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Abstract

We analyze the blow-up of the solutions of an ordinary differential inequality, useful to prove non-
existence of global solutions of evolution equations. We extend and improve previous results.

1 Introduction

The purpose of this note is to study the blow-up in finite time of any solution ψ(t), of the following second
order differential inequality

ψ(t)
d2

dt2
ψ(t) + δψ(t)

d

dt
ψ(t)− (1 + α)

(
d

dt
ψ(t)

)2
− βψ2(t) + γψ(t) ≥ 0, t ≥ 0, (1)

where α, β, γ are strictly positive constants, and δ ≥ 0 is a damping coeffi cient.
An important topic in the analysis of evolution equations is to find suffi cient conditions for the existence

of global and non-global solutions due to blow-up in finite time. See the book [1] for a description of the main
methods for studying blow-up in nonlinear equations of the mathematical physics. The concavity method,
introduced by Levine [2, 3], has been widely used to investigate this type of behavior through differential
inequalities of the type (1). See the papers [4, 5, 6] and references therein, where extensions of such method
have been proposed. The blow-up theorems in these articles are based on the analysis of particular cases of
(1) and are shown under suffi cient conditions more restrictive than ours. The objective of this work is to
expand and improve these results. See also [7, 8], for other problems.

2 The Differential Inequality

In the applications of inequalities of the type (1), ψ(t) is usually a positive function of the norm in some
space H of the solution u(x, t) of a partial differential equation of the evolution type. That is, ψ(t) =
f(‖u(·, t)‖H) ≥ 0, see for instance [1] and references therein. In order to study the blow-up of ψ(t) in finite
time we define the following functions, for ψ(t) > 0.

φ(t) ≡
(

d
dtψ(t)

ψ
1
2 (t)

− δ

α
ψ

1
2 (t)

)2
+
β

α
ψ(t), σν(t) ≡

1 + 2α

2

(
φ(t)− βν

α
ψ(t)

)
,

µλ(t) ≡
1 + 2α

2

(
φ(t)− β

α(1 + 2α)
ψ(t)

(
λ
βψ(t)

αφ(t)

)2α)
,

for t ≥ 0, ν > 0, and λ ∈ (0, 1), and

ψ0 ≡ ψ(0), φ0 ≡ φ(0) =
(
ψ
′

0

ψ
1
2
0

− δ

α
ψ

1
2
0

)2
+
β

α
ψ0, ψ

′

0 ≡
d

dt
ψ(0).
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Theorem 1 Consider any solution ψ(t) of the differential inequality (1), such that

ψ
′

0 >
δ

α
ψ0 > 0, (2)

consequently φ0 >
β
αψ0 > 0. Then, there exists a nonempty interval

I ≡ (a,b) ⊂
(
0,
1 + 2α

2
φ0

)
,

with the following consequences:

(i) If γ ∈ I, then ψ(t) blows-up at the finite time t∗ ≥
(
α
ψ′0
ψ0
− δ
)−1

.

(ii) a = σν(0) and b = µλ(0), moreover

a =
βψ0

((1 + 2α)ν∗)
1
2α

<
βψ0

(1 + 2α)
1
α

,

b =
αφ0
λ∗

>
1 + 2α

2
φ0 −

(
1 + 2α

2α
− ζ(λ∗)

)
βψ0 >

1 + 2α

2
φ0 −

β

2α
ψ0,

for some 2α
1+2α < λ∗ < 1 and ν∗ > 1 + 2α, where 1 < ζ(λ∗) < 1+2α

2α is a function of λ∗, defined in the
proof.

(iii) For fixed ψ0
ψ′0 7→ |I| = b− a,

is strictly increasing and such that

0 <
1 + 2α

2
φ0 − |I| <

(
1 + 2α

2α
− ζ(λ∗) + 1

((1 + 2α)ν∗)
1
2α

)
βψ0.

Furthermore, we have the limit values as ψ′0 →∞

a→ 0,

∣∣∣∣b− 1 + 2α2 φ0

∣∣∣∣→ 0, ν∗ →∞, λ∗ → 2α

1 + 2α
, ζ(λ∗)→ 1 + 2α

2α
, t∗ → 0.

Corollary 1 Assume that (2) is met. For every number γ > 0, we can choose ψ
′

0 large enough, so that
γ ∈ I, and then the corresponding solution ψ(t) of (1) blows-up in finite time.

