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Abstract

In this paper, we introduce some new concepts of the general exponentially preinvex functions. We
investigate several properties of the general exponentially preinvex functions and discuss their relations
with convex functions. Several interesting results characterizing the general exponentially preinvex func-
tions are obtained. Optimality conditions are characterized by a class of variational-like inequalities,
which are called general exponentially variational-like inequalities. Results obtained in this paper can be
viewed as significant improvement of previously known results.

1 Introduction

Convex functions and convex sets have played an important and fundamental part in the development of
various fields of pure and applied sciences. Convexity theory describes a broad spectrum of very interesting
developments involving a link among various fields of mathematics, physics, economics and engineering
sciences. Bernstein [8] introduced and considered the concept of exponentially convex(concave) functions.
Exponentially convex(concave) functions can be considered as a significant extension of the convex functions.
Avriel [4, 5] introduced and studied the concept of r-convex functions, which have important applications in
information theory, big data analysis, machine learning and statistic. See, for example, [1, 2, 3, 4, 5, 10, 23,
24, 25, 26, 27, 28, 29, 31, 32, 33, 35] and the references. Antczak [3] introduced these exponentially convex
and preinvex functions implicitly and discuss their role in mathematical programming. Pal and Wong [34]
have discussed its role in information geometry and statistics. Alirazaie and Mathur [2], Dragomir and Gomm
[10] and Noor and Noor [21, 22, 23, 24, 25, 26, 27, 28] have derived several results for these exponentially
convex and exponentially preinvex functions.
Hanson [12] studied the concept of invex functions involving an arbitrary bifunction to consider the math-

ematical programming problems. Ben-Israel and Mond [7] introduced the invex sets and preinvex functions
involving the bifunction, which can be viewed as an important contribution in the field of optimization.
They proved that the differentiable preinvex functions imply the invex function, but the converse is not
true in general. Mohen and Neogy [13] showed that the differentiable preinvex and invex functions are
equivalent under suitable conditione. Noor [15] proved that the optimality conditions of the differentiable
preinvex functions can be characterized by a class of variational inequalities, which is called variational-like
inequality. For the applications, formulation and other aspects of variational-like inequalities and related
equilibrium-like problems, see [15, 16, 17, 18, 19, 22, 23, 29].
Motivated and inspired by the ongoing research in this interesting, applicable and dynamic field, we

introduce some new classes of the general exponentially preinvex functions. It has been shown that the general
exponentially convex(concave) have nice properties which convex functions enjoy. Several new concepts have
been introduced and investigated. We show that the local minimum of the general exponentially preinvex
functions is the global minimum. The optimal conditions of the differentiable general exponentially preinvex
functions can be characterized by a class of variational inequalities, which is called general exponentially
variational-like inequality, which is itself an interesting outcome of our main results. The difference (sum)
of the general exponentially preinvex functions and general exponentially affi ne preinvex functions is again
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a general exponentially convex function. The ideas and techniques of this paper may be starting point for
further research in these areas.

2 Preliminaries

Let K be a nonempty closed set in a real Hilbert space H. We denote by 〈·, ·〉 and ‖ · ‖ by the inner product
and norm, respectively. Let F : K → R be a continuous function.

Definition 1 ([7]) The set Kη in H is said to be an invex set, if there exists a bifunction η(., .), such that

u+ tη(v, u) ∈ K, ∀u, v ∈ Kη, t ∈ [0, 1].

Definition 2 ([7]) A function F on the invex set Kη in H is said to be a preinvex function, if there exists
a bifunction η(., .), such that

F (u+ tη(v, u)) ≤ (1− t)F (u) + tF (v), ∀u, v ∈ Kη, t ∈ [0, 1].

We now define the concept of general exponentially preinvex functions and their variant forms.

