.
Similarly by simply replacing w with w0 (since (7) instead of (2) is actually needed in the proof) and

condition (4) by the weaker

k1 = αw0 ≤
1

2
(21)

in the proof of Theorem 1 in [6] we show that method (6) also converges to x? and the improved bounds

‖yn − x?‖ ≤
2β0 λ

2
0

1− λ20
ξn−10 (n ≥ 1) (22)

where

β0 =

√
1− 2k1

k1
, λ0 =

1−
√

1− 2k1 − h1
k1

and ξ0 = 1−
√

1− 2k1

hold. In case w0 = w, (22) reduces to (10) in [6]. Otherwise our error bounds are finer. Note also that

k ≤ 1

2
⇒ k1 ≤ 1

2

but not vice versa unless if w0 = w. Let us provide an example to show that (8) or (18) or (21) hold but (4)
fails.

Example 1 Let i = 1, x0 = 1, D = [p, 2− p], p ∈
[
0, 12
)
, and define functions F on D by

F (x) = x3 − p. (23)

Using (2), (3), (7) and (23), we obtain

α =
1

3
(1− p), w = 2(2− p) and w0 = 3− p, (24)

which imply that

k =
2

3
(1− p)(2− p) > 1

2
for all p ∈

[
0,

1

2

)
. (25)

That is there is no guarantee that Newton’s method (5) converges to x? = 3
√
p, since the Newton-Kantorovich

hypothesis (4) is violated.

Moreover, condition (21) holds for all p ∈
[
4−
√
10

2 , 12

)
. Furthermore, (8) holds for p ∈

[
0.450339002, 12

)
.

We also have that β = 5+p
3 , γ = 2, and w1 = 2

2(3−p) (−2p2 + 5p + 6). Finally, (18) is satisfied for p ∈
[0.0984119, 0.5) which is the largest interval. The above suggest that all results on interior point methods
obtained in [6] for Newton’s method using (4) can now be rewritten using only (18). The same holds true
for the modified Newton’s method, where (21) also replaces (4).
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3 Applications to Interior Point Algorithm

It has already been shown in [5] that the Newton-Kantorovich theorem can be used to construct and analyze
optimal-complexity path following algorithms for linear complementary problems. Potra has chosen to apply
this theorem to linear complementary problems because such problems provide a convenient framework for
analyzing primal-dual interior point algorithms. Theoretical and experimental work conducted over the
past decade has shown that primal-dual path following algorithms are among the best solution methods for
(LP), quadratic programming (QP), and linear complementary problems (LCP) (see for example [7], [11]).
Primal-dual path following algorithms are the basis of the best general—purpose practical methods, and they
have important theoretical properties [10], [11], [12].
Potra, using (4), in particular showed how to construct path—following algorithms for LCP that have

O(
√
nL) iteration complexity [6].
Given a point x that approximates a point x(τ) on the central path of the LCP with complementarity

gap τ , the algorithms compute a parameter θ ∈ (0, 1) so that x satisfies the Newton—Kantorovich hypothesis
(4) for the equation defining x ((1− θ) τ) . It is proven that θ is bounded below by a multiple of n−1/2.
Since (4) is satisfied, the sequence generated by Newton’s method or by the modified Newton method (take
F ′(xn) = F ′(x0), n ≥ 0) with starting x, will converge to x ((1− θ) τ) . He showed that the number of steps
required to obtain an acceptable approximation of x ((1− θ) τ) is bounded above by a number independent

of n. Therefore, a point with complementarity less than ε can be obtained in at most O
(√

n log
(
ε
ε0

))
steps

(for both methods), where ε0 is the complementary gap of the starting point. For linear complementarity
problems with rational input data of bit length L, this implies that an exact solution can be obtained in
at most O (

√
nL) iterations plus a rounding procedure including O

(
n3
)
arithmetic operations [11] (see also

[8, 9]).
We also refer the reader to the excellent monograph of Nesterov and Nemirovskii [5] for an analysis of

the construction of interior point methods for a larger class of problems than that considered in [6] (see also
[9]).
We can now describe the linear complementarity problem as follows: Given two matrices Q,R ∈ Rn×n

(n ≥ 2) and a vector b ∈ Rn, the horizontal linear complementarity problem (HLCP) consists of approxi-
mating a pair of vectors (w, s) such that

ws = 0

Q(w) +R(s) = b (26)

w, s ≥ 0.

