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Abstract

The Fractional Laplace equation in plane-polar coordinates or spherical coordinates is solved. To find
the solution the Mellin’s transform is applied. We use Caputos definition of the fractional derivative for
this approach.

1 Introduction

The Laplace equation appears in many physical phenomena and engineering applications such as electrostatic,
heat conduction, and water wave propagation. The Fractional Laplace equation is based on implementing
the fractional differentiation of the integer equation ([1]). It does generalize the integer Laplace equation.
It is compatible with the integer Laplace equation at non-fractional order, besides that, it is available in
Curvilinear and Cartesian coordinates. A variety of methods have been employed to find solutions to the
Laplace fractional equation. For example, Samuel and Thomas ([1]) derived solutions of the fractional
Laplace equation in terms of Mittag-Lefler function and Fox’s H-function. They ([1]) used the Laplace
and Fourier transform. Saxena et al. ([2]) presented analytical solutions of the fractional-order Laplace,
Poisson, and Helmholtz equations. They employed the Fourier-Laplace transform method. The solutions
are presented in terms of Mittag-Leffl er functions, Fox H-function, and an integral operator containing a
Mittag-Leffl er function in the kernel. Despite the existence of solutions to the fractional Laplace equation,
most of the approaches are performed in Cartesian coordinates, using separation of variables and Laplace
and Fourier Transforms.
Recently, Nairat et al. ([3]) derived analytical solutions to the cylindrically symmetric fractional Helmholtz

equation in an isotropic medium using the method of separation of variables. The general solution is given
in terms of fractional Bessel functions attached to particular azimuthal and longitudinal exponents, it is
represented in orthogonal and completeness basis.
The objective of this note is to derive analytical solutions of fractional order Laplace equation in plane

polar or spherical coordinates. To obtain the solutions instead of using the method of separation of variables,
we will apply the method of Mellin’s transform. The Mellin’s transform of a function f(r) is

f̃(s) =

∫ ∞
0

rs−1 f(r) dr , (1)

and the inverse Mellin’s transform is

f(r) =
1

2π i

∫ c+ i∞

c− i∞
r−s f̃(s) ds. (2)

The Mellin’s transform has been applied in problems of fractional ordinary and partial differential equations
see for instance, ([4]), ([5]), ([6]), and in partial differential equations see for example, ([7]), ([8]), and the
review paper by Luchko and Kiryakova ([9]).
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The work is organized as follows. In Section 2, we study the fractional form of the Laplace equation in
plane polar coordinates. In particular, we consider the problem of determining a function that satisfies the
fractional Laplace equation in the interior of an infinite 2-dimensional wedge. Next, in section 3, we present
an analytical solution for the fractional Laplace equation in spherical coordinates, the solution is given in
terms of Legendre’s special functions, and finally, we draw our conclusions.

2 Solution of the Fractional Laplace Equation in Plane Polar Co-
ordinates

Let us consider the problem of determining a function u = u(r, θ) which satisfies the fractional Laplace’s
equation in the interior of an infinite 2-dimensional wedge of angle 2φ, φ ≤ π

2 , with conditions given on the
boundary.
Consider the wedge referred to plane polar coordinates (r, θ) with the polar axis bisecting the wedge

angle and the pole at the apex of the wedge. Assume the boundary conditions to be

u(r,±φ) = 1 if 0 < r < a and u(r,±φ) = 0 if r > a,

together with u(r,±φ) → 0 and Dαu(r,±φ) → 0 as r → ∞ with |θ| ≤ φ. In plane polar coordinates,
Laplace’s equation is

1

rα
Dα(rαDαu) +

Γ2(α+ 1)

r2α

∂2u

∂θ2 = 0, (3)

where Dα represents fractional derivative operator,

Dαu =
1

Γ(m− α)

∫ x

a

1

(x− τ)α+ 1−m
dmu

dτm
dτ.