Definition 3 A function F is said to be a general exponentially preinvex with respect to an arbitrary bi-
function η(v, u), if

sF (u+tη(v,u)) ≤ (1− t)sF (u) + tsF (v), ∀u, v ∈ Kη, t ∈ [0, 1], s > 1,

which is equivalent to the following

Definition 4 A function F is said to be exponentially preinvex with respect to an arbitrary bifunction η(., .),
if

F (u+ tη(v, u)) ≤ 1

ln s
ln{(1− t)sF (u) + tsF (v)}, ∀u, v ∈ Kη, t ∈ [0, 1],

For t = 1, the Definition 3 reduces to

sF (u+η(v,u)) ≤ sF (v), ∀u, v ∈ Kη, t ∈ [0, 1], s > 1,

which is known as Condition A.
A function is called the general exponentially preincave function F , if and only if, −F is general expo-

nentially preinvex function.
We remark that if η(v, u) = v−u, then the invex set Kη = K, becomes the convex set and Definition (3)

reduces to:

Definition 5 A function F is said to be general exponentially convex function, if

sF (u+t(v−u)) ≤ (1− t)sF (u) + tsF (v), ∀u, v ∈ K, t ∈ [0, 1], s > 1,

which was introduced and studied by Noor and Noor [28, 29].

If s = exp, then Definition (3) reduces to the following concepts, which are due to Antczak [3].

Definition 6 A function F is said to be a general exponentially preinvex with respect to an arbitrary bi-
function η(v, u), if

eF (u+tη(v,u)) ≤ (1− t)eF (u) + teF (v), ∀u, v ∈ K, t ∈ [0, 1], s > 1.

This is equivalent to the following
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Definition 7 ([3]) A function F is said to be general exponentially preinvex with respect to an arbitrary
bifunction η(., .), if

F (u+ tη(v, u)) ≤ ln{(1− t)eF (u) + teF (v)}, ∀u, v ∈ Kη, t ∈ [0, 1].

If s = exp and η(v, u) = v − u, then Definition (3) reduces to the following concepts, which are due to
Antczak [3].

Definition 8 A function F is said to be a exponentially convex, if

eF (u+t(v−u)) ≤ (1− t)eF (u) + teF (v), ∀u, v ∈ K, t ∈ [0, 1].

This is equivalent to the following

Definition 9 ([4]) A function F is said to be exponentially convex, if

F (u+ t(v − u)) ≤ ln{(1− t)eF (u) + teF (v)}, ∀u, v ∈ K, t ∈ [0, 1],

For the applications of the exponentially convex(concave) functions in the mathematical programming
and information theory, see Antczak [3] and Alirezaei and Mathar[2].

Example 1 ([2]) The error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt,

becomes an exponentially concave function in the form erf(
√
x), x ≥ 0, which describes the bit/symbol

error probability of communication systems depending on the square root of the underlying signal-to-noise
ratio. This shows that the exponentially concave functions can play important part in communication theory
and information theory.

For the properties of differentiable exponential preinvex and convex functions, see Noor and Noor [21,
22, 23, 24, 25, 26, 27, 28, 29, 30].

Definition 10 The function F on the invex set Kη is said to be general exponentially quasi preinvex with
respect to an arbitrary bifunction η(v, u), if

sF (u+tη(v,u)) ≤ max{sF (u), sF (v)}, ∀u, v ∈ Kη, t ∈ [0, 1], s > 1.

Definition 11 A function F is said to be general log-preinvex with respect to an arbitrary bifunction η(., .),
if

sF (u+tη(v,u)) ≤ (sF (v))1−t(sF (v))t, ∀u, v ∈ Kη, t ∈ [0, 1], s > 1.

From the above definitions, we have

sF (u+tη(v,u)) ≤ (s(F (u))1−t(sF (v))t ≤ (1− t)sF (u) + tsF (v)) ≤ max{sF (u), sF (v)}.

This shows that every general exponentially log-preinvex function is a general exponentially convex function
and every general exponentially convex function is a general exponentially quasi-preinvex function. However,
the converse is not true.

