Positive Solutions With Exponential Decay For The Singular Fisher-Like Equation Posed On The Real-Line*

Abdelhamid Benmezaï ${ }^{\dagger}$, Nadir Benkaci-Ali ${ }^{\ddagger}$

Received 20 September 2020

Abstract

In this article, we are concerned with the existence of positive solutions to the boundary value problem, $$
\left\{\begin{array}{l} -u^{\prime \prime}+c u^{\prime}+\lambda u=F(t, u(t)), t \in \mathbb{R}, \\ \lim _{t \rightarrow-\infty} e^{k|t|} u(t)=\lim _{t \rightarrow+\infty} e^{l|t|} u(t)=0, \end{array}\right.
$$ where λ, c are positive constants, $k, l \in \mathbb{R}$ and $F: \mathbb{R} \times(0,+\infty) \rightarrow \mathbb{R}^{+}$is a continuous function. The main existence result is proved by means of Guo-Krasnoselskii's version of expansion and compression of a cone principle in a Banach space.

1 Introduction and Main Results

This article deals with the existence of positive solutions to the boundary value problem (bvp for short),

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+c u^{\prime}+\lambda u=F(t, u), t \in \mathbb{R} \tag{1}\\
\lim _{t \rightarrow-\infty} e^{k|t|} u(t)=\lim _{t \rightarrow+\infty} e^{l|t|} u(t)=0
\end{array}\right.
$$

where λ, c are positive constants, $k, l \in \mathbb{R}$ and $F: \mathbb{R} \times(0,+\infty) \rightarrow \mathbb{R}^{+}$is a continuous function.
By positive solution to the bvp (1), we mean a function $u \in C^{2}(\mathbb{R})$ such that $u(t)>0$ for all $t \in \mathbb{R}$ and $\lim _{t \rightarrow-\infty} e^{k|t|} u(t)=\lim _{t \rightarrow+\infty} e^{l|t|} u(t)=0$, satisfying the ordinary differential equation in (1). Imposing $k, l>0$ in the boundary conditions in (1) means that we look for solutions having an exponential decay at $\pm \infty$.

The positivity of the solution u is required here since the bvp (1) arises in the modeling of the propagation of wave fronts in combustion theory and epidemiology, see [7, 2], where u stands to be a concentration or a density. The positive constants c and λ refer respectively to the wave speed of the front and to the removal rate. The case where the bvp (1) is autonomous, that is $F(t, u(t))=F(u)$, with F having a prescribed form corresponds to the generalized Fisher's equation.

There are many papers in the literature considering the case of the bvp (1.1) posed on the half-line, see $[1,4,5,6,8,9,10]$ and references therein. However, to the author's knowledge, there are no paper in the literature considering the singular case posed on the whole real-line and so, the purpose of this paper is to fill in the gap in this area.

Our approach in this work is based on a fixed point formulation and since the nonlinearity F is supposed to be nonnegative, we will use the Guo-Krasnoselskii's version of expansion and compression of a cone principle to prove our main existence result.

In all this paper, we assume that there exist two continuous functions $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$and $f: \mathbb{R} \times(0,+\infty) \rightarrow$ \mathbb{R}^{+}such that

$$
\begin{equation*}
F(t, u)=\phi(t) f(t, u) \tag{2}
\end{equation*}
$$

[^0]\[

\left\{$$
\begin{array}{l}
\text { for all } \rho>0 \text { there exists a nonincreasing function } \tag{3}\\
\Psi_{\rho}:(0,+\infty) \rightarrow(0,+\infty) \text { such that } \\
f\left(t, \frac{w}{p(t)}\right) \leq \Psi_{\rho}(w) \text { for all } t \in \mathbb{R} \text { and all } w \in(0, \rho] \\
\lim _{t \rightarrow-\infty} q_{-}(t) \phi(t) \Psi_{\rho}(r \gamma(t))=\lim _{t \rightarrow+\infty} q_{+}(t) \phi(t) \Psi_{\rho}(r \gamma(t))=0 \text { and } \\
\int_{-\infty}^{+\infty} \delta(s) \phi(s) \Psi_{\rho}(r \gamma(s)) d s<\infty \text { for all } r \in(0, \rho]
\end{array}
$$\right.
\]

where

$$
\begin{gathered}
p(t)=e^{-r_{2}|t|} \\
q_{-}(t)=\max \left(p(t), e^{k|t|}\right), \\
q_{+}(t)=\max \left(p(t), e^{l|t|}\right) \\
\gamma(t)=\min \left(e^{2 r_{2} t}, e^{\left(r_{1}-r_{2}\right) t}\right) \\
\widetilde{\gamma}(t)=\frac{\gamma(t)}{p(t)}=\min \left(e^{r_{1} t}, e^{r_{2} t}\right) \\
\delta(t)=\min \left(e^{-r_{1} t}, e^{-r_{2} t}\right)=\left(\max \left(e^{r_{1} t}, e^{r_{2} t}\right)\right)^{-1},
\end{gathered}
$$

