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Abstract

In this paper, we proved a basic theorem under weaker conditions dealing with the absolute Cesàro
summability factors of infinite series by using a quasi-β-power increasing sequence instead of an almost
increasing sequence. This new theorem also includes several known and new results on the absolute
Cesàro summability factors of infinite series.

1 Introduction

A positive sequence (bn) is said to be almost increasing sequence if there exists a positive increasing sequence
(cn) and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [2]). A positive sequence (Xn)
is said to be quasi-β-power increasing sequence if there exists a constant K = K(β,X) ≥ 1 such that
KnβXn ≥ mβXm for all n ≥ m ≥ 1. Every almost increasing sequence is a quasi-β-power increasing
sequence for any non-negative β, but the converse need not be true as can be seen by taking Xn = n−β (see
[9]). For any sequence (λn) we write that ∆2λn = ∆λn − ∆λn+1 and ∆λn = λn − λn+1. Let

∑
an be a

given infinite series. By tαn we denote the nth Cesàro mean of order α, with α > −1, of the sequence (nan),
that is (see [6])

tαn =
1

Aαn

n∑
v=1

Aα−1n−vvav, (tn
1 = tn) (1)

where

Aαn =
(α+ 1)(α+ 2)....(α+ n)

n!
' nα

Γ(α+ 1)
, Aα−n = 0 for n > 0.

Let (ϕn) be a sequence of complex numbers. The series
∑
an is said to be summable ϕ− |C,α|k, k ≥ 1, if

(see [1])
∞∑
n=1

1

nk
|ϕntαn|

k
<∞.

In the special case when ϕn = n1−
1
k , ϕ− |C,α|k summability is the same as |C,α|k summability (see [7]). If

we take ϕn = nδ+1−
1
k , then we obtain |C,α; δ|k summability (see [8]).

2 Known Results

The following theorems are known dealing with an application of almost increasing sequences to factored
infinite series.

Theorem 1 ([3]) Let (wαn) be a sequence defined by (see [10])

wαn =

{
|tαn| , α = 1
max1≤v≤n |tαv | , 0 < α < 1.

(2)
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Let (σn) be a positive sequence and let (Xn) be an almost increasing sequence. If the conditions

∞∑
n=1

n
∣∣∆2λn

∣∣Xn <∞, (3)

|λn|Xn = O(1) as n→∞, (4)

σn = O(1) as n→∞, (5)

n∆σn = O(1) as n→∞, (6)

n∑
v=1

(wαv )k

vXk−1
v

= O(Xn) as n→∞ (7)

hold, then the series
∑
anλnσn is summable |C,α|k, where 0 < α ≤ 1 and k ≥ 1.

Theorem 2 ([4]) Let (ϕn) be a sequence of complex numbers and let (wαn) be a sequence defined as in (2).
Let (σn) be a positive sequence and let (Xn) be an almost increasing sequence. Suppose also that there exists
an ε > 0 such that the sequence (nε−k |ϕn|

k
) is non-increasing. If the conditions (3)—(6) and

n∑
v=1

(|ϕv|wαv )k

vkXv
k−1 = O(Xn) as n→∞ (8)

hold, then the series
∑
anλnσn is summable ϕ− |C,α|k, where 0 < α ≤ 1, ε+ (α− 1)k > 0, and k ≥ 1.

It should be noted that if we take ε = 1 and ϕn = n1−
1
k , then we obtain Theorem 1. In fact, in this case

the condition (8) reduces to condition (7).

3 Main Result

The aim of this paper is to prove Theorem 2 under weaker conditions by using a quasi-β-power increasing
sequence instead of an almost increasing sequence. Now, we shall prove the following main theorem.

Theorem 3 Let (ϕn) be a sequence of complex numbers and let (wαn) be a sequence defined as in (2). Let
(σn) be a positive sequence and let (Xn) be a quasi-β-power increasing sequence. Suppose also that there
exists an ε > 0 such that the sequence (nε−k |ϕn|

k
) is non-increasing. If the conditions (3)—(6) and (8) hold,

then the series
∑
anλnσn is summable ϕ− |C,α|k, where 0 < α ≤ 1, ε+ (α− 1)k > 0, and k ≥ 1.

We require the following known lemmas for the proof of our new theorem.

Lemma 4 ([5]) If 0 < α ≤ 1 and 1 ≤ v ≤ n, then∣∣∣∣∣
v∑
p=0

Aα−1n−pap

∣∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣∣
m∑
p=0

Aα−1m−pap

∣∣∣∣∣ .
Lemma 5 ([9]) Under the conditions on (Xn) and (λn) as taken in the statement of the theorem, the
following conditions hold

nXn |∆λn| = O(1) as n→∞,
∞∑
n=1

Xn |∆λn| <∞.
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4 Proof of Theorem 3

Let (Tαn ) be the nth (C,α) mean, with 0 < α ≤ 1, of the sequence (nanλnσn). Then by (1), we have that

Tαn =
1

Aαn

n∑
v=1

Aα−1n−vvavλvσv.

Now, applying Abel’s transformation first and then using Lemma 4, we obtain that

Tαn =
1

Aαn

n−1∑
v=1

∆(λvσv)

v∑
p=1

Aα−1n−ppap +
λnσn
Aαn

n∑
p=1

Aα−1n−vvav

=
1

Aαn

n−1∑
v=1

(λv∆σv + σv+1∆λv)

v∑
p=1

Aα−1n−ppap +
λnσn
Aαn

n∑
p=1

Aα−1n−vvav.

