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Abstract

In this paper, using variational methods and critical point theory, we establish the existence of multiple
solutions for a class of p(x)-Kirchhoff-type problem with Dirichlet boundary data. Some recent results
are extended and improved. To illustrate the application of the main results, three-dimensional equation
models are presented.

1 Introduction

In the present paper, we study the following problem{
−M(

∫
Ω

1
p(x) |∇u|

p(x)dx)div(|∇u|p(x)−2∇u) = f(x, u), inΩ

u = 0, on ∂Ω
(1)

where Ω is a smooth bounded domain in RN , p(x) ∈ C(Ω) with 1 < p− := minΩ p(x) ≤ p+ := maxΩ p(x) < N,
M(t) : R+ → R is a continuous function and f(x, u) : Ω× R→ R satisfies Caratheèodory condition.
The operator −∆p(x)u = −div(|∇u|p(x)−2∇u) is called p(x)-Laplacian which becomes p-Laplacian when

p(x) ≡ p (a constant).
Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−
(
ρ0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)
∂2u

∂x2
= 0, (2)

where ρ, ρ0, h, E, L are all constants which extends the classical D’Alembert’s wave equation, by considering
the effects of the changes in the length of the string during the vibrations. Eq. (2) received a lot of attention
only after Lions [20] proposed an abstract framework for this problem. Some important and interesting
results can be found in, for example, [1, 14]. The equation{

−(a+ b
∫

Ω
|∇u|2dx)∇u = f(x, u), inΩ

u = 0, on ∂Ω
(3)

is related to the stationary analogue of Eq. (2). Nonlocal problem (3) can be used for modeling, for example,
physical and biological systems. Problems of Kirchhoff-type have been widely investigated. We refer the
reader to [5, 10, 17, 18, 21, 22] and the references therein.
The differential equations and variational problems with variable exponent has attracted increasing at-

tention for the last few decades. These type of differential equations are governed by the p(x)-Laplacian
operator in general. The p(x)-Laplacian operator possesses more complicated nonlinearities than the p-
Laplacian operator, mainly due to the fact that it is not homogeneous.
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The differential equations with variable exponent have been widely used for modeling many phenomena
especially arising from the nonlinear elasticity theory, and the theory of electrorheological fluids, see [26].
Some other applications are image processing [7], magnetostatics [6], and capillarity phenomena [3]. We
refer to [2, 4, 8, 9, 12, 19, 27] for the study of the Kirchhoff equations p(x)-Laplacian operators, and the
corresponding variational problems.
In the present paper, we use the variational methods to obtain existence results for the problem (1) under

suitable conditions imposed on f and M (see, the conditions (f0), (f1), (f2), (m0) and (m1) of Theorem 5).
In Theorem 5 we establish the existence of at least two weak solutions for the problem (1), while in Theorem
6 we discuss the existence of infinitely many solutions for the problem (1). The present paper is organized as
follows. In Section 2, we recall some basic definitions and our main tools. In Section 3, we state and prove
the main results of the paper. Then, we give two examples to illustrate our results.

2 Preliminaries and Basic Notation

First, we introduce some fundamental properties of the variable exponent Lebesgue Lp(x)(Ω) and Sobolev
W 1,p(x)(Ω) spaces (for details, see e.g., [13, 11, 16]).
Set

C+(Ω) = {h;h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},

h+ = max
Ω

h(x), h− = min
Ω
h(x) for any h ∈ C(Ω).

We define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : Ω→ R measurable;

∫
Ω

|u(x)|p(x)dx <∞
}

equipped with norm

|u|Lp(x)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
where p(x) ∈ C(Ω) satisfies condition

1 < p− := min
x∈Ω

p(x) ≤ p+ := max
x∈Ω

p(x).

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) := {u : u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)},

and endowed with norm
‖u‖ = ‖u‖W 1,p(x)(Ω) := |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

We denote by W 1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω), that is to say, space W 1,p(x)

0 (Ω) is defined as

C∞0 (Ω)
‖·‖

W1,p(x)(Ω) = W
1,p(x)
0 (Ω). Thus, u ∈W 1,p(x)

0 (Ω) iff there exists a sequence {un} of C∞0 (Ω) such that
‖un − u‖W 1,p(x)(Ω) → 0.