r_{1} and r_{2} are the solutions of the characteristic equation $-X^{2}+c X+\lambda=0$ with $r_{1}<0<r_{2}$.
Remark 1 Notice that Hypothesis (3) implies that $\int_{-\infty}^{+\infty} \delta(s) \phi(s) d s<\infty$. Indeed, for $\rho=1$ we have

$$
\begin{aligned}
\infty & >\int_{-\infty}^{+\infty} \delta(s) \phi(s) \Psi_{1}(r \gamma(s)) d s \geq \Psi_{1}\left(\sup _{s \in \mathbb{R}} \gamma(s)\right) \int_{-\infty}^{+\infty} \delta(s) \phi(s) d s \\
& =\Psi_{1}(1) \int_{-\infty}^{+\infty} \delta(s) \phi(s) d s
\end{aligned}
$$

Remark 2 Notice that in the case where $\min (k, l) \geq 0$, we have $q_{-}(t)=e^{k|t|}$ and $q_{+}(t)=e^{l|t|}$. Therefore, $\lim _{t \rightarrow-\infty} e^{k|t|} \phi(t) \Psi_{\rho}(r \gamma(t))=\lim _{t \rightarrow+\infty} e^{l|t|} \phi(t) \Psi_{\rho}(r \gamma(t))=0$ implies that $\left.\int_{-\infty}^{+\infty} \delta(s) \phi(s) \Psi_{\rho}(r \gamma(s))\right) d s<\infty$ and Hypothesis (3) can be relaxed to

$$
\left\{\begin{array}{l}
\text { for all } \rho>0 \text { there exists a nonincreasing function } \\
\Psi_{\rho}:(0,+\infty) \rightarrow(0,+\infty) \text { such that } \\
f\left(t, \frac{w}{p(t)}\right) \leq \Psi_{\rho}(w) \text { for all } t \in \mathbb{R} \text { and all } w \in(0, \rho] \\
\lim _{t \rightarrow-\infty} e^{k|t|} \phi(t) \Psi_{\rho}(r \gamma(t))=\lim _{t \rightarrow+\infty} e^{l|t|} \phi(t) \Psi_{\rho}(r \gamma(t))=0 \text { for all } r \in(0, \rho]
\end{array}\right.
$$

Remark 3 Hypothesis (3) covers the case of the bvp (1) where the nonlinearity F satisfies the polynomial growth condition

$$
F(t, u) \leq a(t)+b(t) u^{\sigma}
$$

where $\sigma \geq 0$ and $a, b \in C(\mathbb{R})$ are such that

$$
\left\{\begin{array}{l}
\lim _{t \rightarrow \nu \infty} q_{\nu}(t) a(t)=\lim _{t \rightarrow \nu \infty} q_{\nu}(t) b(t)(p(t))^{-\sigma}=0 \text { for } \nu=+ \text { or }- \\
\text { and } \delta a, \delta b p^{-\sigma} \in L^{1}(\mathbb{R})
\end{array}\right.
$$

To see that, take $\phi(t)=\max \left(a(t), b(t)(p(t))^{-\sigma}\right)$ and for $\rho>0, \Psi_{\rho}(r)=1+\rho^{\sigma}$.

Let $G: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{+}$be the function defined by

$$
G(t, s)=\frac{1}{r_{2}-r_{1}}\left\{\begin{array}{l}
\exp \left(r_{1}(t-s)\right), \text { if } s \leq t \tag{4}\\
\exp \left(r_{2}(t-s)\right), \text { if } t \leq s
\end{array}\right.
$$

Simple computations yield

$$
0<G(t, s) \leq \frac{1}{r_{2}-r_{1}} \text { for all } t, s \in \mathbb{R}
$$

and

$$
\begin{equation*}
G(t, s) \leq \frac{\delta(s)}{\delta(t)} \text { for all } s, t \in \mathbb{R} \tag{5}
\end{equation*}
$$

Because of (5) and Hypothesis (3) (see Remark 1), for all $\theta>0$ we have

$$
\begin{aligned}
\sup _{t \in \mathbb{R}}\left(p(t) \int_{-\theta}^{\theta} G(t, s) \phi(s) \gamma(s) d s\right) & \leq \sup _{t \in \mathbb{R}}\left(p(t) \int_{-\infty}^{+\infty} G(t, s) \phi(s) d s\right) \\
& \leq \sup _{t \in \mathbb{R}}\left(\frac{p(t)}{\left(r_{2}-r_{1}\right) \delta(t)} \int_{-\infty}^{+\infty} \delta(s) \phi(s) d s\right) \\
& \leq \frac{1}{\left(r_{2}-r_{1}\right)} \int_{-\infty}^{+\infty} \delta(s) \phi(s) d s<\infty
\end{aligned}
$$

