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Abstract

In this paper, we discuss the lower record values arising from the Schabe distribution and derive the
recurrence relations satisfied by single and product moments of these record values. With the help of
these recurrence relations, we compute the means, variances and covariances of the lower record values.
These values are then used to compute the best linear unbiased estimators (BLUEs) and the best linear
invariant estimators (BLIEs) of the location and scale parameters. By using the BLUEs and BLIEs, we
construct confidence intervals for the location and scale parameters through Monte Carlo simulations.
Prediction for the future records is given in detail. Finally, simulation study is performed and prediction
of future record, comparison between BLUE and BLIE are discussed.

1 Introduction

Let {X1, X2, ...} be a sequence of independent and identically distributed (IID) random variables with
cumulative distribution function (cdf) F (x) and probability density function (pdf) f(x). An observation
Xj is a lower record value of this sequence if it falls short of (in value) all preceding observations, i.e., if
Xj < Xi, i < j. Upper records are analogously defined. Generally, if L(n), n ≥ 1, is defined by [Ahsanullah
(1995)]

L(1) = 1, L(n) = min
{
j : j > L(n − 1), Xj < XL(n−1)

}
,

then the sequence
{
XL(n), n ≥ 1

}
provides a sequence of lower record statistics. The sequence {L(n), n ≥ 1}

represents the lower record times. From the above definition, the sequence of record statistics can be viewed
as order statistics from a sample whose size is determined by the values and the order of occurrence of the
observations. Note that from a sequence of n IID continuous random variables, only about log(n) records
are expected, see Houchens (1984).

Chandler (1952) defined the model of record statistics as a model for successive extremes in a sequence of
IID random variables. These statistics are of interest and important in many real life applications involving
data relating to weather, economics, sports and life testing studies. For more details and applications
regarding record values, see Ahsanullah (1995), Arnold et al. (1992, 1998) and Nevzorov (1987).

Schabe distribution is a lifetime distribution with bathtub shaped failure rate and is extremely useful in
reliability. It is a reparameterization of Pareto distribution which has decreasing failure rate. Schabe (1994)
gave a method to construct bathtub shaped failure rate distribution from a distribution with decreasing
failure rate by the method of truncation as described below.

Let F (x) be a twice differentiable function with decreasing failure rate λ(x) and support on [0,∞). Let
θ be a truncation point with 0 < θ < ∞. If

G(x) =

{
F (x)/F (θ), for x ≤ θ,
1, otherwise,
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then G(x) has bathtub shaped failure rate if

λ
′

(x)(F (θ) − F (x)) + (λ(x))2(1 − F (θ))

has one and only one zero on [0, θ), (cf. Schabe (1994)).
Now, consider Pareto distribution defined by

F (x) =
1

(1 + T
x
)α

, x ≥ 0, T ≥ 0, α ≥ 0

which has decreasing failure rate. Here without loss of generality, we shall assume α = 1. Then

G(x) =

{
x(T+θ)
θ(T+x) for x ≤ θ,

1 otherwise.

The model can be reparameterized setting γ = T
θ
. Hence, we get Schabe distribution with probability density

function (pdf) of the form

f(x) =
(1 + γ)γθ

(x + θγ)2
, 0 < x ≤ θ, 0 < γ < 1, θ > 0, (1)

and the cumulative distribution function (cdf) of the form

F (x) =
(1 + γ)x

(x + θγ)
. (2)

It may be noted that the characterizing differential equation of Schabe distribution (1) is given by

f(x)[x2 + xθγ] = γθF (x). (3)

More details on this distribution can be found in Schabe (1994). The cdf of the location-scale parameter
Schabe distribution is given by

F (x) =
(1 + γ) (x−µ)

σ

( (x−µ)
σ

+ θγ)
, µ < x ≤ µ + θσ, µ ≥ 0, 0 < γ < 1, θ > 0. (4)

In this paper, we consider the lower record values from the Schabe distribution. We derive recurrence relations
satisfied by single and product moments of lower record values from Schabe distribution. These recurrence
relations help us to compute the means, variances and covariances of the lower record values. Then, we use
these moments to calculate best linear unbiased estimators (BLUEs) and best linear invariant estimators
(BLIEs) for the location and scale parameters of the location-scale Schabe distribution. Prediction for the
future records is also discussed. Ahsanullah (1980) and Dunsmore (1983) discussed the BLUEs and prediction
of future record values from a two-parameter exponential distribution. Some work in this direction has been
done for the logistic distribution by Balakrishnan et al. (1995), for the normal distribution by Balakrishnan
and Chan (1998), for the generalized exponential distribution by Raqab (2002), for the gamma distribution
by Sultan et al.(2008), for the Nadarajah-Haghighi distribution by MirMostafaee et al.(2016), for Lindley
distribution by Fallah et al. (2018), for generalized linear exponential distribution by Alam et al. (2021),
for exponential distribution by Basiri et al. (2020), for additive Weibull distribution by Khan et al. (2017),
for complementary beta distribution by Makouei et al. (2021) and for Weibull- power function distribution
by Singh et al. (2020). The remaining paper is organized as below. In Section 2, we derive recurrenec
relations satisfied by single and product moments of lower record values arising from Schabe distribution.
Then we compute the means, variances and covariances of lower record values from Schabe distribution for
arbitrarily chosen values of θ and γ, viz. (θ = 6, γ = 0.85), (θ = 10, γ = 1), (θ = 20, γ = 0.5), (θ = 100, γ =
0.05) and (θ = 20, γ = 0.85) and for sample sizes n = 1(1)6. Next, in Section 3, we obtain the BLUEs
and BLIEs of the location and scale parameters of the location-scale Schabe distribution. The BLUEs and
BLIEs are then used to construct the confidence intervals (CIs) for the location and scale parameters. In
Section 4, we discuss point and interval predictions for future records. In Section 5, two numerical examples
are given to illustrate the estimation and prediction methods discussed in this paper.
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2 Recurrence Relations for Single and Product Moments

