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Abstract
This work presents some asymptotic properties of the solutions, mainly related to the boundedness,

of certain functional differential equations in the framework of the generalized local derivative.

1 Introduction

The development of differential operator theory has taken two very clear directions in recent years: both
global and local operators. In the case of the first they are defined by integral global transformations, that
is, their nature is not local, in other words they have “memory", in the case of local operators, they are
defined by means of the limit of a certain incremental quotient, that is, they are defined locally. Classical
global operators are associated with the emergence of Fractional Calculus itself, that is, in the original works
of the founders of this area, even the establishment of the classical definitions of fractional calculus, and the
local are directly linked to the classical notion of derivative.
Generalized differential equations and fractional differential equations have recently been shown to be

a useful resource in modelling many phenomena in different fields of science and engineering. An excellent
account in the study and analysis of fractional differential equations and generalized differential equation
can be found in [3, 6, 9, 20, 31, 32, 33, 34]. In [19] Khalil et al. (also cf. [1]) defined a local derivative, no
fractional, that he called conformable, which is based on the classical definition of the derivative, that is,
using the limit of a certain incremental quotient. Thus, define the conformable derivative of order α of the
function h is given by the following limit, if it exists

Tα(h)(τ) = lim
ε→0

h
(
τ + ετ1−α

)
− h(τ)

ε
, α ∈ (0, 1), τ > 0.

Later, in 2018, a local derivative of a new type, called non-conformable, is defined with different behaviors
than the previous one when α tends to 1.

Definition 1 ([14]) Given a function f : [0,+∞) → R. The N-derivative of f of order α is defined by

Nα
1 f(t) = limε→0

f(t+εet
−α

)−f(t)
ε for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), and

limt→0+ N
(α)
1 f(t) exists, then define N (α)

1 f(0) = limt→0+ N
(α)
1 f(t).

The following definition presents a generalized derivative defined in [26] (see also [35]):

Definition 2 Let h : [0,+∞) → R, α ∈ (0, 1) and F (·, α) be some function. We define the derivative Nα
F

of order α of a function h by the following limit, if it exists

Nα
Fh(τ) = lim

ε→0

[
h(τ + εF (τ , α))− h(τ)

ε

]
, t > 0.
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266 Generalized Functional Differential Equations

We can define Nα
Fh(0) = limτ→0+ [N

α
Fh(τ)], in the case that h is N-differentiable in some 0 < α ≤ 1, and

limτ→0+ N
α
Fh(τ) exists.

Remark 1 It is clear that this definition encompasses both conformable and non-conformable derivatives,
which have appeared in recent years (see also [25]).

Remark 2 We will cite a group of works, where the generalized derivative Nα
F f(t) has been used and that

demonstrate its usefulness in the modeling of different processes and phenomena, due to the double dependency
of the kernel and the order (see the results obtained in [2, 11, 12, 17, 24, 27, 28, 29]) all of which shows the
strength of this new tool in applications.

Remark 3 From the above definition, it is not diffi cult to extend the order of the derivative for 0 ≤ n− 1 <
α ≤ n by putting

Nα
Fh(τ) = lim

ε→0

[
h(n−1)(τ + εF (τ , α))− h(n−1)(τ)

ε

]
.

If h(n) exists on some interval I ⊆ R, then we have Nα
Fh(τ) = F (τ , α)h(n)(τ), with 0 ≤ n− 1 < α ≤ n.

Next we define a generalized integral operator, studied in detail in [18], see also [35]. In this definition,
we take the kernel F as an absolutely continuous function.

Definition 3 Consider the real interval I := [a, b], with a < b, τ ∈ I and α ∈ R. We define the integral
operators, right side and left side, for a function h, locally integrable by the following expressions

JαF,a+h(τ) =

∫ τ

a

h(s)

F (τ − s, α)ds, a < τ,

and

JαF,b−h(τ) =

∫ b

τ

h(s)

F (s− τ , α)ds, b > τ.

Remark 4 We will also use the “central” integral operator defined by (see [15] and [35])

JαF,ah(b) =

∫ b

a

h(τ)

F (τ , α)
dt, a < b.

Remark 5 One of the strengths of this operator JαF is that it contains, for adequate choices of the kernel
F , well-known integral operators, both fractional and generalized, reported in many works, both generated by
conformable kernels or not. In particular, if F (t−s, α) = (t−s)1−α of the Definition 6, we obtain the classic
Riemann-Liouville Fractional Integral.

The following result is similar to a known result from classical calculus (see [15]).

Theorem 1 If τ > τ0, and h is an N-differentiable function on (τ0,∞) with α ∈ (0, 1], then it is true that

a) JαF,τ0 (N
α
Fh(τ)) = h(τ)− h(τ0) with h being differentiable;

b) Nα
F

(
JαF,τ0h(τ)

)
= h(τ).