Proposition 1 ([16]) The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are separable and reflexive Banach

spaces if p− > 1 and p+ < +∞.

Proposition 2 ([16]) In W 1,p(x)
0 (Ω) the Poincaré inequality holds, that is there exists a positive constant

C such that
|u|Lp(x)(Ω) ≤ C|∇u|Lp(x)(Ω), ∀u ∈W

1,p(x)
0 (Ω).
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As a consequence, |∇u|Lp(x)(Ω) and ‖u‖ are equivalent norms on the space W
1,p(x)
0 (Ω). We will use the

equivalent norm in the following discussion and write ‖u‖ = |∇u|Lp(x)(Ω) for the sake of simplicity.

Proposition 3 ([15, 16]) Assume that the boundary of Ω possesses the cone property and p ∈ C(Ω) with
p(x) < N. if q ∈ C(Ω) and 1 ≤ q(x) ≤ p∗(x) (1 ≤ q(x) < p∗(x)) for x ∈ Ω, then there is a continuous
(compact) embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω), where p∗ = Np(x)

N−p(x) .

Proposition 4 ([16]) Let ρ(u) =
∫

Ω
|u|p(x)dx for each u ∈ Lp(x)(Ω). Then, for any u, un ∈ Lp(x)(Ω) we

have

(i) |u|Lp(x)(Ω) < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1);

(ii) |u|Lp(x)(Ω) > 1 =⇒ |u|p
−

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

+

Lp(x)(Ω)
;

(iii) |u|Lp(x)(Ω) < 1 =⇒ |u|p
+

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

−

Lp(x)(Ω)
;

(iv) |un|Lp(x)(Ω) −→ 0⇔ ρ(un) −→ 0.

In the rest of this paper, we let X = W
1,p(x)
0 (Ω).

Definition 1 We say that u ∈ X is a weak solution of (1), if

M

(∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2∇u∇vdx =

∫
Ω

f(x, u)vdx,

where v ∈ X.

Throughout this paper, weak solutions of the problem (1) mean the critical points of the associated
energy functional J acting on the Sobelev space W 1,p(x)

0 (Ω). Let’s define the functionals

Φ(u) := M̂

(∫
Ω

1

p(x)
|∇u|p(x)

)
dx

and

Ψ(u) :=

∫
Ω

F (x, u)dx

where M̂(t) =
∫ t

0
M(s)ds, and F (x, u) =

∫ u
0
f(x, t)dt.

The energy functional corresponding to problem (1) is J : X → R, with J = Φ − Ψ, is well defined.
Obviously, by the assumptions on f andM , J ∈ C1(X,R) and J is weakly lower semi-continuous. Therefore,
u ∈ X is a weak solution of (1) if and only if it holds

J ′(u)v = M

(∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)−2∇u∇vdx−
∫

Ω

f(x, u)vdx

for all v ∈ X.

Definition 2 Let E be a real reflexive Banach space. If any sequence {uk} ⊂ E for which {J(uk)} is bounded
and J ′(uk) → 0 as k → 0 possesses a convergent subsequence. Then it is said that J satisfies Palais-Smale
condition.

Theorem 1 ([24, Theorem 4.4]) Let X be a Banach space and J : X → R be a function bounded from
below and differentiable on X. If J satisfies the (PS)c-condition with c = infX J , then J has a minimum on
X.
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Notice that it is clear from Theorem 1 that the (PS)-condition implies the (PS)c-condition for each
c ∈ R.

Theorem 2 ([24, Theorem 4.10]) Let J ∈ C1(X,R), and J satisfies the Palais-Smale condition. Assume
that there exist u0, u1 ∈ X and a bounded neighborhood Ω of u0 satisfying u1 /∈ Ω and

inf
u∈∂Ω

J(u) > max{J(u0), J(u1)},

then there exists a critical point u of J, i.e. J ′(u) = 0 with J(u) > max{J(u0), J(u1)}.

Theorem 3 ([25, Theorem 9.12]) Let E be an infinite dimensional real Banach space. Let J ∈ C1(E,R)
be an even functional which satisfies the (PS)-condition, and J(0) = 0. Suppose that E = V

⊕
X, where V

is finite dimensional, and J satisfies that

(i1) There exist α > 0 and ρ > 0 such that J(u) ≥ α for all u ∈ X with ‖u‖ = ρ;

(i2) For any finite dimensional subspace W ⊂ E there is R = R(W ) such that J(u) ≤ 0 on W\BR.