Let XL(1), XL(2), ..., XL(n) be the first n lower record values from the Schabe distribution. Then the pdf of
XL(n) is given by

fn(x) =
1

Γ(n)
[− log F (x)]

n−1
f(x), x > 0, n = 1, 2, ..., (5)

where f(x) and F (x) are given by (1) and (2), respectively. The joint pdf of XL(m) and XL(n) is given by

fm,n(x, y) =
1

Γ(m)Γ(n − m)
[− log F (x)]

m−1 f(x)

F (x)
[− log F (y) + log F (x)]

n−m−1

× f(y), 0 ≤ y < x < ∞, 1 ≤ m < n, n ≥ 2. (6)

Then, the k-th single moment of XL(n) denoted by µ
(k)
n (k = 1, 2, 3, ...) is given by

µ(k)
n =

∫ ∞

0

xkfn(x)dx.

The double (k, s)th moment of XL(m) and XL(n), (m < n) is given by

µ(k,s)
m,n =

∫ ∞

0

∫ x

0

xkysfm,n(x, y)dydx, 1 ≤ m < n, n ≥ 2, k, s = 0, 1, 2, ....

Explicit expressions for single and double moments cannot be obtained in a closed form for Schabe distribu-
tion but we can compute these using the recurrence relations given in the following Theorems 1 to 2 along
with the use of R software.

Theorem 1 For the Schabe distribution given in (1) and for p, n = 1, 2, ...,

µ(p+2)
n =

γθ

p + 1

[

µ
(p+1)
n−1 − (p + 2)µ(p+1)

n

]

. (7)

Proof. Using (5) and (3), we have

µ(p+2)
n + θγµ(p+1)

n =
1

Γ(n)

∫ θ

0

xp
(
x2 + θγx

)
[− log F (x)]

n−1
f(x)dx

=
θγ

Γ(n)

∫ θ

0

xpF (x) [− log F (x)]
n−1

dx.

Now, integrating by parts the integral on the R.H.S. of the above equation by taking F (x) [− log F (x)]n−1

for differentiation and the rest of the integrand for integration, and then after some simplification, it leads
to the required result (7).

Theorem 2 For the Schabe distribution given in (1) and for n, m = 1, 2, ..., m < n and p, q = 0, 1, 2, ...,

µ(p,q+2)
m,n =

θγ

(q + 1)

[

µ
(p,q+1)
m,n−1 − (q + 2)µ(p,q+1)

m,n

]

. (8)
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Table 1: Means of record values

n θ = 6, γ = 0.85 θ = 10, γ = 1 θ = 20, γ = 0.5 θ = 100, γ = 0.05 θ = 20, γ = 0.85
1 2.237643 3.862944 6.479184 3.661272 7.458809
2 0.933552 1.644811 2.499078 0.604977 3.11184
3 0.417534 0.744264 1.070910 0.197852 1.391779
4 0.194797 0.349581 0.487904 0.081147 0.649325
5 0.093248 0.168012 0.230399 0.036480 0.310826
6 0.045349 0.081908 0.111152 0.017149 0.151165

Proof. Using (6) and (3), we have

µ(p,q+2)
m,n + θγµ(p,q+1)

m,n

=
1

(m − 1)!(n − m− 1)!

∫ θ

0

∫ x

0

xpyq
(
y2 + θγy

)
f(y) [− logF (x)]

m−1 f(x)

F (x)

× [− log F (y) + log F (x)]
n−m−1

dydx

=
γθ

(m − 1)!(n − m− 1)!

∫ θ

0

∫ x

0

xpyqF (y) [− log F (x)]
m−1

[− log F (y) + log F (x)]
n−m−1

× f(x)

F (x)
dydx

=
γθ

(m − 1)!(n − m− 1)!

∫ θ

0

xpyq [− log F (x)]
m−1 f(x)

F (x)
I(x)dx, (9)

where

I(x) =

∫ x

0

yqF (y) [− logF (y) + logF (x)]n−m−1 dy.

Now, integrating by parts the integral on the R.H.S. of the above equation by taking

F (y) [− log F (y) + logF (x)]
n−m−1

for differentiation and the rest of the integrand for integration, and putting the resultant into (9) and then
making some simplification, it leads to the required result (8).

By utilizing the recurrence relations given in Theorems 1 and 2, we have computed the means, variances
and covariances of lower record values as given in Tables 1 and 2. R software (R Core Team, 2020) has been
used to compute the means, variances and covariances.