Then

|Tαn | ≤
1

Aαn

n−1∑
v=1

|λv∆σv||
v∑
p=1

Aα−1n−pp ap|+
1

Aαn

n−1∑
v=1

|σv+1∆λv||
v∑
p=1

Aα−1n−pp ap|

+
|λnσn|
Aαn

|
v∑
v=1

Aα−1n−vv av|

≤ 1

Aαn

n−1∑
v=1

Aαvw
α
v |λv||∆σv|+

1

Aαn

n−1∑
v=1

Aαvw
α
v |σv+1||∆λv|+ |λn||σn|wαn

= Tαn,1 + Tαn,2 + Tαn,3.

To complete the proof, by Minkowski’s inequality, it is suffi cient to show that

∞∑
n=1

1

nk
| ϕnTαn,r |

k
<∞, for r = 1, 2, 3.

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1, we get that

m+1∑
n=2

1

nk
∣∣ϕnTαn,1∣∣k ≤

m+1∑
n=2

n−k(Aαn)−k |ϕn|
k

{
n−1∑
v=1

Aαvw
α
v |∆σv||λv|

}k

= O(1)

m+1∑
n=2

|ϕn|
k

nk+αk

n−1∑
v=1

(vα)k(wαv )k|∆σv|k|λv|k
{
n−1∑
v=1

1

}k−1

= O(1)

m+1∑
n=2

|ϕn|
k

n1+αk

n−1∑
v=1

vαk(wαv )k|λv|k
1

vk

= O(1)

m∑
v=1

vαk(wαv )kv−k|λv|k
m+1∑
n=v+1

nε−k |ϕn|
k

n1+ε+(α−1)k

= O(1)

m∑
v=1

vαk(wαv )kv−k|λv|kvε−k |ϕv|
k

m+1∑
n=v+1

1

n1+ε+(α−1)k

= O(1)

m∑
v=1

vαk(wαv )kv−k|λv|kvε−k |ϕv|
k
∫ ∞
v

dx

x1+ε+(α−1)k
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= O(1)

m∑
v=1

(wαv )k|λv||λv|k−1
|ϕv|

k

vk

= O(1)

m∑
v=1

|λv|
(wαv |ϕv|)k

vkXk−1
v

= O(1)

m−1∑
v=1

∆|λv|
v∑
r=1

(wαr |ϕr|)k

rkXk−1
r

+O(1)|λm|
m∑
v=1

(wαv | ϕv |)k

vkXk−1
v

= O(1)

m∑
v=1

|∆λv|Xv +O(1)|λm|Xm

= O(1) as m→∞,

by the hypotheses of Theorem 3 and Lemma 5.

Again, we have that

m+1∑
n=2

1

nk
∣∣ϕnTαn,2∣∣k ≤

m+1∑
n=2

n−k(Aαn)−k |ϕn|
k

{
n−1∑
v=1

Aαvw
α
v |σv+1||∆λv|

}k

= O(1)

m+1∑
n=2

|ϕn| k
nk+αk

{
n∑
v=1

vα(wαv )|∆λv|
}k

= O(1)

m+1∑
n=2

|ϕn| k
nk+αk

n−1∑
v=1

vαk(wαv )k|∆λv|k
{
n−1∑
v=1

1

}k−1

= O(1)

m+1∑
n=2

|ϕn|
k

n1+αk

n−1∑
v=1

vαk(wαv )k|∆λv|k

= O(1)

m∑
v=1

vαk(wαv )k|∆λv||∆λv|k−1
m+1∑
n=v+1

|ϕn|
k

n1+αk

= O(1)

m∑
v=1

vαk(wαv )k|∆λv||∆λv|k−1
m+1∑
n=v+1

nε−k |ϕn|
k

n1+ε+(α−1)k

= O(1)

m∑
v=1

vαk(wαv )k|∆λv|
vk−1Xk−1

v

vε−k |ϕv|
k
∫ ∞
v

dx

x1+ε+(α−1)k

= O(1)

m∑
v=1

v|∆λv|
(wαv |ϕv|)k

vkXk−1
v

= O(1)

m−1∑
v=1

∆ (v|∆λv|)
v∑
r=1

(wαr |ϕr|)k

rkXk−1
r

+O(1)m|∆λm|
m∑
v=1

(wαv |ϕv|)k

vkXk−1
v

= O(1)

m−1∑
v=1

v|∆2λv|Xv +O(1)

m−1∑
v=1

Xv|∆λv|+O(1)m|∆λm|Xm

= O(1) as m→∞,

by hypotheses of Theorem 3 and Lemma 5.
Finally, as in Tαn,1, we have that

m∑
n=1

1

nk
|Tαn,3ϕn|k =

m∑
n=1

1

nk
|λn σn wαnϕn|k
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= O(1)

m∑
n=1

|λn|
(wαn | ϕn |)k

nkXk−1
n

= O(1) as m→∞,

by the hypotheses of Theorem 3 and Lemma 5. This completes the proof of Theorem 3.

5 Conclusions

If we set α = 1, ϕn = n1−
1
k , and (Xn) as an almost increasing sequence, then we have a known result of

Sulaiman dealing with | C, 1 |k summability factors of infinite series (see [11]). Also, if we take (Xn) as an
almost increasing sequence, then we obtain Theorem 2. Furthermore, if we set ϕn = n1−

1
k , and (Xn) as an

almost increasing sequence, then we have Theorem 1. Finally, if we take ϕn = nδ+1−
1
k , then we obtain a

new result dealing with the | C,α; δ |k summability factors of infinite series.
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