On A New Application Of Quasi-Power Increasing Sequences*

Hüseyin Bor †, Ravi Prakash Agarwal ${ }^{\ddagger}$

Received 23 December 2020

Abstract

In this paper, we proved a basic theorem under weaker conditions dealing with the absolute Cesàro summability factors of infinite series by using a quasi- β-power increasing sequence instead of an almost increasing sequence. This new theorem also includes several known and new results on the absolute Cesàro summability factors of infinite series.

1 Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing sequence if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants M and N such that $M c_{n} \leq b_{n} \leq N c_{n}$ (see [2]). A positive sequence (X_{n}) is said to be quasi- β-power increasing sequence if there exists a constant $K=K(\beta, X) \geq 1$ such that $K n^{\beta} X_{n} \geq m^{\beta} X_{m}$ for all $n \geq m \geq 1$. Every almost increasing sequence is a quasi- β-power increasing sequence for any non-negative β, but the converse need not be true as can be seen by taking $X_{n}=n^{-\beta}$ (see [9]). For any sequence $\left(\lambda_{n}\right)$ we write that $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. Let $\sum a_{n}$ be a given infinite series. By t_{n}^{α} we denote the nth Cesàro mean of order α, with $\alpha>-1$, of the sequence ($n a_{n}$), that is (see [6])

$$
\begin{equation*}
t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}, \quad\left(t_{n}^{1}=t_{n}\right) \tag{1}
\end{equation*}
$$

where

$$
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)}, \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0
$$

Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers. The series $\sum a_{n}$ is said to be summable $\varphi-|C, \alpha|_{k}, k \geq 1$, if (see [1])

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}}\left|\varphi_{n} t_{n}^{\alpha}\right|^{k}<\infty
$$

In the special case when $\varphi_{n}=n^{1-\frac{1}{k}}, \varphi-|C, \alpha|_{k}$ summability is the same as $|C, \alpha|_{k}$ summability (see [7]). If we take $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$, then we obtain $|C, \alpha ; \delta|_{k}$ summability (see [8]).

2 Known Results

The following theorems are known dealing with an application of almost increasing sequences to factored infinite series.

Theorem 1 ([3]) Let $\left(w_{n}^{\alpha}\right)$ be a sequence defined by (see [10])

$$
w_{n}^{\alpha}= \begin{cases}\left|t_{n}^{\alpha}\right|, & \alpha=1 \tag{2}\\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right|, & 0<\alpha<1\end{cases}
$$

[^0]Let $\left(\sigma_{n}\right)$ be a positive sequence and let $\left(X_{n}\right)$ be an almost increasing sequence. If the conditions

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty \tag{3}\\
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty \tag{4}\\
\sigma_{n}=O(1) \text { as } n \rightarrow \infty \tag{5}\\
n \Delta \sigma_{n}=O(1) \text { as } n \rightarrow \infty \tag{6}\\
\sum_{v=1}^{n} \frac{\left(w_{v}^{\alpha}\right)^{k}}{v X_{v}^{k-1}}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{7}
\end{gather*}
$$

hold, then the series $\sum a_{n} \lambda_{n} \sigma_{n}$ is summable $|C, \alpha|_{k}$, where $0<\alpha \leq 1$ and $\mathrm{k} \geq 1$.
Theorem 2 ([4]) Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers and let (w_{n}^{α}) be a sequence defined as in (2). Let $\left(\sigma_{n}\right)$ be a positive sequence and let $\left(X_{n}\right)$ be an almost increasing sequence. Suppose also that there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing. If the conditions (3)-(6) and

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left(\left|\varphi_{v}\right| w_{v}^{\alpha}\right)^{k}}{v^{k} X_{v}^{k-1}}=O\left(X_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

hold, then the series $\sum a_{n} \lambda_{n} \sigma_{n}$ is summable $\varphi-|C, \alpha|_{k}$, where $0<\alpha \leq 1, \epsilon+(\alpha-1) \mathrm{k}>0$, and $\mathrm{k} \geq 1$.
It should be noted that if we take $\epsilon=1$ and $\varphi_{n}=n^{1-\frac{1}{k}}$, then we obtain Theorem 1 . In fact, in this case the condition (8) reduces to condition (7).