3 Linear Estimators

Let YL(1), YL(2), ..., YL(n) be the first n lower record values from the location-scale Schabe distribution with
cdf as given in (4) is

F (y) =
(1 + γ) (y−µ)

σ

( (y−µ)
σ

+ θγ)
, µ < y ≤ µ + θσ, µ ≥ 0, 0 < γ < 1, θ > 0. (10)

Let XL(i) =
(YL(i)−µ)

σ
, i = 1, 2, ..., n be the corresponding lower record values from the Schabe distribution

with pdf given in (1).
Let us denote E(XL(i)) by µi, V ar(XL(i)) by σi,i:n and Cov(XL(i), XL(j)) by σi,j:n; furthermore, let

Y = (YL(1), YL(2), ..., YL(n))
T ,
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Table 2: Variances and covariances of record values

m n θ = 6, γ = 0.85 θ = 10, γ = 1 θ = 20, γ = 0.5 θ = 100, γ = 0.05 θ = 20, γ = 0.85
1 1 2.76900101 7.8187944 28.4364838 269.5199662 30.7666779
1 2 1.05068728 3.0620545 9.5373393 38.1476142 11.6743031
1 3 0.44095856 1.3099889 3.7214934 9.7210436 4.8995407
1 4 0.19744015 0.5933103 1.5976586 3.4196885 2.1937795
1 5 0.09206589 0.278569 0.7269651 1.410761 1.0229544
1 6 0.04403193 0.1337889 0.3426649 0.6314017 0.4892437

2 2 1.01822261 3.0278235 8.5648846 22.1128998 11.3135846
2 3 0.42089882 1.2783224 3.2651561 5.1048513 4.6766541
2 4 0.1866152 0.5740072 1.3811682 1.7059102 2.0735022
2 5 0.08647668 0.2680274 0.6227302 0.68578 0.960852
2 6 0.04119567 0.1282758 0.2918777 0.3027503 0.4577296
3 3 0.32793917 1.00889913 2.425742 2.9953249 3.643769
3 4 0.14387701 0.44882843 1.0105981 0.9616949 1.5986335
3 5 0.06622596 0.20832813 0.4513548 0.3788006 0.7358438
3 6 0.03141468 0.09932507 0.2103164 0.1654261 0.3490521
4 4 0.10454264 0.32880701 0.7129681 0.6004553 1.161585
4 5 0.04776589 0.15161118 0.3152002 0.2319280 0.5307321
4 6 0.02255177 0.07197848 0.1459463 0.1002131 0.2505751
5 5 0.03364485 0.10735274 0.2179666 0.15025464 0.3738317
5 6 0.01580093 0.05072328 0.1002155 0.06415331 0.1755658

6 6 0.01094251 0.03524779 0.06859598 0.04232419 0.1215835

µ = (µ1, µ2, ..., µn)T ,

1 = (1, 1, ..., 1
︸ ︷︷ ︸

)T

and ∑

= (σi,j:n) , 1 ≤ i, j ≤ n.

Then, the BLUEs of µ and σ are obtained by minimizing the generalized variance Q(δ) = (Y−Aδ)T
∑T

(Y−
Aδ) with respect to δ, where δ = (µ, σ)T , A is n× 2 matrix (1, µ), 1 is n× 1 vector with components all 1’s,
µ is the mean vector of X, and

∑
is the variance-covariance matrix of X. The minimization leads to the

expressions for the BLUE’s of µ and σ as (see Anrold et al. (1992) and Balakrishnan and Cohen (1991))

µ̂BLU =

{

µT
∑−1

µ1T
∑−1 −µT

∑−1
1µT

∑−1

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

Y =

n∑

r=1

arYL(r) (11)

and

σ̂BLU =

{

1T
∑−1

1µT
∑−1 −1T

∑−1
µ1T

∑−1

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

Y =

n∑

r=1

brYL(r), (12)

and the variances and covariance of these BLUEs are given by

V ar(µ̂BLU ) = σ2

{

µT
∑−1

µ

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

= σ2V1,

V ar(σ̂BLU ) = σ2

{

1T
∑−1

1

(µT
∑−1 µ)(1T

∑−1
1) − (µT

∑−1
1)2

}

= σ2V2
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and

Cov(µ̂BLU , σ̂BLU ) = σ2

{

−µT
∑−1

1

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

= σ2V3.

The coefficients of the BLUEs in (11) and (12) satisfy the conditions
∑n

r=1 ar = 1 and
∑n

r=1 br = 0
respectively.
The coefficients a

′

is, b
′

is, 1 ≤ i ≤ n and the values of V1, V2 and V3 are computed and presented in Tables
3–5, respectively. From Table 5, we note that the variance of the BLUEs decreases as n increases.

Based on the BLUEs of the location and scale parameters, the confidence intervals (CIs) for µ and σ can
be constructed through the pivotal quantities given by

R1 =
µ̂BLU − µ

σ̂BLU

√
V1

and R2 =
σ̂BLU − σ

σ
√

V2

.

Constructing such CIs requires the percentage points of R1 and R2 which can be computed by using BLUEs
µ̂BLU and σ̂BLU via Monte Carlo method. In Table 6, we have determined the percentage points of R1 and
R2 based on 10000 runs for arbitrarily chosen values of θ and γ, viz. (θ = 6, γ = 0.85), (θ = 10, γ = 1), (θ =
20, γ = 0.5), (θ = 100, γ = 0.05) and (θ = 20, γ = 0.85) and for sample sizes n = 2(1)5. Based on these
simulated percentage points, we can determine a 100(1 − α)% CI for µ through the pivotal quantity R1 as
follows:

P
(

µ̂BLU − σ̂BLU

√

V1R1(1 − α/2) ≤ µ ≤ µ̂BLU − σ̂BLU

√

V1R1(α/2)
)

= 1 − α,

where R1(γ) is the left percentage point of R1 at γ, i.e., P (R1 < R1(γ)) = γ.
Similarly, a 100(1 − α)% CI for σ can be constructed through the pivotal quantity R2 as follows:

P

(
σ̂BLU

1 +
√

V2R2(1 − α/2)
≤ σ ≤ σ̂BLU

1 +
√

V2R2(α/2)

)

= 1 − α.

Now, let us consider the BLIEs of µ and σ. Based on the results of Mann (1969), the BLIEs for µ and σ are
(cf. Arnold et al. (1998), p.143)

µ̂BLI = µ̂BLU − V3

1 + V2
σ̂BLU and σ̂BLI =

σ̂BLU

1 + V2
.

