
Applied Mathematics E-Notes, 22(2022), 82-89 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Local Convergence Of A Modified Chebyshev’s Iterative Method
For Nonlinear Ill-Posed Equations In Banach Space∗

Chekur Devadas Sreedeep†, Sharan Keeleathu Sasidharan‡

Received 22 November 2020

Abstract
In this paper, we have modified Chebyshev’s iterative method given in [10] for nonlinear ill-posed

equations in Banach spaces involving m-accretive mappings. We have provided a local convergence for
the method with some basic assumptions. The semilocal convergence analysis of this method was studied
by [14]. This work provides computable convergence ball and computable error bounds.

1 Introduction

In this study we are interested in the problem of approximately solving the nonlinear ill-posed operator
equation

F (u) = f, (1)

where F : D(F ) ⊆ E → E is an m-accretive, Fréchet differentiable and single valued nonlinear mapping from
a real reflexive Banach space E into itself. The norm on E, is denoted by ‖.‖ and the dual of E is denoted
by E∗. Throughout this paper we write 〈j, u〉 instead of j(u), for each j ∈ E∗ and u ∈ E. We assume that
(1) has a solution, say û, i.e,

F (û) = f. (2)

Recall that [1, 2, 6] F is m-accretive if it satisfies the following

1. 〈F (x)− F (y), J(x− y)〉 ≥ 0, where J is the dual mapping on E.

2. R(F + λI) = E for each λ ≥ 0 where R(F ) and I denote the range of F and the identity mapping on
E respectively.

Since F is m-accretive, for α > 0 and for fixed f ∈ E,

F (u) + α(u− u0) = f (3)

has a unique solution [4, 5, 7] denoted by uα where u0 is the initial guess of the exact solution û. It is known
[2, 4, 5, 8, 12, 13] that uα is an approximation for û (i.e., uα → û and α → 0). In practice, the available
data is fδ with

‖f − fδ‖ ≤ δ. (4)

So one has to deal with the equation
F (u) + α(u− u0) = fδ (5)

instead of (3). The above equation has a unique solution uδα. It is known that u
δ
α is a good approximation

for û provided α is choosen appropriately [2, 4, 5, 8, 15, 16, 17]. Therefore, our approach in this paper is to
obtain uδα. In fact we have the following result (see [5, 18, 8] )

‖uδα − uα‖ ≤
δ

α
(6)
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and
‖uα − û‖ ≤ ‖û− u0‖. (7)

Obtaining a closed form solution uδα of (5) is diffi cult in general. So most of the solution methods considered
for solving (5) are iterative.
Motivated by [10] we study a new local convergence analysis for modified Chebyshev’s method discussed

in [14] to approximate uδα. Here in convergence analysis we impose conditions on u
δ
α and obtain the estimates

of computed radii of the convergence of balls.
The proposed method is defined for each k = 0, 1, · · · , by

vk = uk − [R′α(uk)]−1Rα(uk) (8)

wk = vk −
1

2
Lk[R′α(uk)]−1Rα(uk)

uk+1 = wk −Hk[R′α(uk)]−1Rα(wk)

where
Rα(u) := F (u) + α(u− u0)− fδ,

Lk = R′α(uk)−1F ′′(uk)R′α(uk)−1Rα(uk)

and
Hk = I + Lk +

3

2
L2k −

1

2
R′α(uk)−1F ′′′(uk)R′α(uk)−1Rα(uk)2.

Further extensive discussion of convergence rate can be seen in Ortega and Rheinbold [11] and Kelly [9].
The rest of the paper is organized as follows. Basic assumptions and preliminaries are discussed in Section

2. Local convergence analysis of our method is given in Section 3. As an illustration to our work we have
provided a numerical example in Section 4. Finally, the paper ends with a conclusion in Section 5.

2 Basic Assumptions and Preliminaries

The results in this paper are based on the following assumptions (A):

(A1) There exists a constant k0 ≥ 0 such that for every u, v ∈ B(uδα, r0) and w ∈ E there exists an element
Φ(u, v, w) ∈ E such that [F ′(u)− F ′(v)]w = F ′(v)Φ(u, v, w), ‖Φ(u, v, w)‖ ≤ k0‖w‖‖v − u‖.