Remark 1 The analysis of blow up for some quasilinear equations of parabolic and hyperbolic type is done
in [4], applying inequality (1) with γ = 0, if a condition similar to (2) is fulfilled. The blow up property for
nonlinear Kirchooff type and wave equations is proved in [5], by means of the inequality (1) with β = 0, if
(2) and an additional condition on φ0 are satisfied. Finally, the blow up behavior in nonlinear Klein-Gordon
and the double dispersive equations is showed in [6], using (1) with δ = 0, if (2) and an implicit condition
on γ similar to (9) hold. We point out that if (9) is true, we will show the existence of the blow up interval
I whose measure is estimated in terms of β > 0. We also observe that δ > 0 allows us to apply our result
to evolution equations with linear dissipation, see [1, 4, 5]. Furthermore, γ > 0 is proportional to the size
of the initial energy in applications to hyperbolic equations, see [1, 5, 6]. Since the blow-up problem for any
positive value of the initial energy is a current research topic, it is important to consider any γ > 0, see [5, 6]
and references therein. Hence, our result improves and extends the previous ones in the literature.
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Proof of Theorem 1. We assume that the solution is global, then ψ(t) is well defined for any t ≥ 0. From
(2), the following holds for t ∈ [0, t1) and some t1 > 0,

d

dt
ψ(t) >

δ

α
ψ(t) > 0. (3)

Hence, the following differential inequality for ψ(t) holds

d2

dt2
ψ(t) + δ

d

dt
ψ(t)− (1 + α)

(
d
dtψ(t)

)2
ψ(t)

− βψ(t) + γ ≥ 0 (4)

If we define F(t) ≡ ψ−α(t), the differential inequality (4) becomes

d2

dt2
F(t) + δ d

dt
F(t) + αβF(t)− αγF

1+α
α (t) ≤ 0. (5)

Next, if we define G(t) ≡ eδtF(t), (5) implies that

d2

dt2
G(t)− δ d

dt
G(t) + αβG(t)− αγG

1+α
α (t)e−

δt
α ≤ 0, (6)

and (3) is characterized by d
dtF(t) < −δF(t) < 0, −δ

d
dtG(t) > 0. Hence, (6) becomes

d2

dt2
G(t) + αβG(t) ≤ αγG

1+α
α (t)e−

δt
α ≤ αγG

1+α
α (t),

and the following integral of this differential inequality is obtained(
d

dt
G(t)

)2
≥ J (G(t)) , (7)

where, for s > 0,

J (s) ≡ 2α2

1 + 2α
γs

1+2α
α − αβs2 + C0, C0 ≡ α2ψ−(1+2α)0

(
φ0 −

2γ

1 + 2α

)
.

From (7), if there exists a constant κ0 > 0 such that(
d

dt
G(t)

)2
≥ J (G(t)) ≥ κ20, (8)

then d
dtG(t) ≤ −κ0 < 0, and t1 is never reached. Hence, 0 < G(t) ≤ ψ−α0 − tκ0, which is impossible for

t ≥ t∗ ≡ (κ0ψ
α
0 )
−1. Then, the solution blows-up at the finite time t∗. We notice that J (s) attains an

absolute minimum at s0 ≡
(
β
γ

)α
, that is

J (G(t)) ≥ J (s0) = −
αβ

1 + 2α

(
β

γ

)2α
+ C0 = α2ψ

−(1+2α)
0 (φ0 −K(γ)) ,

where

K(γ) ≡ 2γ

1 + 2α
+

β

α(1 + 2α)

(
β

γ

)2α
ψ1+2α0 .

In order to satisfy (8), we set κ20 ≡ J (s0), then, κ20 > 0 if and only if

K(γ) < φ0. (9)
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We notice that K(γ) → ∞ as, either γ → 0 or γ → ∞. Consequently K attains an absolute minimum
at γ0 ≡ βψ0, that is K(γ) ≥ K(γ0) = β

αψ0. Hence, (9) holds due to (2), and there exist two different roots
of K(γ) = φ0, denoted by a and b, such that 0 < a < γ0 < b < 1+2α

2 φ0, and
β
αψ0 < K(γ) < φ0, γ ∈ I ≡

(a,b), γ 6= γ0. And since K is strictly monotone for γ < γ0 and γ > γ0, it follows that, for fixed ψ0, the
interval I grows as ψ′0 grows. That is,

lim
ψ
′
0→∞

∣∣∣∣1 + 2α2 φ0 − b
∣∣∣∣ = 0 = lim

ψ
′
0→∞

a.

Then, (9) holds if and only if γ ∈ I. From the definition of κ20, we obtain t∗ ≥
(
α
ψ′0
ψ0
− δ
)−1

, and

limψ′0→∞ t∗ = 0. We shall use σν and µλ to find the values of a and b, respectively. First, we consider
the equation

K(σν) = φ0, σν ≡ σν(0). (10)

This holds if and only if,

p(ν) ≡ ν

α
+

(
2

(1 + 2α)
1+2α
2α

)
1

ν
1
2α

=
φ0
βψ0

. (11)

We notice that p(ν)→∞, as ν → 0 and ν →∞. Furthermore, p has an absolute minimum, that is

p(ν) ≥ p(1 + 2α) = 1

α
, ν > 0.