Note: In Table 5, for each n (n = 2, 3, 4, 5), the first, second, third and forth line represents V1 =
1

σ2 V ar(µ̂BLU ), V2 = 1
σ2 V ar(σ̂BLU ), V3 = 1

σ2 Cov(µ̂BLU , σ̂BLU) and V4, respectively, where V4 will be
defined in the next Setion 4.

Furthermore, the variances of these BLIEs are given by (see Arnold et al. (1998), p. 143)

V ar(µ̂BLI) = σ2

(

V1 −
V 2

3 (2 + V2)

(1 + V2)2

)

and V ar(σ̂BLI) =
σ2V2

(1 + V2)2
.

Based on the BLIEs, we can again construct CIs for the location and scale parameters through pivotal
quantites given by

R3 =
µ̂BLI − µ

σ̂BLI

√

V1 − V 2
3 (2+V2)
(1+V2)2

and R4 =
σ̂BLI − σ

σ
√

V2

1+V2

.

Table 7 presents the percentage points of R3 and R4 based on 10000 runs and arbitrarily chosen values of θ
and γ, viz. (θ = 6, γ = 0.85), (θ = 10, γ = 1), (θ = 20, γ = 0.5), (θ = 100, γ = 0.05) and (θ = 20, γ = 0.85)
and for sample sizes n = 2(1)5. Using the BLIEs along with the use of Table 7, we can determine a
100(1− α)% CI for µ through the pivotal quantity R3 as

P

(

µ̂BLI − σ̂BLI

√

V1 −
V 2

3 (2 + V2)

(1 + V2)2
R3(1 − α/2) ≤ µ ≤ µ̂BLI − σ̂BLI

√

V1 −
V 2

3 (2 + V2)

(1 + V2)2
R3(α/2)

)

= 1 − α.
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Table 3: Coefficients for the BLUEs of µ

n θ = 6, γ = 0.85 θ = 10, γ = 1 θ = 20, γ = 0.5 θ = 100, γ = 0.05 θ = 20, γ = 0.85

2 -0.715865 -0.741529 -0.627892 -0.310595 -0.715865
1.715865 1.741529 1.627892 1.310595 1.715865

3 -0.166471 -0.173774 -0.141892 -0.060089 -0.166471
-0.221965 -0.224661 -0.212523 -0.185666 -0.221965
1.388436 1.398435 1.354415 1.245754 1.388436

4 -0.049966 -0.052252 -0.042354 -0.017041 -0.049966
-0.062562 -0.063956 -0.057667 -0.041135 -0.062562
-0.208800 -0.210705 -0.202686 -0.210179 -0.208800
1.321328 1.326913 1.302708 1.268356 1.321328

5 -0.016429 -0.017147 -0.014036 -0.005572 -0.016429
-0.019399 -0.019933 -0.017551 -0.011433 -0.019400
-0.063513 -0.064559 -0.060003 -0.054621 -0.063513
-0.207968 -0.209375 -0.203658 -0.215920 -0.207968
1.307310 1.311014 1.295248 1.287546 1.307310

Table 4: Coefficients for the BLUEs of σ

n θ = 6, γ = 0.85 θ = 10, γ = 1 θ = 20, γ = 0.5 θ = 100, γ = 0.05 θ = 20, γ = 0.85
2 0.766818 0.450830 0.251250 0.119321 0.230045

-0.766818 -0.450830 -0.251250 -0.119321 -0.230045
3 0.504930 0.295511 0.167881 0.079087 0.151479

0.156919 0.087054 0.064455 0.120998 0.047076
-0.661848 -0.382565 -0.232336 -0.200085 -0.198555

4 0.444040 0.259557 0.147992 0.065064 0.133212
0.073609 0.039507 0.033512 0.073916 0.022083
0.172924 0.093524 0.078794 0.274202 0.051877
-0.690573 -0.392588 -0.260299 -0.413182 -0.207172

5 0.424604 0.248215 0.141290 0.058342 0.127381
0.048595 0.025283 0.024018 0.056510 0.014579
0.088726 0.046306 0.045025 0.183048 0.026618
0.195698 0.103772 0.096216 0.456586 0.058710
-0.757624 -0.423575 -0.306549 -0.754486 -0.227287
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Table 5: Variances and covariances of the BLUEs of µ and σ and V4

n θ = 6, γ = 0.85 θ = 10, γ = 1 θ = 20, γ = 0.5 θ = 100, γ = 0.05 θ = 20, γ = 0.85

2 1.835677 5.573803 14.411269 32.925767 20.396408
0.991296 0.959837 1.131647 3.065888 0.991296
-0.900533 -1.563318 -2.583745 -6.067265 -3.001775
-0.502015 -0.863224 -1.486508 -3.804362 -1.673384

3 0.373466 1.161124 2.674333 3.418256 4.149623
0.659038 0.629599 0.786278 2.304693 0.659038
-0.203517 -0.356158 -0.570396 -1.327965 -0.678389
-0.108890 -0.189655 -0.309209 -0.727228 -0.362966

4 0.098171 0.310547 0.658405 0.586788 1.090784
0.583842 0.555143 0.705791 2.004216 0.583842
-0.059638 -0.104502 -0.167586 -0.405581 -0.198792
-0.030908 -0.054088 -0.086945 -0.207394 -0.103027

5 0.028447 0.091073 0.182577 0.131097 0.316081
0.560425 0.532232 0.679138 1.847741 0.560425
-0.019231 -0.033592 -0.054971 -0.138552 -0.064103
-0.009743 -0.017033 -0.027700 -0.068457 -0.032478