(A2) There exists v ∈ E such that u0 − û = F ′(u0)
νv 0 < ν ≤ 1.

Theorem 1 ([13, Theorem 3.3]) Let condition (A1) and (A2) hold. If 3L0r < 1, then

‖uα − û‖ ≤ c1αν

for some constant c1 > 0, where ν is as in (A2).

Let k0 > 0 be a given parameter. Let us define functions g1, g2, g3 and h on the interval [0, 1/2k0),

g1(r) =
3k0r

1− 2k0r
,

g2(r) =
r

1− 2k0r
(3k0 +

M2
1M2

(1− 2k0r)2
),

h(r) = 1 +
M1M2r

1− 2k0r
+

3

2

M2
1M

2
2 r
2

(1− 2k0r)2
+

1

2

M3M1r
2

(1− 2k0r)3

and

g3(r) = rg2(r)(1 +
h(r)M1

1− 2k0r
).
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Moreover, define polynomial g on the interval [0, 1
2k0

) by

g(r) = g3(r)− 1.

We have that g(0) < 0 and g(r)→ +∞ as r → 1
2k0

−
. Then, it follows from the intermediate value theorem

that polynomial g has roots in the domain. Denote r0 the smallest root of polynomial g on the domain.
From the definitions of the functions g1, g2, g3, h, polynomial g and point r0 that for each r ∈ (0, r0)

0 < g1(r) < 1,

0 < g2(r) < 1,

1 < h(r),

and
0 < g3(r) < 1.

Now using the above results and notations, we can show the local convergence result of the method (8).

3 Local Convergence

Using basic assumptions and observations discussed in above section we arrive in following theorem which
describes the local convergence of (8).

Theorem 2 Let F : D ⊆ E → E be twice Fréchet differentiable operator with B(uδα, r0) ⊆ D and k0,M1

and M2 > 0. Suppose that for each u ∈ D

‖R′α(uδα)−1F ′(u)‖ ≤M1 (9)

‖R′α(uδα)−1F ′′(u)‖ ≤M2 (10)

holds. Then sequence {uk} defined in (8) is well defined and remains in B(uδα, r0) ∀k = 0, 1, · · · and converges
to uδα. Moreover the following estimates holds for each k = 0, 1, · · · ,

‖vk − uδα‖ ≤ g1(‖uk − uδα‖)‖uk − uδα‖ (11)

‖wk − uδα‖ ≤ g2(‖uk − uδα‖)‖uk − uδα‖ (12)

and
‖uk+1 − uδα‖ ≤ g3(‖uk − uδα‖)‖uk − uδα‖ (13)

Proof. For easiness we use the notation

ek = ‖uk − uδα‖ for each k = 0, 1, 2. · · · ,

êk = ‖vk − uδα‖ for each k = 0, 1, 2. · · · ,

ēk = ‖wk − uδα‖ for each k = 0, 1, 2. · · · ,

We have, for some v ∈ D with ‖v‖ = 1,

‖(I −R′α(uδα)−1R′α(u0))(v)‖ ≤ ‖R′α(uδα)−1(F ′(uα)− F ′(u0))(v)‖
≤ ‖R′α(uδα)−1(F ′(uδα))φ(uδα, u0, v)‖
≤ 2k0‖uδα − u0‖
≤ 2k0‖e0‖
< 1.
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Therefore, by Banach lemma on invertible operators [3], we have

‖R′α(u0)
−1R′α(uδα)‖ ≤ 1

1− 2k0‖e0‖
. (14)

Consider

R′α(uδα)−1(Rα(u0)−Rα(uδα))−R′α(u0)e0

= R′α(uδα)−1(F (u0)− F (uδα)− F ′(u0)e0)

=

∫ 1

0

R′α(uδα)−1F ′(uδα)φ(uδα + te0, u
δ
α, e0)dt+ (−R′α(uδα)−1F ′(uδα)φ(uδα + te0, u

δ
α, e0)).