Let Kη = Iη = [a, a+ η(b, a)] be the interval. We now define the general exponentially preinvex function
on Iη.

Definition 12 Let Iη = [a, a+ η(b, a)]. Then F is a general exponentially preinvex function, if and only if,∣∣∣∣∣∣
1 1 1
a x a+ η(b, a)

sF (a) sF (x) sF (b)

∣∣∣∣∣∣ ≥ 0; a ≤ x ≤ a+ η(b, a).
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One can easily show that the following are equivalent:

1. F is a general exponentially preinvex function.

2. sF (x) ≤ sF (a) + sF (b)−sF (a)
η(b,a) (a− x).

3. sF (x)−sF (a)
x−a ≤ sF (b)−sF (a)

η(b,a) .

4. (x− a)sF (b) + η(b, a)sF (x) + (a− x)sF (b) ≥ 0.

5. sF (a)

(η(b,a))(a−x) +
sF (x)

(x−a)−η(b,a))(a−x) +
sF (b)

η(b,a)(x−a−η(b,a)) ≥ 0,

where x = a+ tη(b, a) ∈ [0, 1].

3 Main Results

In this section, we consider some basic properties of exponentially general preinvex functions.

Theorem 1 Let F be a strictly general exponentially preinvex function. Then any local minimum of F is a
global minimum.

Proof. Let the exponentially preinvex function F have a local minimum at u ∈ Kη. Assume the contrary,
that is, F (v) < F (u) for some v ∈ Kη. Since F is a general exponentially preinvex function, we see that

sF (u+tη(v,u)) ≤ (1− t)sF (u) + tsF (v), for 0 < t < 1.

Thus
sF (u+tη(v,u)) − sF (u) < −t[sF (v) − sF (u)] < 0,

from which it follows that
sF (u+tη(v,u)) < sF (u),

for arbitrary small t > 0, contradicting the local minimum.

Theorem 2 If the function F on the invex set Kη is exponentially preinvex, then the level set Lα = {u ∈
Kη : s

F (u) ≤ α, α ∈ R} is an invex set.

Proof. Let u, v ∈ Lα. Then sF (u) ≤ α and sF (v) ≤ α. Now, ∀t ∈ (0, 1), v = u + tη(v, u) ∈ Kη, since Kη is
an invex set. Thus, by the general exponentially preinvexity of F, we have

sF (u+tη(v,u)) ≤ (1− t)sF (u) + tsF (v) ≤ (1− t)α+ tα = α,

from which it follows that u+ tη(v, u) ∈ Lα Hence Lα is an invex set.

Theorem 3 The function F is a exponentially preinvex, if and only if,

epi(F ) = {(u, a) : u ∈ Kη : s
F (u) ≤ α, α ∈ R}

is an invex set.
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Proof. Assume thatF is general exponentially preinvex function. Let (u, α), (v, β) ∈ epi(F ). Then it follows
that sF (u) ≤ α and sF (v) ≤ β. Thus, t ∈ [0, 1], ∀u, v ∈ Kη, we have

sF (u+tη(v,u)) ≤ (1− t)sF (u) + tsF (v) ≤ (1− t)α+ tβ,

which implies that (u+ tη(v, u), (1− t)α+ tβ) ∈ epi(F ). Thus epi(F ) is an invex set. Conversely, let epi(F )
be an invex set. Let u, v ∈ Kη. Then (u, sF (u)) ∈ epi(F ) and (v, sF (v)) ∈ epi(F ). Since epi(F ) is an invex
set, we must have

(u+ tη(v, u), (1− t)sF (u) + tsF (v) ∈ epi(F ),

which implies that
sF (u+tη(v,u) ≤ (1− t)sF (u) + tsF (v).

This shows that F is a general exponentially preinvex function.

Theorem 4 The function F is general exponentially quasi preinvex function, if and only if, the level set
Lα = {u ∈ Kη, α ∈ R : sF (u) ≤ α} is an invex set.