Then J possesses an unbounded sequence of critical values.

Theorem 4 ([28, Theorem 38]) For the functional F : M ⊆ X −→ [−∞,+∞] withM 6= ∅, minu∈M F (u) =
α has a solution in case the following conditions hold:

(i3) X is a real reflexive Banach space,

(i4) M is bounded and weak sequentially closed,

(i5) F is weak sequentially lower semi-continuous on M , i.e., by definition, for each sequence {un} in M
such that un ⇀ u as n→∞, we have F (u) ≤ limn→∞ inf F (un) holds.

We want to remark that in the papers [5, 29], Theorems 2 and 3 have been successfully applied to show
the multiple solutions of Nonlinear impulsive differential equations with Dirichlet boundary conditions and
the existence of solutions for a class of degenerate nonlocal problems involving sub-linear nonlinearities,
respectively. Moreover, in the paper [30], Theorem 3 has been successfully applied to obtain the existence
of infinitely many solutions for a boundary value problem.

3 Main Results

We assume the following:

(m0) ∃ m0 > 0 such that M(t) ≥ m0.

(m1) ∃ 0 < k < 1 such that M̂(t) ≥ kM(t)t.

(f0) there exists a constant ν > p+

k such that 0 < νF (x, t) ≤ tf(x, t), |t| > T.

(f1) f : Ω× R −→ R satisfies Carathèodory condition and

|f(x, t)| ≤ c(1 + |t|α(x)−1) for |t| ≤ T,

where α ∈ C+(Ω) and p+ < α(x) < p∗(x) for x ∈ Ω.

(f2) f(x, t) = o(|t|p+−1), t −→ 0, for x ∈ Ω uniformly.

The main results of the present paper are the following.
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Theorem 5 Assume that the assumptions (f0), (f1), (f2), (m0) and (m1) hold. Then, if f(x, t) ≥ 0 for all
(x, t) ∈ Ω× R, the problem (1) has at least two weak solutions.

Theorem 6 Assume that the assumptions (f0), (m0) and (m1) hold. Then, if f(x, t) is odd in t, the problem
(1) has infinitely many weak solutions.

First, we start with the following lemma.

Lemma 1 Assume that (f0), (m0) and (m1) hold. Then J(u) satisfies the (PS)-condition.

Proof. Assume that {un} ⊂ X such that {J(un)} is bounded and J ′(un) → 0 as n → +∞. Then, there
exists a positive constant c0 such that |J(un)| ≤ c0. Therefore, letting ‖un‖ > 1, by the assumptions (f0),
(m0), (m1), and Proposition 4 we have

c0 + ‖un‖ ≥ J(un)− 1

ν
J ′(un)(un)

≥
(
k

p+
− 1

ν

)
M

(∫
Ω

1

p(x)
|∇un|p(x)dx

)∫
Ω

|∇un|p(x)dx

+

∫
Ω

(
1

ν
f(x, un)un − F (x, un)

)
dx

≥ m0

(
k

p+
− 1

ν

)
‖un‖p

−

Due to assumption ν > p+

k , we infer that {un} is bounded. By using the same argument given in [10, Lemma
2.4], it can easily be proven that {un} converges strongly to u in X. Overall, this implies J satisfies the
(PS)-condition.

3.1 The Proof of Theorem 5

Proof. By the definition of J , it is clear that J(0) = 0. Moreover, from Lemma 1 we know that J satisfies
the (PS)-condition. The rest of the proof is split into two steps:

Step 1. We will show that there exists M > 0 such that the functional J has a local minimum u0 ∈
BM = {u ∈ X; ‖u‖ < M}. To do this, we will apply Mazur’s lemma (see, e.g., [23]) which states that any
weakly convergent sequence in a Banach space has a sequence of convex combinations of its members that
converges strongly to the same limit. Let {un} ⊆ BM and un ⇀ u as n→∞, then there exists a sequence
of convex combinations

vn =

n∑
j=1

anjuj ,

n∑
j=1

anj = 1, anj ≥ 0, j ∈ N

such that vn → u in X. Since BM is a closed convex set, we have {vn} ⊆ BM and u ∈ BM . Noting that J
is weak sequentially lower semi-continuous on BM , and that X is a reflexive Banach space, we can infer by
Theorem 4 that J has a local minimum u0 ∈ BM .