Moreover, from the definition of φ0,
φ0
βψ0

> 1
α . Then, equation (10) equivalently (11), has two roots and only

one such that ν∗ > 1 + 2α. Furthermore,

a = σν∗ =
βψ0

((1 + 2α)ν∗)
1
2α

<
βψ0

(1 + 2α)
1
α

.

Also, limψ′0→∞ ν∗ =∞. Next, we consider the equation

K(µλ) = φ0, µλ ≡ µλ(0). (12)

We observe that, for λ ∈ [λ0, 1], λ0 = 2α(1 + 2α)−1, this holds if and only if

q(λ) ≡ 1

1 + 2α

(
λ
βψ0
αφ0

)1+2α
= λ− 2α

1 + 2α
≡ r(λ). (13)

Both functions are strictly monotone increasing and, due to the definition of φ0,

q(λ0) > r(λ0) = 0, q(1) < r(1) =
1

1 + 2α
.

Then, there exists one and only one λ∗ ∈ (2α(1 + 2α)−1, 1) where q(λ∗) = r(λ∗). That is, only one root λ∗

of equation (13), equivalently (12). Moreover,

b = µλ∗ =
αφ0
λ∗

,

and limψ′0→∞ λ∗ = 2α
1+2α . Next, we show the following lower bound for b

b >
1 + 2α

2
φ0 −

1

2α
βψ0 =

1 + 2α

2ψ0

(
ψ
′

0 −
δ

α
ψ0

)2
+ βψ0,
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To this end, consider first the following inequality

α

ψ0λ
∗

((
ψ
′

0 −
δ

α
ψ0

)2
+
β

α
ψ20

)
=
αφ0
λ∗

= b >
1 + 2α

2ψ0

(
ψ
′

0 −
δ

α
ψ0

)2
,

which, for s ≡
(
ψ
′

0 − δ
αψ0

)2
> 0, is equivalent to

l(s) ≡
(
λ∗
(
1 + 2α

2α

)
− 1
)(

ψ
′

0 −
δ

α
ψ0

)2
<
β

α
ψ20,

2α

1 + 2α
< λ∗ < 1.

We calculate the following limits taking in account that λ∗ is a function of s,

lim
s→∞

λ∗ =
2α

1 + 2α
, lim
s→0

λ∗ = 1,

lim
s→∞

l(s) =
1

2α
lim
s→∞

s

(
λ∗
βψ0
αφ0

)1+2α
=
1

2α
lim
s→∞

s

(
λ∗

β
αψ

2
0

β
αψ

2
0 + s

)1+2α
= 0.

Also, lims→0 l(s) = 0. Consequently, there is some s∗ ∈ (0,∞), such that l(s∗) = maxs∈(0,∞) l(s). After
some calculations, we find that

s∗ = ψ20

(
2β(1− λ∗)

(1 + 2λ)λ∗ − 2α(1− λ∗)

)
, l(s∗) =

β

α
ψ20

(
((1 + 2α)λ∗ − 2α)(1− λ∗)
(1 + 2α)λ∗ − 2α(1− λ∗)

)
,

and then l(s) ≤ l(s∗) = β
αψ

2
0η(λ

∗), η(λ∗) ≡ ((1+2α)λ∗−2α)(1−λ∗)
(1+2α)λ∗−2α(1−λ∗) < 1. Notice that this is equivalent to

b >

(
1 + 2α

2ψ0

)(
ψ
′

0 −
δ

α
ψ0

)2
+ ζ(λ∗)βψ0 =

1 + 2α

2
φ0 −

(
1 + 2α

2α
− ζ(λ∗)

)
βψ0,

where
1 + 2α

2α
> ζ(λ∗) ≡ λ∗(1 + 2α)

λ∗(1 + 2α)− 2α(1− λ∗) > 1, since
2α

1 + 2α
< λ∗ < 1.

Also, limψ′0→∞ ζ(λ∗) = 1+2α
2α . Finally, from the bounds for a,b, we have that

0 <
1 + 2α

2
φ0 − |I| <

(
1 + 2α

2α
− ζ(λ∗) + 1

((1 + 2α)ν∗)
1
2α

)
βψ0.

Proof of Corollary 1. Since ψ
′

0 → ∞ ⇒ a → 0 and b → ∞, we see that, for every ξ > 0 there exists
η > 0, such that ψ

′

0 > η ⇒ ξ ∈ I = (a,b). Hence, any solution of (1) with γ = ξ blows-up in finite time.
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