Table 6: Simulated percentage points of R1 and R2

n R1 R2

2.50% 5% 95% 97.50% 2.50% 5% 95% 97.50%
θ = 6, γ = 0.85 2 -0.6703 -0.6531 12.2586 25.3593 -0.9951 -0.9827 2.1178 2.5416

3 -0.7587 -0.6936 4.0691 6.7874 -1.2049 -1.1733 1.9828 2.2419
4 -0.8342 -0.7035 2.8296 4.2320 -1.2678 -1.2317 1.8919 2.1126
5 -0.9096 -0.7414 2.0754 3.3612 -1.2976 -1.2525 1.9012 2.1053

θ = 10, γ = 1 2 -0.6796 -0.6616 13.5482 28.4667 -1.0097 -0.9951 2.1609 2.5755
3 -0.7686 -0.6983 4.1237 6.7840 -1.2287 -1.1931 1.8863 2.1748
4 -0.8215 -0.7031 2.8569 4.5464 -1.3017 -1.2606 1.8511 2.0728
5 -0.8805 -0.7305 2.1705 3.5971 -1.3267 -1.2804 1.8410 2.0089

θ = 20, γ = 0.5 2 -0.6419 -0.6244 13.0466 26.4392 -0.9320 -0.9220 2.1852 2.6526
3 -0.7340 -0.6640 4.3170 7.1874 -1.1052 -1.0811 2.0710 2.4035
4 -0.7996 -0.6701 2.9057 4.4338 -1.1602 -1.1305 2.0057 2.2620
5 -0.8523 -0.6865 2.2182 3.4857 -1.1797 -1.1430 1.9836 2.2098

θ = 100, γ = .05 2 -0.4424 -0.4278 13.2952 30.1442 -0.5696 -0.5673 2.0861 3.2507
3 -0.5418 -0.4867 5.3991 8.5430 -0.6526 -0.6456 2.1702 3.1362
4 -0.5968 -0.5294 3.5410 5.6938 -0.6986 -0.6893 2.0934 3.0348
5 -0.6505 -0.5490 2.4187 3.6710 -0.7242 -0.7135 2.2596 3.0087

θ = 20, γ = .85 2 -0.6711 -0.6534 11.7201 26.7071 -0.9925 -0.9774 2.1594 2.5507
3 -0.7659 -0.6928 4.3327 7.4763 -1.2036 -1.1702 1.9685 2.2521
4 -0.8495 -0.7216 2.6654 4.2915 -1.2679 -1.2263 1.8962 2.1055
5 -0.8731 -0.7149 2.0537 3.3664 -1.2970 -1.2555 1.8886 2.0743
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Table 7: Simulated percentage points of R3 and R4

n R3 R4

2.50% 5% 95% 97.50% 2.50% 5% 95% 97.50%

θ = 6, γ = 0.85 2 -0.8207 -0.7787 30.7092 62.6579 -1.9907 -1.9784 1.1222 1.5459
3 -0.9797 -0.8654 7.4967 12.2696 -2.0167 -1.9852 1.1710 1.4301
4 -1.1526 -0.9416 4.7617 7.0255 -2.0319 -1.9958 1.1278 1.3485
5 -1.3143 -1.0500 3.3757 5.3959 -2.0462 -2.0012 1.1526 1.3567

θ = 10, γ = 1 2 -0.8230 -0.7797 33.4451 69.3770 -1.9894 -1.9748 1.1812 1.5958
3 -0.9763 -0.8550 7.4659 12.0565 -2.0222 -1.9866 1.0929 1.3814
4 -1.1108 -0.9232 4.7189 7.3965 -2.0467 -2.0056 1.1060 1.3277
5 -1.2462 -1.0148 3.4602 5.6608 -2.0563 -2.0099 1.1115 1.2794

θ = 20, γ = 0.5 2 -0.8335 -0.7882 34.5321 69.1329 -1.9958 -1.9857 1.1214 1.5889
3 -1.0180 -0.8857 8.5258 13.9492 -1.9919 -1.9678 1.1843 1.5168
4 -1.1811 -0.9557 5.2686 7.9285 -2.0003 -1.9707 1.1656 1.4219
5 -1.3129 -1.0322 3.8840 6.0293 -2.0038 -1.9671 1.1595 1.3857

θ = 100, γ = 0.05 2 -0.9146 -0.8411 67.9749 152.4675 -2.3206 -2.3183 0.3351 1.4998
3 -1.2014 -0.9973 20.7950 32.4353 -2.1708 -2.1637 0.6520 1.6180
4 -1.3502 -1.1338 11.9342 18.8457 -2.1143 -2.1050 0.6777 1.6191
5 -1.5235 -1.2239 7.5372 11.2340 -2.0835 -2.0728 0.9003 1.6494

θ = 20, γ = 0.85 2 -0.8226 -0.7795 29.3959 65.9448 -1.9881 -1.9730 1.1638 1.5550
3 -0.9923 -0.8639 7.9595 13.4791 -2.0154 -1.9820 1.1567 1.4402
4 -1.1773 -0.9708 4.4966 7.1216 -2.0320 -1.9904 1.1321 1.3414
5 -1.2570 -1.0085 3.3415 5.4040 -2.0456 -2.0041 1.1400 1.3257

Similarly, we can determine 100(1− α)% CI for σ, through the pivotal quantity R4 as

P

(

σ̂BLI

1 +
√

V2

1+V2
R4(1 − α/2)

≤ σ ≤ σ̂BLI

1 +
√

V2

1+V2
R4(α/2)

)

= 1 − α.