Proof. Let u, v ∈ Lα. Then u, v ∈ Kη and max{sF (u), sF (v)} ≤ α. Now for t ∈ (0, 1), w = u+ tη(v, u) ∈ Kη,
by the invexity of Kη. We have to prove that u+ tη(v, u) ∈ Lα. By the general exponentially preinvexity of
F, we have

sF (u+tη(v,u)) ≤ max{(sF (u), sF (v)} ≤ α,

which implies that u+ tη(v, u) ∈ Lα, showing that the level set Lα is indeed an invex set.
Conversely, assume that Lα is an invex set. Then, for any u, v ∈ Lα, t ∈ [0, 1], u + tη(v, u) ∈ Lα. Let

u, v ∈ Lα for α = max sF (u), sF (v) and sF (v) ≤ sF (u). Then from the definition of the level set Lα, it follows
that

sF (u+tη(v,u)) ≤ max (sF (u), sF (v)) ≤ α.

Thus F is a general exponentially quasi preinvex function. This completes the proof.

Theorem 5 Let F be a general exponentially preinvex function. Let µ = infu∈Kη F (u). Then the set
E = {u ∈ Kη : s

F (u) = µ} is an invex set Kη. If F is strictly exponentially preinvex function, then E is a
singleton.

Proof. Let u, v ∈ E. For 0 < t < 1, let w = u+tη(v, u). Since F is a general exponentially preinvex function,
we see that

F (w) = sF (u+tη(v,u)) ≤ (1− t)sF (u) + tsF (v) = tµ+ (1− t)µ = µ,

which implies that w ∈ E. and hence E is an invex set. For the second part, assume to the contrary that
F (u) = F (v) = µ. Since Kη is an invex set, we see that for 0 < t < 1, u+ tη(v, u) ∈ Kη. Further, since F is
strictly exponentially preinvex function,

sF (u+tη(v,u)) < (1− t)sF (u) + tsF (v) = (1− t)µ+ tµ = µ.

This contradicts the fact that µ = infu∈Kη F (u) and hence the result follows.

Theorem 6 If F is a general exponentially preinvex function such that

sF (v) < sF (u), ∀u, v ∈ Kη,

then F is a strictly general exponentially quasi preinvex function.
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Proof. By the general exponentially preinvexity of F, we have

sF (u+tη(v,u)) ≤ (1− t)sF (u) + tsF (v) < sF (u), ∀u, v ∈ Kη, t ∈ [0, 1],

since sF (v) < sF (u), which shows that the function F is a strictly general exponentially quasi preinvex
function.

We now discuss the properties of the differentiable general preinvex functions. For this, we need the
following.

Condition C ([13]) Let η(., .) : Kη ×Kη → H satisfy the following assumption

η(u, u+ tη(v, u)) = −tη(v, u)),

η(v, u+ tη(v, u))) = (1− t)η(v, u), ∀u, v ∈ Kη, t ∈ [0, 1].

Remark 1 It is worth mentioning that for t = 0, we have η(u, u) = 0. In particular, it follow that η(v, u) = 0,
if and only if, v = u. Also one can show that η(v, u) = −η(u, v), ∀u, v ∈ Kη. That is the bifunction η(., .) is
skew symmetric.

Theorem 7 Let F be a differentiable function and Condition C hold. Then the function F is a general
exponentially preinvex function, if and only if,

sF (v) − sF (u) ≥ 〈sF (u)F ′(u) ln s, η(v, u)〉, ∀v, u ∈ Kη. (1)

Proof. Let F be a general exponentially preinvex function. Then

sF (u+tη(v,u)) ≤ (1− t)sF (u) + tsF (v), ∀u, v ∈ Kη,

which can be written as

sF (v) − sF (u) ≥ {s
F (u+tη(v,u)) − sF (u)

t
}.

