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Abstract
In this paper, we proved a basic theorem under weaker conditions dealing with the absolute Cesaro
summability factors of infinite series by using a quasi-B-power increasing sequence instead of an almost
increasing sequence. This new theorem also includes several known and new results on the absolute
Cesaro summability factors of infinite series.

1 Introduction

A positive sequence (by,) is said to be almost increasing sequence if there exists a positive increasing sequence
(¢n) and two positive constants M and N such that Mc, < b, < Nc¢, (see [2]). A positive sequence (X,,)
is said to be quasi-3-power increasing sequence if there exists a constant K = K(8,X) > 1 such that
KnfX, > mPX,, for all n > m > 1. Every almost increasing sequence is a quasi-3-power increasing
sequence for any non-negative 3, but the converse need not be true as can be seen by taking X,, = n=" (see
[9]). For any sequence (\,) we write that A%\, = A)\, — AX,41 and AN, = A\, — Auy1. Let > a, be a
given infinite series. By t& we denote the nth Cesaro mean of order «, with a > —1, of the sequence (na,,),
that is (see [6])

(0% 1 o—
£ = <= 2 AnTdvas, (t! =t,) &)
where
at+l)(a+2)..(a+tn)  n®
n! T T(a+1)’

Let (¢,,) be a sequence of complex numbers. The series Y a,, is said to be summable ¢ — |C, oy, k > 1, if

(see [1])

A%:( A¢, =0 for n>0.

=1
k
n=1

1—

In the special case when ¢, = n'~%, ¢ — |C, o, summability is the same as |C, o, summability (see [7]). If

we take ¢, = n®T1= % then we obtain |C, a; 6], summability (see [8]).

2 Known Results

The following theorems are known dealing with an application of almost increasing sequences to factored
infinite series.

Theorem 1 ([3]) Let (w2) be a sequence defined by (see [10])

[t2] a=1
o nil?
Wn = { maxi<y<n [t5], 0<a <L (2)
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Let (0,,) be a positive sequence and let (X,,) be an almost increasing sequence. If the conditions

> AP X, < oo, (3)
n=1
[An] Xn = O(1) as n — oo, (4)
on=0(1) as n — oo, (5)
nAo, = O0(1) as n — oo, (6)
n a\k
w’U
Z U(Xﬁ)_l =0(X,) as n — (7)

hold, then the series ) anA,0y, is summable |C,af,, where 0 < o <1 and k > 1.

Theorem 2 ([4]) Let (p,) be a sequence of complex numbers and let (w) be a sequence defined as in (2).
Let (0,) be a positive sequence and let (X,,) be an almost increasing sequence. Suppose also that there exists

an e > 0 such that the sequence (n¢~* |g0,,L|k) is non-increasing. If the conditions (3)-(6) and
n k
Z ol wi)® =0(X,) as n— o0 (8)

hold, then the series ) apnAnoy is summable ¢ — |C, o, where 0 < a <1, e+ (o — 1)k >0, and k > 1.

It should be noted that if we take e =1 and ¢,, = nlfi, then we obtain Theorem 1. In fact, in this case
the condition (8) reduces to condition (7).

3 Main Result

The aim of this paper is to prove Theorem 2 under weaker conditions by using a quasi-S-power increasing
sequence instead of an almost increasing sequence. Now, we shall prove the following main theorem.

Theorem 3 Let (¢,,) be a sequence of complex numbers and let (wg) be a sequence defined as in (2). Let
(o) be a positive sequence and let (X,,) be a quasi-B-power increasing sequence. Suppose also that there

exists an € > 0 such that the sequence (n°* |g0,,L|k) is non-increasing. If the conditions (3)-(6) and (8) hold,
then the series ) anAnoy is summable ¢ — |C, o, where 0 < a <1, e+ (v — 1)k >0, and k > 1.

We require the following known lemmas for the proof of our new theorem.

Lemma 4 ([5]) If0<a <1 and1<v<mn, then

v

a—1
E An—pap

p=0

< max
1<m<wv

Lemma 5 ([9]) Under the conditions on (X,) and (\,) as taken in the statement of the theorem, the
following conditions hold
nX, |AN,| =O(1) asn — oo,

ZX" AN, ] < 0.

n=1
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4 Proof of Theorem 3

Let (T2) be the nth (C, ) mean, with 0 < a < 1, of the sequence (na,A,o,). Then by (1), we have that

1 n
E a—1
= E Anfvvav)\vav.
n =1

Now, applying Abel’s transformation first and then using Lemma 4, we obtain that

AnOn o
R e DTIR) WET
n oy=1 noop=1
1 n—1 v \oo n
= EZ()‘”AU”—FU““A)‘”)ZAQ ppap+ Zl" ZAg:})vav.
n op=1 p=1 noop=1
Then
Tyl <

n

e Zl)‘ AUU”ZAn pP ap|+ Ao ZlaerlA)‘ ||ZA papl

n op=1 n op=1

\)\ onl
A(x |ZA ’U(IU|

1 (03 (o3
T% 1; AZwi [Mo[|Acy| + —— As Z AZwi|ovir||AN] + [An|on |wy

v=1

IN

= Tp + Ty, + 13,

To complete the proof, by Minkowski’s inequality, it is sufficient to show that

[e.9]

1
Z —| oD ¥ < 00, forr=1,2,3.
n :

n=1

Now, when k > 1, applying Hélder’s inequality with indices k& and k', where % + % =1, we get that

m—+1 1 i m—+1 n—1 k
> el < 3 e un e {ZAsw3|AoU||AU|}
n=2 v=1
m+1 k n—1 n—1 k—1
- o 3L S rwanin {1}
v= 1 v=1
k n—1

rL

Z: n1+ak ( v ) |/\U
7; m—+1
OB

Yeu R A, ¥ n ko |k
— n
‘)\ | Z pltet(a—1)k

n=v+1
m+1 1
— k —k k k
= R T A e e
n=v+1

dx
k?*k? k,e—k
[Ao|"v W/W
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m k
()Y (w) Il n i el

v=1
% (wg o, ])*
o(1) UZ:1 |)‘v|W

wy | ¢, |)
|)\m‘z ka 1

)
Z A|)\ |Z ka 1
O(1) > AN Xy + O(1)[An| X,
v=1
O(1) as m — oo,

by the hypotheses of Theorem 3 and Lemma 5

Again, we have that

m—+1

1
Z R |(pnT7?,2 |k

n=2
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3 <
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0@ )Z A |Xy 4+ O(1) D Xy | AN + O(1)m| A, | X,

v=1 v=1

O(1) as m — oo,

by hypotheses of Theorem 3 and Lemma 5

Finally, as in T,

n,ls

we have that

1 e 1 o
F|Tn,3wn|k = Z Ep‘n On wn(pn|k

m

n=1
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m

w k
_ 0(1)Z|/\n|( n|(pn D

k—1
n=1 nkX"

= O(1) as m — oo,

by the hypotheses of Theorem 3 and Lemma 5. This completes the proof of Theorem 3.

5 Conclusions

If we set @ = 1, ¢, = n'~ %, and (X,,) as an almost increasing sequence, then we have a known result of
Sulaiman dealing with | C,1 |, summability factors of infinite series (see [11]). Also, if we take (X,,) as an
almost increasing sequence, then we obtain Theorem 2. Furthermore, if we set ¢, = n*=%, and (X,) as an

n5+1—%

almost increasing sequence, then we have Theorem 1. Finally, if we take ¢, = , then we obtain a

new result dealing with the | C, ;¢ |, summability factors of infinite series.
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