3 Main Result

The aim of this paper is to prove Theorem 2 under weaker conditions by using a quasi- β-power increasing sequence instead of an almost increasing sequence. Now, we shall prove the following main theorem.

Theorem 3 Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers and let $\left(w_{n}^{\alpha}\right)$ be a sequence defined as in (2). Let $\left(\sigma_{n}\right)$ be a positive sequence and let $\left(X_{n}\right)$ be a quasi- β-power increasing sequence. Suppose also that there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing. If the conditions (3)-(6) and (8) hold, then the series $\sum a_{n} \lambda_{n} \sigma_{n}$ is summable $\varphi-|C, \alpha|_{k}$, where $0<\alpha \leq 1, \epsilon+(\alpha-1) \mathrm{k}>0$, and $\mathrm{k} \geq 1$.

We require the following known lemmas for the proof of our new theorem.
Lemma 4 ([5]) If $0<\alpha \leq 1$ and $1 \leq v \leq n$, then

$$
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_{p}\right|
$$

Lemma 5 ([9]) Under the conditions on $\left(X_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of the theorem, the following conditions hold

$$
\begin{gathered}
n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \quad \text { as } n \rightarrow \infty \\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty
\end{gathered}
$$

4 Proof of Theorem 3

Let $\left(T_{n}^{\alpha}\right)$ be the nth (C, α) mean, with $0<\alpha \leq 1$, of the sequence $\left(n a_{n} \lambda_{n} \sigma_{n}\right)$. Then by (1), we have that

$$
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v} \sigma_{v}
$$

Now, applying Abel's transformation first and then using Lemma 4, we obtain that

$$
\begin{aligned}
T_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta\left(\lambda_{v} \sigma_{v}\right) \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n} \sigma_{n}}{A_{n}^{\alpha}} \sum_{p=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \\
& =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left(\lambda_{v} \Delta \sigma_{v}+\sigma_{v+1} \Delta \lambda_{v}\right) \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n} \sigma_{n}}{A_{n}^{\alpha}} \sum_{p=1}^{n} A_{n-v}^{\alpha-1} v a_{v}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|T_{n}^{\alpha}\right| \leq & \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left|\lambda_{v} \Delta \sigma_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}\right|+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left|\sigma_{v+1} \Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}\right| \\
& +\frac{\left|\lambda_{n} \sigma_{n}\right|}{A_{n}^{\alpha}}\left|\sum_{v=1}^{v} A_{n-v}^{\alpha-1} v a_{v}\right| \\
\leq & \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\lambda_{v}\right|\left|\Delta \sigma_{v}\right|+\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\sigma_{v+1}\right|\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right|\left|\sigma_{n}\right| w_{n}^{\alpha} \\
= & T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}+T_{n, 3}^{\alpha}
\end{aligned}
$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, r}^{\alpha}\right|^{k}<\infty, \text { for } r=1,2,3
$$

Now, when $\mathrm{k}>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 1}^{\alpha}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \sigma_{v}\right|\left|\lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{k+\alpha k}} \sum_{v=1}^{n-1}\left(v^{\alpha}\right)^{k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \sigma_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+\alpha k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}}{n^{1+\epsilon+(\alpha-1) k}} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+\epsilon+(\alpha-1) k}} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{1+\epsilon+(\alpha-1) k}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m}\left(w_{v}^{\alpha}\right)^{k}\left|\lambda_{v}\right|\left|\lambda_{v}\right|^{k-1} \frac{\left|\varphi_{v}\right|^{k}}{v^{k}} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right| \frac{\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \frac{\left(w_{r}^{\alpha}\left|\varphi_{r}\right|\right)^{k}}{r^{k} X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by the hypotheses of Theorem 3 and Lemma 5.