The monotone linear complementarity problem (LCP) is obtained by taking R = −I and Q positive semi-
definite.
Moreover the linear programming problem (LP) and the quadratic programming problem (QP) can be

formulated as HLCPs. That is, HLCP is a suitable way for studying interior point methods.
We assume HLCP (26) is monotone in the sense that:

Q(u) +R(v) = 0 implies utv ≥ 0, for all u, v ∈ Rn. (27)

Condition (27) holds if the HLCP is a reformulation of a QP. If the HLCP is a reformuation of a LP then
the following stronger condition holds:

Q(u) +R(v) = 0 implies utv = 0, for all u, v ∈ Rn. (28)

Then we say in this case that the HLCP is skew—symmetric.
If the HLCP has an interior point, i.e. there is (w, s) ∈ Rn++ ×Rn++ satisfying Q(w) +R(s) = b, then for

any parameter τ > 0 the nonlinear system

ws = τe

Q(w) +R(s) = b (29)

w, s ≥ 0
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has a unique positive solution x(τ) = [w(τ)t, s(τ)t]
t
.

The set of all such solutions defines the central path C of the HLCP. It can be proved that (w(τ), s(τ))
converges to a solution of the HLCP as τ → 0. Such an approach for solving the HLCP is called the path
following algorithm.
At a basic step of a path following algorithm, an approximation (w, s) of (w(τ), s(τ)) has already been

computed for some τ > 0. The algorithm determines the smaller value of the central path parameter
τ+ = (1− θ) τ , where the value θ ∈ (0, 1) is computed in some unspecified way. The approximation (wt, st)
of (w(τ+), s(τ+)) is computed. The procedure is then repeated with (w+, s+, τ+) in place of (w, s.τ) .
In order for us to relate the path following algorithm and the the Newton-Kantorovich theorem we

introduce the notations

x =

[
w
s

]
, x (τ) =

[
w (τ)
s (τ)

]
, x+ =

[
w+

s+

]
, x (τ+) =

[
w (τ+)
s (τ+)

]
, etc.

Then for any θ > 0 we define the nonlinear operator

Fσ(x) =

[
ws− σe

Q(w) +R(s)− b

]
. (30)

Then system (29) defining x(τ) becomes
Fσ(x) = 0, (31)

whereas the system defining x(τ+) is given by

F(1−θ)τ (x) = 0. (32)

We assume that the initial guess x belongs in the interior of the feasible set of the HLCP

F 0 =
{
x = (wt, st)t ∈ R2n++ : Q(w) +R(s) = b

}
. (33)

In order to verify the Newton—Kantorovich hypothesis for equation (31) we introduce the quantity

η = η(x, τ) =
∥∥F ′(x)−1Fτ (x)

∥∥ , (34)

the measure of proximity

k = k(x, τ) = η`, w = w(x), (35)

k0 = k0(x, τ) = η ¯̀, δ = δ(x),

k1 = k1(x, τ) = ηw0, w0 = w0(x),

and the normalized primal—dual gap

µ = µ(x) =
wts

η
. (36)

If for a given interior point x and a given parameter τ we have k0(x, τ) ≤ .5 for the Newton—Kantorovich
method or k1(x, τ) ≤ .5 for the modified Newton—Kantorovich method then corresponding sequences starting
from x will converge to the point x (τ) on the central path. We can now describe our algorithm which is a
weaker version of the one given in [6]:

Algorithm 1 (using Newton—Kantorovich method).
Given 0 < k01 < k02 < .5, ε > 0, and x0 ∈ F 0 satisfying k0(x0, µ (x0)) ≤ k01;
Set k0 ← 0 and τ0 ← µ (x0) ;
repeat (outer iteration)
Set (x, τ)← (xk, τk) , x̄← xk;
Determine the largest θ ∈ (0, 1) such that k0(x, (1− θ)τ) ≤ k02;
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Set τ ← (1− θ)τ ;
repeat (inner iteration)

Set x← x− F ′(x)−1Fτ (x) (37)

until k0(x, µ) ≤ k01;
Set (xk+1, τk+1)← (x, τ) ;
Set k ← k + 1;

until
(
wk
)t
sk ≤ ε.