Taking the limit in the above inequality as t→ 0 , we have

sF (v) − sF (u) ≥ 〈sF (u)F ′(u) ln s, η(v, u)〉,

which is (1), the required result.
Conversely, let (1) hold. Then

∀u, v ∈ Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη.

Using Condition C, we have

sF (v) − sF (vt) ≥ 〈sF (vt)F ′(vt) ln s, η(v, vt)〉 = (1− t)〈sF (vt)F ′(vt) ln s, η(v, u))〉. (2)

In a similar way, we have

sF (u) − sF (vt) ≥ 〈sF (vt)F ′(vt) ln s, η(u, vt)〉 = −t〈sF (vt)F ′(vt) ln s, η(v, u)〉. (3)

Multiplying (2) by t and (3) by (1− t) and adding the resultant, we have

sF (u+tη(v,u) ≤ (1− t)sF (u) + tsF (v),

showing that F is a general exponentially preinvex function.

Theorem 7 enables us to introduce the concept of the exponentially η-monotone operators, which appears
to be new.
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Definition 13 The differential F ′(.) is said to be exponentially η-monotone, if

〈sF (u)F ′(u) ln s, η(v, u)〉+ 〈sF (v)F ′(v) ln s, η(u, v)〉 ≤ 0, ∀u, v ∈ H.

Definition 14 The differential F ′(.) is said to be exponentially pseudo η-monotone, if

〈sF (u)F ′(u) ln s, η(v, u)〉 ≥ 0, ⇒ −〈sF (v)F ′(v) ln s, η(v, u)〉 ≥ 0, ∀u, v ∈ H.

From these definitions, it follows that exponentially η-monotonicity implies exponentially pseudo η-
monotonicity, but the converse is not true.

Theorem 8 Let F be a differentiable general exponentially preinvex function on the invex set Kη and Con-
dition C hold. Then

sF (v) − sF (u) ≥ 〈sF (u)F ′(u) ln s, η(v, u)〉, ∀v, u ∈ Kη. (4)

if and only if, F ′ satisfies

〈sF (u)F ′(u) ln s, η(v, u)〉+ 〈sF (v)F ′(v) ln s, η(u, v)〉 ≤ 0, ∀u, v ∈ Kη. (5)

Proof. Let F be a general exponentially preinvex function on the invex set Kη. Then, from Theorem 7, we
have

sF (v) − sF (u) ≥ 〈sF (u)F ′(u) ln s, η(v, u)〉, ∀u, v ∈ Kη. (6)

Changing the role of u and v in (6), we have

sF (u) − sF (v) ≥ 〈sF (v)F ′(v) ln s, η(u, v)〉, ∀u, v ∈ Kη. (7)

Adding (6) and (7), we have

〈sF (u)F ′(u) ln s, η(v, u)〉+ 〈sF (v)F ′(v) ln s, η(u, v)〉 ≤ 0, ∀u, v ∈ Kη,

which shows that F ′ is a exponentially η-monotone operator.
Conversely, from (5), we have

〈sF (v)F ′(v) ln s, η(v, u)〉 ≤ −〈sF (u)F ′(u) ln s, η(v, u)〉. (8)

Since Kη is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη. Taking v = vt in (8), we have

〈sF (vt)F ′(vt) ln s, η(u, vt)〉 ≤ 〈−sF (u)F ′(u) ln s, η(vt, u)〉,

which implies, using the Condition C, that

〈sF (vt)F ′(vt) ln s, η(v, u)〉 ≥ 〈sF (u)F ′(u) ln s, η(v, u)〉. (9)

Consider the auxiliary function
ξ(t) = sF (u+tη(v,u)),

from which, we have
ξ(1) = sF (u+η(v,u)), ξ(0) = sF (u).

Then, from (9), we have

ξ′(t) = 〈sF (vt)F ′(vt) ln s, η(v, u)〉 ≥ 〈sF (u)F ′(u) ln s, η(v, u)〉. (10)

Integrating (10) between 0 and 1, we have

ξ(1)− ξ(0) =
∫ 1

0

ξ′(t)dt ≥ 〈sF (u)F ′(u) ln s, η(v, u)〉.