Proof.

a) Using the definitions of the integral and differential operator, we have

JαF,τ0 (N
α
Fh(τ)) =

∫ τ

τ0

Nα
Fh(s)

F (s, α)
ds =

∫ τ

τ0

h′(s)F (s, α)ds

F (s, α)
= h(τ)− h(τ0).
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b) Analogously, we have

Nα
F

(
JαF,τ0h(τ)

)
= F (s, α)

d

dτ

[∫ t

τ0

h(s)

F (s, α)
ds

]
= h(τ).

Remark 6 From the definition of the integral operator J , it is easy to deduce that if h is differentiable, then
JαF,ah(b) = JαF,ah(τ)− JαF,bh(τ).

It is clear that many “classical" properties of integration theory can be proved without much diffi culty.
For example, we can prove the well-known mean value theorems for integral calculus (see [18]).

Theorem 2 For a continuous function h defined on [a, b], with 0 < a < b, then there exists a value c in the
interval (a, b) satisfying JαF,ah(b) = h(c)(b− a).

Theorem 3 For a continuous function h defined on [a, b], g is an integrable function that does not change
sign on [a, b], then there exists a value c in the interval (a, b) satisfying JαF,a(hg)(b) = h(c)JαF,ag(b).

Remark 7 Using the definition of the integral operator J , and the iterated use of Theorem 1, if f (n−1) exists
on some interval I ⊆ R, then we can obtain

JαF,a (N
α
Fh(τ)) = h(τ)−

[
n−1∑
i=0

h(i)(a)

i!
(τ − a)i

]
,

with τ ∈ I, and 0 ≤ n− 1 < α ≤ n.

In this paper, we presented a functional generalized integral inequalities using the above generalized
derivative, and we will use them in the study of the qualitative behavior of generalized functional equations,
mainly referred to the boundedness of solutions. For all the above, we realize that the subject of this work
is recent, and tries to extend known results to the case of fractional differential equations and functional
equations, to the case of generalized functional differential equations. While there are some attempts in
the aforementioned areas (see survey [30], [5] and the references cited there), these are referred to the
classical (global) fractional case and the ordinary functional equations; hence our work establishes a work
area unknown until now, to the knowledge of the authors.

2 Properties

In 1919, Gronwall proved a remarkable differential inequality. The integral form of this inequality was proven
by Richard Bellman in 1943, and a non-linear version was demonstrated, independently, by LaSalle in 1949
and Bihari in 1956. By that, this inequality is sometimes called, the inequality of Gronwall-Bellman-Bihari,
this inequality has been the object of much attention in the last 50 years, because it has been used, and
is used, in the qualitative study of the solutions of differential and integral equations in various contexts.
The first use of the Gronwall inequality to establish boundedness and stability is due to Bellman, and today
there are innumerable applications to the study of various qualitative properties in differential, integral and
integro-differential equations.
Next, we present a generalized version of Gronwall’s Inequality, which will show its usefulness in studying

the stability, according to Lyapunov, of solutions of systems of generalized differential equations.

Theorem 4 Let r, a, ϕ be a continuous, nonnegative functions defined on [0, b], with 0 < b, ϕ(τ) ≤ t and c
nonnegative constant such that (0 < α ≤ 1):

r(τ) ≤ c+ JαF,a(a(s)r(s))(ϕ(τ)).



268 Generalized Functional Differential Equations

Then we have
r(τ) ≤ c+ cJαF,0a(z)eJ

α
F,z(s)a(u)(z(τ))dz,

for all t ∈ [a, b].

Proof. Define R(τ) = JαF,0(a(s)r(s))(ϕ(τ)). Then R(0) = 0 since ϕ(0) = 0, R(τ) ≥ r(τ), and

Nα
FR(τ) = a(ϕ(τ))r(ϕ(τ))Nα

Fϕ(τ) ≤ a(ϕ(τ))r(τ)Nα
Fϕ(τ).

From here we have
Nα
FR(τ)− a(ϕ(τ))Nα

Fϕ(τ)R(τ) ≤ ca(ϕ(τ))Nα
Fϕ(τ).

Multiplying the last inequality by e−J
α
F,0a(s)(ϕ(τ)), we see that

Nα
F

[
e−J

α
F,0a(s)(ϕ(τ))R(τ)

]
≤ ma(ϕ(τ))Nα

Fϕ(τ)e
−JαF,0a(s)(ϕ(τ)).

Since eJ
α
F,0a(s)(ϕ(τ))R(τ) is differentiable on (0, b) we have from Theorem 3 that:

R(τ) ≤ mJαF,0a(ϕ(τ))Nα
Fϕ(τ)e

−Jαϕ(s)a(s)(ϕ(τ))(τ).

Making a change of variables we obtain

R(τ) ≤ mJαF,0a(z)e−J
α
ϕ(s)a(u)(ϕ(τ))(ϕ(τ)).

From this, and the fact that R(τ) ≥ r(τ), we obtain the desired result.
Similarly, the following result can be proved.

Theorem 5 Considering that r(τ), c(τ) and d(τ) are continuous functions defined on [0, b], with 0 < b and
ϕ as before. Suppose that on [0, b] we have the inequality (with d(τ) > 0 and 0 < α ≤ 1):

r(τ) ≤ c(τ) + JαF,a(d(s)r(s))(ϕ(τ)).