For the modified Newton—Kantorovich algorithm k01, k
0
2, k

0 should be replaced by k11, k
1
2, k

1, and (37) by

Set x← x− F ′(x̄)−1Fτ (x)

respectively.
In order to obtain Algorithm 1 in [6] we need to replace k01, k

0
2, k

0 by k1, k2, k respectively.
The above suggests that all results on interior point methods obtained in [6] using (4) can now be rewritten

using only the weaker (8) (or (21)).
We only state those results for which we will provide applications.
Let us introduce the notation

Ψa
i =

{
1 + θai +

√
2θai + rai if HLCP is monotone,

1 + qia +
√

2qia + q2ia if HLCP is skew-symmetric,
(38)

where
√
rai = θai ,

√
tai = kai , a = 0, 1,

θai = ti

[
1 +

tai
1− tai

]
, qia =

tai
2
, i = 1, 2. (39)

Then by simply replacing k, k1, k2 by k0, k01, k
0
2 respectively in the corresponding results in [6] we obtain the

following improvements:

Theorem 1 The parameter θ determined at each outer iteration of algorithm 1 satisfies

θ ≥ χa√
n

= λa

where

χa =


√
2(ka2−k

a
1 )√

2+p2ti
√
ψa1

if HLCP is skew-symmetric or if no simplified
Newton-Kanorovich steps are performed,

√
2(ka2−k

a
1 )

(
√
2+pka1)

√
ψa1

otherwise,

(40)

where

p =

{ √
2 if HLCP is monotone

1 if HLCP is skew-symmetric,
(41)

Clearly, the lower bound on λa on θ is an improvement over the corresponding one in [6, Corollary 4].

In the next result a bound on the number of steps of the inner iteration that depends only on k01 and k
0
2

is provided.

Theorem 2 If Newton-Kantorovich method is used in Algorithm 1 then each inner iteration terminates in
at most N0

(
k01, k

0
2

)
steps, where

N0
(
k01, k

0
2

)
= integer part

log2

 log2 (xN0)

log2

[(
1−

√
1− 2k02 − k02

)
/k02

]
 (42)
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and

xN0 =

(
1− pk02/

√
2
) [
t02 −

(
1−

√
1− 2k02

)2]
k01

2
√

2t02
√

1− 2k02

[√
ψ02 + 1−

√
1− 2k02

]
(1 + k01)

. (43)

If the modified the Newton-Kantorovich method is used in Algorithm 1, then each iteration terminates in at
most S0 (k1, k2) steps, where

S1
(
k11, k

1
2

)
= integer part

 log2 (xS1)

log2

(
1−

√
1−

√
1− 2k12

)
+ 1 (44)

and

xS1 =

(
1− pk12/

√
2
) [
t12 −

(
1−

√
1− 2k12 − k12

)2]
k01

2
√

2
√

1− 2k12

(
1−

√
1− 2k12 − k12

)2(√
ψ12 + 1−

√
1− 2k12

)
(1 + k11)

.

Remark 1 Clearly, if k11 = k01 = k1, k
1
2 = k02 = k2, k

1 = k0 = k, Theorem 1 reduces to the corresponding
Theorem 2 in [6]. Otherwise the following improvement hold:

N0
(
k01, k

0
2

)
< N (k1, k2) , N

0 < N, S1
(
k11, k

1
2

)
< S (k1, k2) and S1 < S.

Since k1
k01
, k2
k02
, k1
k11
and k2

k12
can be arbitrarily large [1]—[3] for given triplet β, γ, η, w1 and w0, the choices

k01 = k11 = .12, k02 = k12 = .24, when k1 = .21, and k2 = .42

and
k01 = k11 = .24, k02 = k12 = .48, when k1 = .245, and k2 = .49

are possible.

Then using formulas (41), (42) and (44), we obtain the following tables:

(a) If the HLCP is monotone and only Newton directions are performed, then:

Potra (40) Argyros (40)
χ(.21, .42) > .17 χ(.12, .24) > .09

χ(.245, .49) > .199 χ(.24, .48) > .190

Potra (42) Argyros (42)
N(.21, .42) = 2 N(.12, .24) = 1

N(.245, .49) = 4 N(.24, .48) = 3

(b) If the HLCP is monotone and Modified Newton directions are performed:

Potra (40) Argyros (40)
χ(.21, .42) > .149 χ(.12, .24) > .097

χ(.245, .49) > .164 χ(.24, .48) > .160

Potra (44) Argyros (44)
S(.21, .42) = 5 S(.12, .24) = 1

S(.245, .49) = 18 S(.24, .48) = 12
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All the above improvements are obtained under weaker hypotheses and the same computational cost (in
the case of Newton’s method) or less computational cost (in the case of the modified Newton method) since
in practice the computation of w requires that of w0 and w1. In general, the computation of w0 is less
expensive than that of w.
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