Thus it follows using the fact eF (u+η(v,u)) ≤ sF (v), that

sF (v) − sF (u) ≥ 〈sF (u)F ′(u) ln s, η(v, u)〉,

which is the required (4).
We now give a necessary condition for general exponentially pseudo-preinvex function.
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Theorem 9 Let F ′ be a general exponentially pseudomonotone. Then F is a general exponentially pseudo-
invex function.

Proof. Let F ′ be a general exponentially pseudomonotone operator. Then, ∀u, v ∈ Kη,

〈sF (u)F ′(u) ln s, η(v, u)〉 ≥ 0

which implies that
− 〈sF (v)F ′(v) ln s, η(v, u)〉 ≥ 0. (11)

Since K is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη.
Taking v = vt in (11), we have

〈sF (vt)F ′(vt), η(v, u)〉 ≥ 0. (12)

Consider the auxiliary function

ξ(t) = sF (u+tη(v,u)) = sF (vt), ∀u, v ∈ Kη, t ∈ [0, 1],

which is differentiable, Then, using (12), we have

ξ′F (vt)F ′(vt) ln s, η(v, u)〉 ≥ 0.

Integrating the above relation between 0 to 1, we have

ξ(1)− ξ(0) =
∫ 1

0

ξ′(t)dt ≥ 0,

that is,
sF (v) − sF (u) ≥ sF (u+η(v,u)) − sF (u) ≥ 0,

showing that F is a general exponentially pseudo-invex function.

Definition 15 The function F is said to be sharply general exponentially pseudo invex if

〈sF (u)F ′(u) ln s, η(v, u)〉 ≥ 0⇒ F (v) ≥ sF (v+t(u−v)), ∀u, v ∈ Kη, t ∈ [0, 1].

Theorem 10 Let F be a sharply general exponentially pseudo invex function on Kη. Then

〈sF (v)F ′(v), v − u〉 ≥ 0, ∀u, v ∈ Kη.

Proof. Let F be a sharply general exponentially pseudo invex function on Kη, Then

sF (v) ≥ sF (v+tη(u,v)), ∀u, v ∈ Kη, t ∈ [0, 1].

from which we have

0 ≤ lim
t→0
{s

F (v+tη(v,u))) − sF (v)
t

} = 〈sF (v)F ′(v) ln s, η(v, u)〉,

which is the required result.

Definition 16 A function F is said to be a general exponentially pseudo preinvex function, if there exists a
strictly positive bifunction b(., .), such that if sF (v) < sF (u), then

sF (u+tη(v,u)) < sF (u) + t(t− 1)b(v, u), ∀u, v ∈ Kη, t ∈ [0, 1].

Theorem 11 If the function F is a general exponentially preinvex function such that sF (v) < sF (u), then
the function F is a general exponentially pseudo preinvex.
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Proof. Since sF (v) < sF (u) and F is the general exponentially preinvex function, we see that ∀u, v ∈ Kη,
t ∈ [0, 1], we have

sF (u+tη(v,u))) ≤ sF (u) + t(sF (v) − sF (u))
< sF (u) + t(1− t)(sF (v) − sF (u)
= sF (u) + t(t− 1)(sF (u) − sF (v)))
< sF (u) + t(t− 1)b(u, v),

where b(u, v) = sF (u) − sF (v) > 0, the required result. This shows that the function F is a general exponen-
tially pseudo preinvex function.

We now discuss the optimality condition for the differentiable general exponentially preinvex functions,
which is the main motivation of our next result.