Now, we assume that J(u0) = minu∈BM
J(u), and show that

J(u0) < inf
u∈∂BM

J(u).

Since p+ < α− ≤ α(x) < p∗(x), we have the embedding X ↪→ Lp
+

(Ω) which means that there exists c0 > 0

such that |u|p+ ≤ c0‖u‖, ∀u ∈ X. Let ε > 0 be small enough such that εcp
+

0 < km0

2p+ . By the assumptions
(f1) and (f2), we have

F (x, t) ≤ ε|t|p
+

+ c(ε)|t|α(x) for (x, t) ∈ Ω× R.
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Then, from (??), (m0) and (m1), it reads

J(u) ≥ km0

(∫
Ω

1

p(x)
|∇u|p(x)dx

)
− ε

∫
Ω

|u|p
+

dx− c(ε)
∫

Ω

|u|α(x)dx

≥ km0

p+
‖u‖p

+

− εcp
+

0 ‖u‖p
+

− c(ε)‖u‖α
−

≥ km0

2p+
‖u‖p

+

− c(ε)‖u‖α
−
, when ‖u‖ < 1.

Therefore, there exist r, δ > 0 such that J(u) ≥ δ > 0 for every ‖u‖ = r < 1. If we let M = r, then
J(u) > 0 = J(0) ≥ J(u0) for u ∈ ∂BM . Hence u0 ∈ BM and J ′(u0) = 0.

Step 2. Since J(u0) = minu∈X J(u), we can let M > 0 be suffi ciently large such that J(u0) ≤ 0 <
infu∈∂BM

J(u), where BM = {u ∈ X; ‖u‖ < M}.
Now we will show that there exists u1 ∈ X with ‖u1‖ > M such that J(u1) < inf∂BM

J(u). For this, let
e1(x) ∈ X and u1 = γe1, γ > 0 and ‖e1‖ = 1. By (f0), there exist constants a1, a2 > 0 such that F (x, t) ≥
a1|t|ν − a2 for all x ∈ Ω, |t| ≥ T . When t > t0 > 0, from (m1) we can easily see that M̂(t) ≤ ct 1

k . Indeed, by
integrating over the interval (t0, t) and using elementary calculus lead to M̂(t) ≤ M̂(t0)( tt0 )

1
k = ct

1
k . Thus

J(u1) = (Φ−Ψ)(γe1)

= M̂

(∫
Ω

1

p(x)
|γ∇e1|p(x)dx

)
−
∫

Ω

F (x, γe1)dx

≤ c
(∫

Ω

1

p(x)
|γ∇e1|p(x)dx

) 1
k

− a1γ
ν

∫
Ω

|e1|νdx+ a2

≤ c

(p+)
1
k

γ
p+

k

(∫
Ω

|∇e1|p(x)

) 1
k

− a1γ
ν

∫
Ω

|e1|νdx+ a2.

Since ν > p+

k , there exists suffi ciently large γ such that γ > M > 0 which means J(γe1) < 0. Hence,
inf∂BM

J(u) > max{J(u0), J(u1)}. Then, Theorem 2 assures the existence of the second critical point u∗.
Therefore, u0, u

∗ are two critical points of ϕ, which are two nontrivial solutions of the problem (1).

The following example illustrates Theorem 5.

Example 1 Consider N = 3, and Ω = {(x1, x2, x3) ∈ R3;x2
1 + x2

2 + x2
3 ≤ 8} ⊂ R3, p(x) = 3

2 + 1
2cos(x

2
1 +

x2
2 +x2

3)π, therefor p ∈ C(Ω), p− = 1 and p+ = 2, M(t) = 1 + t4, for t ∈ R+, thus M satisfies the conditions
m0 with m0 = 1 and by choosing k = 1

5 , M̂(t) ≥ 1
5M(t)t satisfies the condition m1. Let

f(x, t) =

{
t10, |t| > 1,

t6, |t| ≤ 1.

By the expression of f , we have

F (x, t) =

{
t11

11 , |t| > 1,
t7

7 , |t| ≤ 1.