By taking norm on both sides we have

‖R′α(uδα)−1(Rα(u0)−Rα(uδα))−R′α(u0)e0‖ ≤ k0‖e0‖2 + 2k0‖e0‖2

≤ 3k0‖e0‖2|

From definition (8),

ê0 = e0 − (R′α(u0))
−1Rα(u0)

= e0 − (R′α(u0))
−1R′α(uδα)R′α(uδα)−1Rα(u0)

= −R′α(u0)
−1R′α(uδα)[R′α(uδα)−1Rα(u0)−R′α(uδα)−1R′α(u0)e0]

= −R′α(u0)
−1R′α(uδα)[R′α(uδα)−1Rα(u0)−Rα(uδα)−R′α(u0)e0].

Therefore,

‖ê0‖ ≤
1

1− 2k0‖e0‖
[3k0‖e0‖2] ≤ g1(‖e0‖)‖e0‖ ≤ r0.

So, v0 ∈ B(uδα, r0) and

L0 = R′α(u0)
−1F ′′(u0)R

′
α(u0)

−1Rα(u0) = R′α(u0)
−1R′α(uδα).

Consider

‖R′αuδα
−1
Rα(u0)‖ = ‖Rα(uδα)−1(F (u0)− F (uδα) + α(u0 − uδα))

= ‖R′α(uδα)−1
∫ 1

0

F ′(uδα + te0)e0dt‖+ ‖R′α(uδα)−1α(u0 − uδα)‖

≤M1‖e0‖.

Therefore,

‖L0‖ ≤ ‖R′α(u0)
−1R′α(uδα)‖2‖R′α(uδα)F ′′(u0)‖‖R′α(uδα)−1Rα(u0)‖ ≤

M1M2‖e0‖
(1− 2k0‖e0‖)2

.

From definition (8),

ẽ0 = ê0 −
1

2
L0(R

′
α(u0))

−1R′α(uδα)R′α(uδα)−1Rα(u0).

By taking norm on both sides,

‖ẽ0‖ ≤
3k0‖e0‖2

1− 2k0‖e0‖
+

1

2

M1M2‖e0‖
1− 2k0‖e0‖

(
1

1− 2k0‖e0‖
)(M1‖e0‖)

≤ ‖e0‖2
1− 2k0e0

(3k0 +
M2
1M2

(1− 2k0‖e0‖2)
)

≤ g2(‖e0‖)‖e0‖
< r0.
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Therefore, w0 ∈ B(uδα, r0).
Now from definition (8),

‖H0‖ ≤ 1 +
M1M2‖e0‖
1− 2k0‖e0‖

+
3

2

M2
1M

2
2 ‖e0‖2

(1− 2k0‖e0‖)2
+

1

2

M3M1‖e0‖2
(1− 2k0‖e0‖)3

≤ h(‖e0‖),

‖e1‖ ≤ ‖ẽ0‖+
‖H0‖M1‖ẽ0‖
1− 2k0‖e0‖

≤ ‖e0‖2
1− 2k0‖e0‖

(3k0 +
M2
1M2

(1− 2k0‖e0‖)2)
(1 +

h(‖e0‖)M1

1− 2k0‖e0‖
)

= g3(‖e0‖)‖e0‖
< r0.

Hence, u1 ∈ B(uδα, r0) and (11)—(13) holds for k = 1. If we simply replace u0, v0, w0, u1 by uk, vk, wk, uk+1 in
the preceding estimates, we arrive at the estimates (11)—(13) and through these estimates uk, vk, wk, uk+1 ∈
B(uδα, r0).

4 Numerical Example

In this section we present a numerical example.

Example 1 (see [12], section 4.3) Let F : D(F ) ⊆ C[0, 1] −→ C[0, 1] be defined by

F (u) :=

∫ 1

0

k(t, s)u3(s)ds, (15)

where

k(t, s) =

{
(1− t)s, 0 ≤ s ≤ t ≤ 1,
(1− s)t, 0 ≤ t ≤ s ≤ 1.