Again, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 2}^{\alpha}\right|^{k} \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\sigma_{v+1}\right|\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{k+\alpha k}}\left\{\sum_{v=1}^{n} v^{\alpha}\left(w_{v}^{\alpha}\right)\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{k+\alpha k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+\alpha k}} \sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v} \| \Delta \lambda_{v}\right|^{k-1} \sum_{n=v+1}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{1+\alpha k}} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v} \| \Delta \lambda_{v}\right|^{k-1} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}}{n^{1+\epsilon+(\alpha-1) k}} \\
& =O(1) \sum_{v=1}^{m} \frac{v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|}{v^{k-1} X_{v}^{k-1}} v^{\epsilon-k}\left|\varphi_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{1+\epsilon+(\alpha-1) k}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| \frac{\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \frac{\left(w_{r}^{\alpha}\left|\varphi_{r}\right|\right)^{k}}{r^{k} X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \frac{\left(w_{v}^{\alpha}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty \text {, }
\end{aligned}
$$

by hypotheses of Theorem 3 and Lemma 5.
Finally, as in $T_{n, 1}^{\alpha}$, we have that

$$
\sum_{n=1}^{m} \frac{1}{n^{k}}\left|T_{n, 3}^{\alpha} \varphi_{n}\right|^{k}=\sum_{n=1}^{m} \frac{1}{n^{k}}\left|\lambda_{n} \sigma_{n} w_{n}^{\alpha} \varphi_{n}\right|^{k}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{\left(w_{n}^{\alpha}\left|\varphi_{n}\right|\right)^{k}}{n^{k} X_{n}^{k-1}} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by the hypotheses of Theorem 3 and Lemma 5. This completes the proof of Theorem 3.

5 Conclusions

If we set $\alpha=1, \varphi_{n}=n^{1-\frac{1}{k}}$, and $\left(X_{n}\right)$ as an almost increasing sequence, then we have a known result of Sulaiman dealing with $|C, 1|_{k}$ summability factors of infinite series (see [11]). Also, if we take (X_{n}) as an almost increasing sequence, then we obtain Theorem 2. Furthermore, if we set $\varphi_{n}=n^{1-\frac{1}{k}}$, and (X_{n}) as an almost increasing sequence, then we have Theorem 1. Finally, if we take $\varphi_{n}=n^{\delta+1-\frac{1}{k}}$, then we obtain a new result dealing with the $|C, \alpha ; \delta|_{k}$ summability factors of infinite series.

References

[1] M. Balcı, Absolute φ-summability factors, Comm. Fac. Sci. Univ. Ankara Sér. A_{1} Math., 29(1980), 63-68.
[2] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obšč., 5(1956), 483-522.
[3] H. Bor, Almost increasing sequences and their new applications, J. Inequal. Appl., 2013, 2013:207, 5 pp.
[4] H. Bor and R. P. Agarwal, A new application of almost increasing sequences to factored infinite series, Anal. Math. Phys., 10(2020), Paper No. 26.
[5] L. S. Bosanquet, A mean value theorem, J. London Math. Soc., 16(1941), 146-148.
[6] E. Cesàro, Sur la multiplication des séries, Bull. Sci. Math., 14(1890), 114-120.
[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141.
[8] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc., 8(1958), 357-387.
[9] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58(2001), 791-796.
[10] T. Pati, The summability factors of infinite series, Duke Math. J., 21(1954), 271-284.
[11] W. T. Sulaiman, On a new application of almost increasing sequences, Bull. Math. Anal. Appl., 4(2012), 29-33.

[^0]: *Mathematics Subject Classifications: 26D15, 40D15, 40F05, 40G05.
 ${ }^{\dagger}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey
 \ddagger Dept. Math., Texas A\& M University-Kingsville, Texas 78363, USA