To apply the Mellin’s transform we multiply the equation by rs−1+2α and integrate with respect to r from
zero to infinity ∫ ∞

0

rs−1+αDα(rαDαu) dr + Γ2(α+ 1)

∫ ∞
0

rs−1 ∂
2u

∂θ2 dr = 0, (4)

using the definition of the Mellin’s transform

ũ(s, θ) =

∫ ∞
0

rs−1 u dr , (5)

and ∫ ∞
0

rs−1+αDαu dr =
Γ(1− s)

Γ(1− s− α)
ũ(s, θ), (6)

(see ([10]) we get ∫ ∞
0

rs−1+αDα(rαDαu) dr =
Γ2(1− s)

Γ2(1− s− α)
ũ(s, θ) (7)

reduces the equation (3) to
d2ũ

dθ2 +
( Γ2(1− s)

Γ2(α+ 1) Γ2(1− s− α)

)
ũ = 0, (8)

with solution

ũ(s, θ) = A(s) cos

(
Γ(1− s)

Γ(α+ 1) Γ(1− s− α)
θ

)
+B(s) sin

(
Γ(1− s)

Γ(α+ 1) Γ(1− s− α)
θ

)
, (9)

using the boundary conditions we see that B(s) = 0, thus

ũ(s, θ) = A(s) cos
( Γ(1− s)

Γ(α+ 1) Γ(1− s− α)
θ
)
. (10)
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The transformed boundary conditions are

ũ(s,±φ) =

∫ a

0

rs−1 dr =
as

s
, (11)

thus

A(s) =
as

s cos
( Γ(1−s)

Γ(α+1) Γ(1−s−α)φ
) , (12)

and

ũ(s, θ) =
as

s cos
(

Γ(1−s)
Γ(α+1) Γ(1−s−α)φ

) cos

(
Γ(1− s)

Γ(α+ 1) Γ(1− s− α)
θ

)
. (13)

Taking the inverse Mellin’s transform of (13), we get

u(r, θ) =
1

2π i

∫ c+ i∞

c− i∞
(
a

r
)s

1

s cos
( Γ(1−s)

Γ(α+1) Γ(1−s−α)φ
) cos

( Γ(1− s)
Γ(α+ 1) Γ(1− s− α)

θ
)
ds, (14)

where because of the nature of the integrand, it follows that the line integral must be taken along a line
0 < Re(s) = c < π

2φ . The mtegrand has poles at s = 0, and(
Γ(1− s)

Γ(α+ 1) Γ(1− s− α)
φ

)
= ± (2k − 1)

2
π,

Γ(1− s)
Γ(1− s− α)

= ± (2k − 1)

2φ
π Γ(α+ 1) , (15)

putting α = 1, we obtain the condition derived by Lomen [7]

s = ± (2k − 1)

2φ
π, (16)

and using the Cauchy’s integral formula we obtain

u(r, θ) =
2

π

∞∑
k=1

(−1)k+1

2k − 1
(
a

r
)
(2k−1)π

2φ cos
( (2k − 1)π

2φ
θ
)
, r > a, (17)

u(r, θ) = 1 − 2

π

∞∑
k=1

(−1)k+1

2k − 1
(
a

r
)
−(2k−1)π

2φ cos
( (2k − 1)π

2φ
θ
)
, r < a. (18)

For 0 < α < 1, the general solution can be written as follows

u(r, θ) =

∞∑
k=0

Ak,α (
a

r
)|s(k,α)| cos

( (2k − 1)π

2φ
θ
)
, r < a, (19)

and

u(r, θ) =

∞∑
k=0

Bk,α (
a

r
)−|s(k,α)| cos

( (2k − 1)π

2φ
θ
)
, r > a, (20)

where s(k, α) are the solutions of the transcendant Equation (15).
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3 Solution of the Fractional Laplace Equation in Spherical Polar
Coordinates

In this section, we will consider the problem of determining a function u(r, θ) which satisfies the fractional
Laplace’s equation in the interior of an infinite right circular cone of vertex angle 2φ, φ ≤ π

2 , and given
conditions on the boundary. Consider the cone referred to spherical coordinates (r,Φ, θ) with the vertex
of the cone at the origin. Assume the solution is independent of the meridian angle and u(r, θ) = f(r) for
θ = φ. Thus the boundary value problem is governed by the fractional Laplace equation.