Now, let us compare the BLUEs and BLIEs using the relative efficiency criterion (REC). Since the mean
squared errors (MSEs) of BLUEs are equal to their corresponding variances, we have

MSE (µ̂BLU ) = σ2V1 and MSE (σ̂BLU ) = σ2V2.

On the other hand, the MSEs of BLIEs of µ and σ can be obtained as

MSE (µ̂BLI ) = σ2

(

V1 −
V 2

3

1 + V2

)

and MSE (σ̂BLI) =
σ2V2

1 + V2
.

Therefore, we can readily obtain the RECs of the BLIEs of µ and σ with respect to their corresponding
BLUEs as follows:

REC (µ̂BLI , µ̂BLU) =
MSE (µ̂BLU )

MSE (µ̂BLI)
=

V1

V1 − V 2
3

1+V2

≥ 1, REC (σ̂BLI , σ̂BLU ) =
MSE (σ̂BLU )

MSE (σ̂BLI)
= 1 + V2 ≥ 1.

Therefore, both of the BLIEs perform better than corressponding BLUEs in terms of MSEs.

4 Linear Predictors

Suppose we have observed the first n lower records Y
′

=
{
YL(1), YL(2), ..., YL(n)

}
from location-scale Schabe

Distribution with cdf given in (10) and our aim is to predict the next lower record Y = YL(n+1). The best
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linear unbiased predictor (BLUP) of Y is given by (Arnold et al. (1998), p. 150)

ŶBLUP = µ̂BLU + σ̂BLUµn+1 + ω
′

Σ−1 (Y − µ̂BLU1− σ̂BLUµ) ,

where
ω

′

=
(
Cov(XL(1), XL(n+1)), ..., Cov(XL(n), XL(n+1))

)
,

in which XL(i) =
YL(i)−µ

σ
, i = 1, 2, ..., n+1. Moreover, the mean squared prediction error (MSPE) of (ŶBLUP )

is given by (Burkschat (2009))

MSPE
(

ŶBLUP

)

= E

[(

ŶBLUP − YL(n+1)

)2
]

= σ2

[(

1 − ω
′

Σ−11
)2

V1 +
(

µn+1 − ω
′

Σ−1µ
)2

V2 − ω
′

Σ−1ω

+2
(

1 − ω
′

Σ−11
)(

µn+1 − ω
′

Σ−1µ
)

V3 + V ar
(
XL(n+1)

)]

.

Let us now consider the best linear invariant predictor (BLIP) of the next lower record value. From the
results of Mann (1969), the BLIP of Y can be obtained based on the BLUP of Y as follows (see also Arnold
et al. (1998), p.153)

ŶBLIP = ŶBLUP −
(

V4

1 + V2

)

σ̂BLU ,

where ŶBLUP is the BLUP of YL(n+1) and

V4 =
(

1 − ω
′

Σ−11
)

V3 +
(

µn+1 − ω
′

Σ−1µ
)

V2.

In Table 5, we reported the values of V4 for different values of n, θ and γ. The MSPE of ŶBLIP is given by
(Brukschat (2009))

MSPE
(

ŶBLIP

)

= E

[(

ŶBLIP − YL(n+1)

)2
]

= σ2

[

µ
′

Σ−1µ + 1

∆

(

1 − ω
′

Σ−11
)2

+
1

′

Σ−11

∆

(

µn+1 − ω
′

Σ−1µ
)2

− ω
′

Σ−1ω

−2
µ

′

Σ−11

∆

(

1 − ω
′

Σ−11
)(

µn+1 − ω
′

Σ−1µ
)

V3 + V ar
(
XL(n+1)

)

]

,

where

∆ =
(

µ
′

Σ−1µ + 1
)(

1
′

Σ−11
)

−
(

µ
′

Σ−11
)2

.

Now we compare the BLUP and BLIP of Y using the REC. The REC of ŶBLIP relative to ŶBLUP is

REC
(

ŶBLIP , ŶBLUP

)

=
MSPE

(

ŶBLUP

)

MSPE
(

ŶBLIP

) .

In Table 8, we presented the REC of ŶBLIP relative to ŶBLUP for different choices of n, θ and γ. From
Table 8, we observe that the BLIP works better than BLUP in terms of MSPE. Suppose we are now
interested in prediction intervals (PIs) for YL(n+1). The PIs can be constructed using the pivotal quantities
(cf. Balakrishnan and Chan (1998))

T1 =
YL(n) − YL(n−1)

σ̂BLU
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Table 8: The REC of ŶBLIP with respect to ŶBLUP .

n θ = 6, γ = 0.85 θ = 10, γ = 1 θ = 20, γ = 0.5 θ = 100, γ = 0.05 θ = 20, γ = 0.85

2 1.657798 1.633792 1.763426 3.146248 1.657798
3 1.414268 1.394886 1.497118 2.392495 1.414268
4 1.354725 1.337456 1.426776 2.083502 1.354725
5 1.332975 1.317046 1.398328 1.926255 1.332975

and

T2 =
YL(n) − YL(n−1)

σ̂BLI

.

Constructing such PIs require the percentage points of T1 and T2. In Tables 9 and 10, we presented the
simulated percentage points of T1 and T2 respectively using Monte Carlo method based on 10000 runs and
for arbitrarily chosen values of θ and γ, viz. (θ = 6, γ = 0.85), (θ = 10, γ = 1), (θ = 20, γ = 0.5), (θ =
100, γ = 0.05) and (θ = 20, γ = 0.85) and for sample sizes n=3(1)5. Using the pivotal quantity T1, a
100(1− α)% PI for Y = YL(n+1) is given by

P
(
YL(n) − σ̂BLU T1(1 − α) ≤ Y ≤ YL(n) − σ̂BLU T1(α/2)

)
= 1 − α.