Then, we have
r(τ) ≤ c(τ) + JαF,0(d(s)c(s))e−J

α
F,0d(u)(ϕ(s))(ϕ((τ)),

for all t ∈ [0, b].

More general is the following result, an inequality of the Bihari type.

Theorem 6 Let r(τ) and e(τ) be real continuous functions defined on an interval [0, b], with 0 < b, c > 0.
On [0, b] we suppose ϕ as before, e(τ) nonnegative on [0, b], be b a continuous function non decreasing on
[0, b] and 0 < α ≤ 1, then have the inequality:

r(τ) ≤ c+ ≤ B−1
[
B(M) + JαF,0a(z) (ϕ(τ))

]
, B(u) = JαF,0b

−1(z)(u).

Then we have
r(τ) ≤ c+ JαF,0(c(s)e(s))e−J

α
F,0d(u)e(u)(s)(τ),

for all t ∈ [0, b].

Proof. This proof is typically as those Gronwall’s inequalities type. We consider the function R(τ) =
JαF,0(e(s)b(r(s)))(ϕ(τ)). Then, we have R(0) = 0 and

Nα
FR(τ) ≤ a(ϕ(τ))b(ϕ(τ))Nαϕ(τ) ≤ a(ϕ(τ))Nαϕ(τ)b(M +R(τ)).

From this we have:
NαR(τ)

b(M +R(τ))
≤ a(ϕ(τ))Nα

Fϕ(τ).

Separating variables, and integrating, we obtain

M +R(τ) ≤ B−1
[
B(M) + JαF,0a(z) (ϕ(τ))

]
, B(u) = JαF,0b

−1(z)(u).

From this and and knowing that r(τ) ≤ c+R(τ), we get the proof of the theorem.
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3 On the Boundedness of Solutions

Consider a paradigmatic case in the nonlinear analysis, the Liénard N-generalized functional system:

Nα
F x(τ) = y,

Nα
F y(τ) = −g(x(ϕ(τ)))− f(x)y.

}
(1)

Under assumptions on the continuous functions involved:

1. f(x) > 0 for all x ∈ R,

2. xg(x) > 0 for all x 6= 0,

3. ϕ(τ)) ≤ τ .

Consider the following equation equivalent to the system (1)

dy

dx
=
−g(x(ϕ(τ)))− f(x)y

y
. (2)

We have the following result:

Lemma 1 Under above assumptions on f, g, ϕ, the solutions of system (1), and, therefore, the solutions of
its equivalent equation (2), do not admit vertical asymptotes.

Proof. To prove this, it is suffi cient to show that the solutions of the equation (2) they do not escape to
infinity in a finite time, i.e., solutions do not admit vertical asymptotes. By the purpose of contradiction,
let us suppose the existence of a solution to the equation (2)

y = φ(x), c ≤ x < d

such that

lim
x→d−

φ(x) = +∞. (3)

We can consider, without losing generality, that this solution satisfies 0 < φ(a) ≤ φ(x) for a ≤ x < d.
Putting

F ≥ max
c≤x<d

|f(x)| , G ≥ max
c≤x<d

|g(x)| ,

and using the mean value theorem, we obtain

φ(x)− φ(a) ≤
[
F +G

φ(a)

]
(d− c)

for c < x < d. But this contradicts (3). The other cases can be analyzed in a similar way. Thus, the proof
is completed.

Remark 8 The result obtained is equivalent to the continuation of the solutions of equation (2), and ac-
cordingly, of system (1). Similar results on the differential Liénard equation in other frameworks, can be
consulted in [18] and [15].
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4 Conclusions

In this work, we have presented some results from a fairly new area: local functional differential equations,
in this case generalized since we use the derivative of [14], hence the results obtained are not reported in the
literature.
If in our work we consider ϕ(τ) = τ and F ≡ 1, the results obtained are consistent with those of [22],

where the existence of non-continuable solutions of a Liénard type non-linear equation is studied. Under
the same previous conditions, our results coincide with those of [21], obtained using the Second Lyapunov
Method, on the other hand, if we consider F (t, α) = et

−α
then our results are similar to those of [29] for a

Liénard-type Equation, with the non-conformable derivative of [14].
Given the development that fractional and generalized calculus have undergone in recent years (we

recommend [4, 7, 8, 13], the readers can consult [23] where a historical development related to the study
of the qualitative properties of ordinary differential equations is presented, mainly the boundedness of the
solutions), a development that leads to the intersection of global and local operators in the multiple definitions
have been presented.
From the results obtained, it is clear that we can point out some possible directions of work:

1. Study of the stability of solutions of generalized functional equations, either from the point of view of
the Second Method of Lyapunov or from the notion of Hyers-Ulam stability.

2. Study of qualitative properties of the solutions of new classes of generalized functional equations.

3. Applying the results obtained to the modeling of processes and phenomena, for example, the system
(1) referred to a generalized functional Liénard Equation, can be the starting point for the investigation
of the existence of periodic solutions or limit cycles in such systems.

Acknowledgment. The authors would like to thank the anonymous referee for his valuable comments.
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