1

rα
Dα(rαDαu + u ) +

1

r2α sin θ

∂

∂θ
(sin θ

∂u

∂θ
) = 0, 0 < r <∞, 0 ≤ θ < φ, (21)

together with the boundary condition
u(r, φ) = f(r). (22)

Application of the Mellin transform reduces the differential equation (21) to

1

sin θ

d

dθ
(sin θ

dũ

dθ
) +

( Γ2(1− s)
Γ2(1− s− α)

+
Γ(1− s)

Γ(1− s− α)

)
ũ = 0, (23)

in the particular case α = 1, we get

1

sin θ

d

dθ
(sin θ

dũ

dθ
) + s (s + 1)ũ = 0, (24)

see Lomen [7]. Using the change x = cos θ, Equation (23) becomes

d

dx

(
(1 − x2)

dũ

dx

)
+ l

(
l + 1

)
ũ = 0, (25)

where l = l(s, α) = Γ(1−s)
Γ(1−s−α) . The solution of (25) can be written in terms of Legendre’s functions,

ũ(s, θ) = A(s, α)Pl(cos θ) + B(s, α)Ql(cos θ). (26)

In order that the solution be bounded for θ = 0, let B = 0. Applying the boundary condition gives

A(s, α) =
f̃(s)

Pl(cosφ)
, (27)

taking the inverse Mellin’s transform, we get

u(r, θ) =
1

2πi

∫ c+ i∞

c− i∞
r−s

f̃(s)

Pl(cosφ)
Pl(cos θ)ds. (28)

The Legendre’s functions Pl(cosφ) has an infinite number of real simple zeros for each choice of φ, whose
numerical values are known only approximately. Except for very special cases the integral can only be
evaluated numerically.

4 Conclusion

The solution of the fractional Laplace equation in plane polar and spherical coordinates is presented. The
solutions were obtained using Mellin’s transform. The solution generalized the results obtained by Lomen
(1962) ([7]). Moreover, the derived solution in both cases is represented interms of an orthogonal and
complete set. It is worth noticing that Mellin’s transform can be applied to the fractional Poisson and
fractional biharmonic equations in polar coordinates.
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valuable suggestions and constant encouragement.



M. V. Díaz 81

References

[1] M. S. Samuel and A. Thomas, On fractional Helmholtz equations, Fract. Calc. Appl. Anal., 13(2010),
295—308.

[2] Ram K. Saxena, Zivorad Tomovski, and Trifce Sandev, Fractional Helmholtz and fractional wave equa-
tions with Riesz-Feller and generalized Riemann-Liouville fractional derivatives, Eur. J. Pure Appl.
Math., 7(2014), 312—334.

[3] M. S. Nairat, M. Shqair and T. Alhalholy, Cylindrically symmetric fractional Helmholtz equation, Appl.
Math. E-Notes, 19(2019), 708—717.

[4] S. Butera and M. D. Paola, Fractional differential equations solved by using Mellin transform, Commun.
Nonlinear Sci. Numer. Simul., 22(2015), 1382.

[5] A. A. Kilbas and N. V. Zhukovskaya, Solution of Euler-Type non-homogeneous differential equations
with three fractional derivatives, Analytic Methods of Analysis and Differential Equations: AMADE
2006, 111—137, Camb. Sci. Publ., Cambridge, 2008.

[6] A. Kılıçman and M. Omran, Note on fractional Mellin transform and applications, SpringerPlus (2016)
5:100, DOI 10.1186/s40064-016-1711-x

[7] D. Lomen, Application of the mellin transforin to boundary value problems, Proceedings of the Iowa
Academy of Science, 69(1962), 436—442.

[8] H. Eltayeb and A. Kılıçman, A note on Mellin transform and partial differential equations, Int. J. Pure
Appl. Math., 34(2007), 457—468.

[9] Y. Luchko and V. Kiryakova, The Mellin integral transform in fractional calculus, Fract. Calc. Appl.
Anal., 16(2013), 405—430.

[10] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic
Press, Inc., San Diego, CA, 1999.


	Introduction
	Solution of the Fractional Laplace Equation in Plane Polar Coordinates
	Solution of the Fractional Laplace Equation in Spherical Polar Coordinates
	Conclusion