Similarly, using the pivotal quantity T2, a 100(1− α)% PI for Y is given by

P
(
YL(n) − σ̂BLI T2(1 − α) ≤ Y ≤ YL(n) − σ̂BLI T2(α/2)

)
= 1 − α.

5 Illustrative Examples

In this section, we present two numerical examples for illustrative purposes.

5.1 Example 1 (Simulated Data)

We generated n = 4 lower record values from location-scale Schabe distribution with parameters θ = 100, γ =
0.05, µ = 0, σ = 1 as follows:

3.4835475, 1.3453739, 0.8840804, 0.4189143

The BLUEs of µ and σ are computed to be

µ̂BLU = 0.2308101 and σ̂BLU = 0.3954255

and the corresponding variances and covariances of µ̂BLU and σ̂BLU are computed to be:

V ar (µ̂BLU ) = 0.5867875σ2, V ar (σ̂BLU ) = 2.0042163σ2, Cov (µ̂BLU , σ̂BLU ) = −0.4055810σ2.

The BLIEs of the location and scale parameters are given by

µ̂BLI = 0.2841941 and σ̂BLI = 0.1316235.

The variances of µ̂BLI and σ̂BLI are

V ar (µ̂BLI) = 0.5138064σ2 and V ar (σ̂BLI) = 0.2220661σ2.

The 95% CIs for µ based on R1 and R3 are (−1.493865, 0.4115832) and (−1.493862, 0.4115829), respec-
tively. Also, the 95% CIs for σ based on R2 and R4 are (0.07465962, 35.98191) and (0.07465955, 35.96588),
respectively.
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Let us consider now the BLUP and BLIP of the next record YL(5). The BLUP of YL(5) is ŶBLUP =

0.1316235 and the BLIP is ŶBLIP = 0.2869653. In addition, the 95% PIs for the next lower record YL(5)

based on the pivotal quantities T1 and T2 are given by

(
L1(YL(5)), U1(YL(5))

)
= (−3.615338, 0.417787)

and
(
L2(YL(5)), U2(YL(5))

)
= (−4.018835, 0.417674)

respectively.

5.2 Example 2 (Simulated Data)

We generated n = 5 lower record values from location-scale Schabe distribution with parameters θ = 20, γ =
0.85, µ = 0, σ = 1 as follows:

14.794021, 6.672330, 4.620351, 4.327030, 3.488474

The BLUEs of µ and σ are computed to be

µ̂BLU = 2.994686 and σ̂BLU = 1.565891

and the corresponding variances and covariances of µ̂BLU and σ̂BLU are computed to be:

V ar (µ̂BLU ) = 0.31608140σ2, V ar (σ̂BLU ) = 0.56042514σ2, Cov (µ̂BLU , σ̂BLU) = −0.06410301σ2.

The BLIEs of the location and scale parameters are given by

µ̂BLI = 3.059013 and σ̂BLI = 1.003503.

The variances of µ̂BLI and σ̂BLI are

V ar (µ̂BLI) = 0.3117604σ2 and V ar (σ̂BLI) = 0.230161σ2.

The 95% CIs for µ based on R1 and R3 are (0.03103703, 3.763329) and (0.03109311, 3.763324), respectively.
Also, the 95% CIs for σ based on R2 and R4 are (0.6133886, 53.91125) and (0.6133858, 53.88974), respectively.

Let us consider now the BLUP and BLIP of the next record YL(6). The BLUP of YL(6) is ŶBLUP =

3.234521 and the BLIP is ŶBLIP = 3.267113. In addition, the 95% PIs for the next lower record YL(6) based
on the pivotal quantities T1 and T2 are given by

(
L1(YL(6)), U1(YL(6))

)
= (−1.370155, 3.487232)

and
(
L2(YL(6)), U2(YL(6))

)
= (−1.443068, 3.487216)

respectively.

6 Conclusion

In this paper, we have established recurrence relations for the single and product moments of lower record
values arising from the Schabe distribution. With the help of recurrence relations along with use of R soft-
ware, we have computed all the means, variances and covariances of lower record values. These moments
have then been used to obtain the best linear unbiased estimators (BLUEs) and best linear invariant esti-
mators (BLIEs) of location and scale parameters of location-scale Schabe distribution (10). These BLUEs
and BLIEs are then used to construct confidence intervals for the location and scale parameters through
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Monte Carlo simulations. We have compared the BLUEs and BLIEs for location and scale parameters using
the relative efficiency criterion (REC) and observed that the BLIEs work better than BLUEs in terms of
mean squared errors (MSEs). We have also discussed Predictions and Prediction Intervals for the future
records. We have compared the best linear unbiased predictors (BLUPs) and best linear invariant predictors
(BLIPs) for next record value using the REC and concluded that the BLIPs work better than BLUPs in
terms of mean squared prediction errors (MSPEs). Finally, two numerical examples are given to illustrate
the estimation and prediction methods discussed here.