Theorem 12 Let F be a differentiable general exponentially preinvex function. Then u ∈ Kη is the minimum
of the function F, if and only if, u ∈ Kη satisfies the inequality

〈sF (u)F ′(u) ln s, η(v, u)〉 ≥ 0, ∀u, v ∈ Kη. (13)

Proof. Let u ∈ Kη be a minimum of the function F. Then

F (u) ≤ F (v), ∀v ∈ Kη.

from which, we have
sF (u) ≤ sF (v), ∀v ∈ Kη. (14)

Since Kη is an invex set, we see that ∀u, v ∈ Kη, t ∈ [0, 1],

vt = u+ tη(v, u) ∈ Kη.

Taking v = vt in (14), we have

0 ≤ lim
t→0
{s

F (u+tη(v,u)) − sF (u)
t

} = 〈sF (u)F ′(u) ln s, η(v, u)〉. (15)

Since F is differentiable general exponentially preinvex function, we see that

sF (u+tη(v,u)) ≤ sF (u) + t(sF (v) − sF (u)), u, v ∈ Kη, t ∈ [0, 1],

from which, using (15), we have

sF (v) − sF (u) ≥ lim
t→0
{s

F (u+tη(v,u)) − sF (u)
t

} = 〈sF (u)F ′(u) ln s, η(v, u)〉 ≥ 0,

from which , we have
sF (v) − sF (u) ≥ 0,

which implies that
F (u) ≤ F (v), ∀v ∈ Kη.

This shows that u ∈ Kη is the minimum of the differentiable general exponentially preinvex function the
required result.

Remark 2 The inequality of the type (13) is called the general exponentially variational-like inequality, which
appears to be a new one. It is an interesting problem to investigate the existence of uniqueness solution of
the inequality (13) and its various properties.
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We now show that the difference of general exponentially preinvex functions and general exponentially
affi ne preinvex functions is again a general exponentially preinvex function.

Theorem 13 Let f be a general exponentially affi ne preinvex function. Then F is a general exponentially
preinvex function, if and only if, H = F − f is a general exponentially preinvex function.

Proof. Let f be general exponentially affi ne preinvex function. Then

sf(u+tη(v,u)) = (1− t)sf(u) + tsf(v), ∀u, v ∈ Kη, t ∈ [0, 1]. (16)

From the general exponentially preinvexity of F, we have

sF (u+tη(v,u)) ≤ (1− t)sF (u) + tsF (v), ∀u, v ∈ Kη, t ∈ [0, 1]. (17)

From (16 ) and (17), we have

sF ((u+tη(v,u)) − sf((u+tη(v,u)) ≤ (1− t)(sF (u) − sf(u)) + t(sF (v) − sf(v)),

from which, it follows that

sH((u+tη(v,u)) = sF ((u+tη(v,u)) − sf((1−t)f(u+tη(v,u))

≤ (1− t)(sF (u) − sf(u)) + t(sF (v) − sf(v)),

which show that H = F − f is a general exponentially preinvex function.
The inverse implication is obvious.

Conclusion

In this paper, we have introduced and studied a new class of preinvex functions which is called the general
exponentially preinvex function. It has been shown that general exponentially preinvex functions enjoy
several properties which convex functions have. Several new properties of the general exponentially preinvex
functions have been established. We have proved that the minimum of the general exponentially differentiable
preinvex functions can be characterized by a new class of variational inequalities, which is called the general
exponentially variational-like inequalities. It is an interesting problem to investigate various properties of
general exponentially variational-like inequalities. Results in this paper can be viewed as significant and
important improvements of the known results.

Acknowledgements. The authors would like to thank the the referees for their valuable and constructive
suggestions, which helped to improve this paper.

References

[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and
Boyd, Edinburgh, U. K., 1965.

[2] G. Alirezaei and R. Mazhar, On exponentially concave functions and their impact in information theory,
J. Inform. Theory Appl., 9(2018), 265—274.

[3] T. Antczak, On (p, r)-invex sets and functions, J. Math. Anal. Appl., 263(2001), 355—379.

[4] M. Avriel, r-Convex functions, Math. Program., 2(1972), 309—323.

[5] M. Avriel, Solution of certain nonlinear programs involving r-convex functions, J. Optim. Theory appl.,
11(1973), 159—174.