Then for all u, v

〈F (u)− F (v), J(u− v)〉 = ‖
∫ 1

0

k(t, s)(u3 − v3)(s)ds‖2 ≥ 0.

Thus the operator F is monotone. The Fréchet derivative of F is given by

F ′(u)w = 3

∫ 1

0

k(t, s)u2(s)w(s)ds. (16)

In our computation, we take f(t) = 6sin(πt)+sin3(πt)
9π2 and fδ = f + δ. Then the exact solution is

û(t) = sin(πt).

We use

u0(t) = sin(πt) +
3[tπ2 − t2π2 + sin2(πt)]

4π2
,

as our initial guess.
We choose α0 = µδ and µ = 1.01. We use the Gauss-Legendre quadrature formula:∫ 1

0

f(t)dt ≈
n∑
j=1

wjf(tj),
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Table 1: Abscissa and weights of Gauss-Legendre quadrature formula
i ti wi

1 0.0022215151047509 0.0056968992505131

2 0.0116680392702412 0.0131774933075160

3 0.0285127143855128 0.0204695783506531

4 0.0525040010608623 0.0274523479879176

5 0.0832786856195830 0.0340191669061784

6 0.1203703684813212 0.0400703501675005

7 0.1632168157632658 0.0455141309914818

8 0.2111685348793885 0.0502679745335253

9 0.2634986342771425 0.0542598122371318

10 0.3194138470953061 0.0574291295728558

11 0.3780665581395058 0.0597278817678923

12 0.4385676536946448 0.0611212214951550

13 0.5000000000000000 0.0615880268633577

14 0.5614323463053552 0.0611212214951550

15 0.6219334418604942 0.0597278817678923

16 0.6805861529046939 0.0574291295728558

17 0.7365013657228575 0.0542598122371318

18 0.7888314651206115 0.0502679745335253

19 0.8367831842367342 0.0455141309914818

20 0.8796296315186788 0.0400703501675005

21 0.9167213143804170 0.0340191669061784

22 0.9474959989391377 0.0274523479879176

23 0.9714872856144872 0.0204695783506531

24 0.9883319607297588 0.0131774933075160

25 0.9977784848952490 0.0056968992505131

where the absissas tj and the weight wj for n = 25 are given in Table 1, to discretize equation (15). The
discretized form of (8) is as follows:

vk(ti) = uk(ti)− [R′α(uk(ti))]
−1Rα(uk(ti)),

wk(ti) = vk(ti)−
1

2
Lk(ti)[R

′
α(uk(ti))]

−1Rα(uk(ti)),

uk+1(ti) = wk(ti)−Hk(ti)[R
′
α(uk(ti))]

−1Rα(wk(ti)),

where

F (u(ti)) =

25∑
j=1

aiju(tj)
3, F ′(u(ti)) =

25∑
j=1

3aiju(tj)
2,

F ′′(u(ti)) =

25∑
j=1

6aiju(tj), F ′′′(u(ti)) =

25∑
j=1

6aij ,
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Table 2: The relative error and residual error
δ α ||uk−û||

||û||
||F (uk)−fδ||
||fδ||

0.01 0.011156683466653 0.579437886300696 1.000000000000000

0.005 0.005578341733327 0.510365663178468 1.000000000000000

0.001 0.001115668346665 0.366910099833426 1.000000000000000

and
Rα(u(ti)) = F (u(ti)) + α(u(ti)− u0(t0))− (f(ti) + δ)

with

aij =

{
wjtj(1− ti), if j ≤ i,
wjti(1− tj), if i < j.

The relative error ||uk−û||||û|| and the residual error ||F (uk)−f
δ||

||fδ|| are given in Table 2.

5 Conclusion

In this paper, we study a modern Chebyshev’s iterative method given in [10] for nonlinear ill-posed equations
in Banach spaces involving m-accretive mappings. We provide a local convergence for the method with some
basic assumptions.This work provides computable convergence ball and computable error bounds. We have
also provided a numerical example which illustrates our work.
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