Table 9: Simulated percentage points of T1

n T1

2.50% 5% 95% 97.50%
θ = 6, γ = 0.85 3 0.004453 0.010162 9.677063 20.577763

4 0.000930 0.002550 1.692273 2.716815
5 0.000115 0.002873 0.844331 1.020733

θ = 10, γ = 1 3 0.006943 0.017819 16.524751 33.228657
4 0.001999 0.005109 2.776881 4.438588
5 0.000421 0.001117 1.058293 1.641202

θ = 20, γ = 0.5 3 0.012169 0.029111 28.564340 58.065615
4 0.002860 0.006715 4.628703 7.566805
5 0.006072 0.001794 1.645213 2.502674

θ = 100, γ = .05 3 0.015644 0.038101 47.611590 94.484262
4 0.002851 0.007088 5.918252 10.202272
5 0.000822 0.001924 1.760334 2.705235

θ = 20, γ = .85 3 0.015168 0.038906 33.05122 71.444618
4 0.003217 0.007828 5.387537 8.516205
5 0.000793 0.002224 2.041887 3.102789

Table 10: Simulated percentage points of T2

n T2

2.50% 5% 95% 97.50%
θ = 6, γ = 0.85 3 0.008868 0.020350 19.269898 40.976423

4 0.001542 0.004231 2.807546 4.507301
5 0.000928 0.003550 1.337287 1.616680

θ = 10, γ = 1 3 0.013610 0.034927 32.385824 65.122797
4 0.003258 0.008325 4.525203 7.233111
5 0.000654 0.001737 1.645797 2.552303

θ = 20, γ = 0.5 3 0.025939 0.062055 60.889079 123.775374
4 0.005109 0.011994 10.268148 13.516413
5 0.001036 0.003060 2.806390 4.269039

θ = 100, γ = 0.05 3 0.063607 0.154915 193.58340 384.162441
4 0.009424 0.023423 19.55810 33.715383
5 0.002467 0.005780 5.288485 8.127111

θ = 20, γ = 0.85 3 0.302040 0.077472 65.814777 142.267401
4 0.005337 0.012985 8.928130 14.536574
5 0.001257 0.003523 3.234025 4.914327



Saran et al. 103

Acknowledgements. Authors are grateful to the learned referee for giving valuable comments, which
led to significant improvement in the presentation of the paper.

References

[1] M. Ahsanullah, Linear prediction of record values for the two parameter exponential distribution, Ann.
Inst. Statist. Math., 32(1980), 363–368.

[2] M. Ahsanullah, Record Statistics, New York, Nova Science Publishers, 1995.

[3] M. Alam, M. A. Khan and R. U. Khan, On upper k-record values from the generalized linear exponential
distribution, J. Stat. Theory Appl., 20(2021), 289–303.

[4] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, A First Course in Order Statistics, John Wiley,
New York, 1992.

[5] B. C. Arnold, N. Balakrishnan and H. N. Nagaraja, Records. New York, NY: John Wiley and Sons,
1998, doi: 10.1002/9781118150412.

[6] N. Balakrishnan, M. Ahsanullah and P. S. Chan, On the logistic record values and associated inference,
J. Appl. Statist. Sci., 2(1995), 233–248.

[7] N. Balakrishnan and P. S. Chan, On the normal record values and associated inference, Statist. Probab.
Lett., 39(1998), 73–80.

[8] N. Balakrishnan and A. C. Cohen, Order Statistics and Inference: Estimation Methods. San Diego:
Academic Press, 1991.

[9] E. Basiri, A. J. Fernandez, A. Asgharzadeh and S.F. Bagheri, Best prediction regions for future expo-
nential record intervals, Statistics, 54(2020), 969–988.

[10] M. Burkschat, Linear estimators and predictors based on generalized order statistics from generalized
Pareto distribution, Comm. Statist. Theory Methods, 39(2010), 311–326.

[11] K. N. Chandler, The distribution and frequency of record values, J. Roy. Statist. Soc. Ser. B, 14(1952),
220–228.

[12] I. R. Dunsmore, The future occurrence of records, Ann. Inst. Statist. Math., 35(1983), 267–277.

[13] A. Fallah, A. Asgharzadeh and S. M. T. K. MirMostafaee, On the Lindley record values and associated
inference, J. Stat. Theory Appl., 17(2018), 686–702.

[14] R. L. Houchens, Record Value Theory and Inference, Ph.D. thesis. University of California, Riverside,
1984.

[15] R. U. Khan, M. A. Khan and M. A. R. Khan, Relations for moments of generalized record values from
additive Weibull distribution and associated inference, Stat. Optim. Inf. Comput., 5(2017), 127–136.

[16] R. Makouei, H. J. Khamnei and M. Salehi, Moments of order statistics and k-record values arising from
the complementary beta distribution with applications, J. Comput. Appl. Math., 390(2021), 113386.

[17] N. R. Mann, Optimum estimators for linear functions of location and scale parameters, Ann. Math.
Statist., 40(1969), 2149–2155.

[18] S. M. T. K. MirMostafaee, A. Asgharzadeh and A. Fallah, Record values from NH distribution and
associated inference, Metron, 74(2016), 37–59.



104 Inference Based On Record Values From Schabe Distribution

[19] V. B. Nevzorov, Records, Theory of Probability and Its Applications, 32(1987), 201–228.

[20] M. Z. Raqab, Inferences for generalized exponential distribution based on record statistics, J. Statist.
Plann. Inference, 104(2002), 339–350.

[21] R. Core Team, R: A language and environment for statistical computing, R Foundation for Statistical
Computing, Vienna, Austria, 2020.

[22] H. Schabe, Constructing lifetime distributions with bathtub shaped failure rate from DFR distributions,
Microelectron Reliab., 34(1994), 1501–1508.

[23] B. Singh, R. Khan and S. Zarrin, Moments of generalized upper record values from weibull-power
function distribution and characterization, Journal of Statistics Applications & Probability, 9(2020),
309–318.

[24] K. S. Sultan, G. R. AL-Dayian and H. H. Mohammad, Estimation and prediction from gamma distri-
bution based on record values, Comput. Statist. Data Anal., 52(2008), 1430–1440.