M. A. Noor and K. I. Noor 75

[6] M. U. Awan, M. A. Noor and K. I. Noor, Hermite-Hadamard inequalities for exponentially convex
functions, Appl. Math. Inform. Sci., 12(2018), 405—409.

[7] A. Ben-Israel and B. Mond, What is invexity?, J. Aust. Math. Soc. Ser. B., 28(1986), 1—9.

[8] S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52(1929), 1—66.

[9] G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic Publisher,
Dordrechet, 2002.

[10] S. S. Dragomir and I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponen-
tials are convex, Stud. Univ. Babes-Bolyai Math., 60(2015), 527—534.

[11] J. Hadamard, Etude sur les proprietes des fonctions entieres e. t en particulier dune fonction consideree
par Riemann, J. Math. Pure. Appl, 58(1893), 171—215.

[12] M. A. Hanson, On suffi ciency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80(1981), 545—550.

[13] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189(1995),
901—908.

[14] C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer-Verlag, New
York, 2018.

[15] M. A. Noor, Variational like inequalities, Optimization, 30(1994), 323—333.

[16] M. A. Noor, Fuzzy Preinvex Functions, Fuzzy Sets and Systems, 64(1994), 95—104.

[17] M. A. Noor, New approximation schemes for generalvariational inequalities, J. Math. Anal. Appl.,
251(2000), 217—229.

[18] M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302(2005), 463—475.

[19] M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 251(2004),
199—277.

[20] M. A. Noor and K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal. Appl.,
316(2006), 697—706.

[21] M. A. Noor anf K. I. Noor, Properties of some new classes of generalized exponentially convex functions,
Appl. Math. Inform. Sci., 14(2020), 627—633.

[22] M. A. Noor and K. I. Noor, Some properties of exponentially preinvex functions, FACTA Universit
(NIS), Ser. Math. Inform., 34(2019), 941—955.

[23] M. A. Noor and K. I. Noor, On exponentially convex functions, J. Orisa Math. Soc., 38(2019), 33—51.

[24] M. A. Noor and K. I. Noor, Strongly exponentially convex functions, U.P.B. Bull Sci. Appl. Math. Series
A., 81(2019), 75—84.

[25] M. A. Noor and K. I. Noor, Strongly exponentially convex functions and their properties, J. Advanc.
Math. Studies., 9(2019), 180—188.

[26] M. A. Noor and K. I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math.,
4(2019), 1554—1568.

[27] M. A. Noor and K. I. Noor, New classes of exponentially general connvex functions, U.P.B. Sci. Bull.
Series A., 82(2020), 117—128.



76 General Exponentially Preinvex Functions

[28] M. A. Noor and K. I. Noor, Higher order strongly exponentially preinvex functions, J. Appl. Math.
Inform., 39(2021), 469—485.

[29] M. A. Noor, K. I.Noor and M. Th. Rassias, New trends in general variational inequalities, Acta Appl.
Mathematica., 170(1)(2020), 981-1046.

[30] J. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applica-
tions, Academic Press, New York, 1992.

[31] J. Pecaric, C. E. M. Pearce and V. Simic, Stolarsky means and Hadamard’s inequality, J. Math. Anal.
Appl., 220(1998), 99—109.

[32] J. Pecaric and J. Jaksetic, On exponential convexity, Euler-Radau expansions and stolarsky means, Rad
Hrvat. Matematicke Znanosti., 17(2013), 81—94.

[33] S. Pal and T. K. L. Wong, On exponentially concave functions and a new information geometry, Annals.
Prob., 46(2018), 1070—1113.

[34] T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl.,
136(1988), 29—38.

[35] Y. X. Zhao, S. Y. Wang and L. Coladas Uria, Characterizations of r-convex func-tions, J Optim. Theory
Appl., 145(2010), 186—195


	Introduction
	Preliminaries
	Main Results