Moreover, f(x, t) = o(|t|), t → 0 and by choosing α(x) = 4 + sin(x1 + x2 + x3)π α ∈ C+(Ω) and p+ <

α(x) ≤ p∗(x), such that |f(x, t)| < c(1 + |t|α(x)−1) for |t| < 1. And by choosing ν = 11, that ν > p+

k we have
11F (x, t) ≤ tf(x, t), so we see that all conditions (f0), (f1), and (f2) are satisfied therefore, the problem{
−M(

∫
Ω

1
3
2 + 1

2 cos(x
2
1+x2

2+x2
3)π
|∇u| 32 + 1

2 cos(x
2
1+x2

2+x2
3)πdx)div(|∇u|−1

2 + 1
2 cos(x

2
1+x2

2+x2
3)π∇u) = f(x, u), in Ω

u = 0, on ∂Ω

(4)
has at least two nontrivial weak solutions.
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3.2 The Proof of Theorem 6

Proof. From the definitions of the functionals Φ and Ψ, it is clear that J is even and J(0) = 0. The rest of
the proof is split into two steps:

Step 1. Since its proof is straightforward, we only depict briefly how J satisfies condition (i)3 in Theorem
3. Since, J is coercive and also satisfies (PS)-condition, by the minimization theorem [24, Theorem 4.4], the
functional J has a minimum critical point u ∈ X with J(u) ≥ α > 0 and ‖u‖ = ρ for ρ > 0 small enough.

Step 2. Now, we will show that J satisfies condition (i)4 in Theorem 3. Let W ⊂ X be a finite
dimensional subspace. Any non-zero vector u ∈W has a unique representation u = θe1, where θ = ‖u‖ and
‖e1‖ = 1. Then, similar to Step 2 in the proof of Theorem 5, it follows

J(θe1) = (Φ−Ψ)(θe1)

= M̂

(∫
Ω

1

p(x)
|θ∇e1|p(x)dx

)
−
∫

Ω

F (x, θe1)dx

≤ c
(∫

Ω

1

p(x)
|θ∇e1|p(x)dx

) 1
k

− a1θ
ν

∫
Ω

|e1|νdx+ a2

≤ c

(p+)
1
k

θ
p+

k

(∫
Ω

|∇e1|p(x)

) 1
k

− a1θ
ν

∫
Ω

|e1|νdx+ a2.

The above inequality implies that there exists θ0 such that ‖θe1‖ > ρ and J(θe1) < 0 for every θ ≥ θ0 > 0.
Since W is a finite dimensional subspace, there exists R = R(W ) > 0 such that for all u ∈W \BR, that is,
when ‖u‖ ≥ R, we have J(u) ≤ 0. According to Theorem 3, the functional J(u) possesses infinitely many
critical points, i.e., the problem (1) has infinitely many weak solutions.

The following example illustrates Theorem 6.

Example 2 Consider N = 3 and Ω = {(x1, x2, x3) ∈ R3;x2
1 +x2

2 +x2
3 ≤ 8} ⊂ R3, p(x) = 2 + 1

2sin(x2
1 +x2

2 +

x2
3)π, therefor p ∈ C(Ω), p− = 3

2 and p
+ = 5

2 , M(t) = 1 + t2, for t ∈ R+, thus M satisfies the conditions m0

with m0 = 1 and by choosing k = 1
3 , M̂(t) ≥ 1

3M(t)t satisfies the condition m1. Let

f(x, t) =

{
t7, |t| > 1,

t5 + sin(πt), |t| ≤ 1.

By the expression of f , we have

F (x, t) =

{
1
8 t

8, |t| > 1,
1
6 t

6 − 1
π cos(πt), |t| ≤ 1.

Moreover, by choosing ν = 8, that ν > p+

k we have 8F (x, t) ≤ tf(x, t), so we see that all condition (f0), is
satisfied. Therefore, the problem{

−M(
∫

Ω
1

2+ 1
2 sin(x2

1+x2
2+x2

3)π
|∇u|2+ 1

2 sin(x2
1+x2

2+x2
3)πdx)div(|∇u| 12 sin(x2

1+x2
2+x2

3)π∇u) = f(x, u), in Ω

u = 0, on ∂Ω

has infinitely many weak solutions.
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