Hence we set

$$
\begin{aligned}
\Gamma & =\sup _{t \in \mathbb{R}}\left(p(t) \int_{-\infty}^{+\infty} G(t, s) \phi(s) d s\right) \\
\Theta(\theta) & =\sup _{t \in \mathbb{R}}\left(p(t) \int_{-\theta}^{\theta} G(t, s) \phi(s) \gamma(s) d s\right)
\end{aligned}
$$

for $\theta>0$. The following theorem is the main result of this work. Its statement needs the introduction of the following notations. Let

$$
\begin{aligned}
f^{0} & =\lim _{t \rightarrow-\infty} \sup \left(\sup _{t \in \mathbb{R}} \frac{f\left(t, \frac{w}{p(t)}\right)}{w}\right), \\
f_{0}(\theta) & =f_{\substack{\infty}}^{\lim _{t \rightarrow-\infty} \lim } \inf \left(\min _{t \rightarrow I_{\theta}} \frac{f\left(t, \frac{w}{p(t)}\right)}{w}\right), \\
\lim _{t \rightarrow+\infty} & \left.\sup _{\infty} \frac{f\left(t, \frac{w}{p(t)}\right)}{w}\right), \\
t \in \mathbb{R} & =\lim _{\substack{t \rightarrow-\infty \\
w \rightarrow+\infty}} \inf \left(\min _{t \in I_{\theta}} \frac{f\left(t, \frac{w}{p(t)}\right)}{w}\right)
\end{aligned}
$$

where for $\theta>0, I_{\theta}=[-\theta, \theta]$.

Theorem 1 Assume that Hypotheses (2) and (3) hold, $k<-r_{1}, l<r_{2}$ and there exists $\theta>0$ such that one of the following situations (6) and (7) holds.

$$
\begin{align*}
& f^{0} \Gamma<1<f_{\infty}(\theta) \Theta(\theta) \tag{6}\\
& f^{\infty} \Gamma<1<f_{0}(\theta) \Theta(\theta) \tag{7}
\end{align*}
$$

Then the bvp (1) admits at least one positive solution.

We deduce from Theorem 1 the following existence result for positive solutions for the typical case of the $\operatorname{bvp}(1)$ where $F(t, u)=a(t) u^{\mu}$ with $\mu \in \mathbb{R} \backslash\{1\}$ and $a \in C(\mathbb{R})$.

Corollary 1 Assume that $k<-r_{1}, l<r_{2}$ and

$$
\left\{\begin{array}{l}
F(t, u)=a(t) u^{\mu} \text { with } \mu \neq 1, a \in C(\mathbb{R}) \\
\lim _{t \rightarrow \nu \infty} q_{\nu}(t) a(t) p^{-\mu}(t) \max \left(1, \gamma^{\mu}(t)\right)=0 \text { for } \nu=+ \text { or }- \\
\text { and } \int_{-\infty}^{+\infty} \delta(s) a(s) p^{-\mu}(t) \max \left(1, \gamma^{\mu}(t)\right) d s<\infty
\end{array}\right.
$$

Then the bvp (1) admits a positive solution.
Proof. We have that $F(t, u)=\phi(t) f(t, u)$ with $\phi(t)=a(s)(p(s))^{-\mu}$ and $f(t, u)=(p(t) u)^{\mu}$. We have to show that all hypotheses of Theorem 1 are fulfilled.

For all $\rho>0$ and $w \in(0, \rho]$, we have

$$
f\left(t, \frac{w}{p(t)}\right)=w^{\mu} \leq \Psi_{\rho}(w)=\left\{\begin{array}{l}
\rho^{\mu}, \text { if } \mu \geq 0 \\
w^{\mu}, \text { if } \mu<0
\end{array}\right.
$$

and

$$
\Psi_{\rho}(r \gamma(t))=\left\{\begin{array}{l}
\rho^{\mu}, \text { if } \mu \geq 0 \\
r^{\mu} \gamma^{\mu}(t), \text { if } \mu<0
\end{array}=\max \left(\rho^{\mu}, r^{\mu}\right) \max \left(1, \gamma^{\mu}(t)\right)\right.
$$

Thus, we obtain from the above calculation that for $\nu=+$ or -

$$
\lim _{t \rightarrow \nu \infty} q_{\nu}(t) \phi(t) \Psi_{\rho}(r \gamma(t))=\max \left(\rho^{\mu}, r^{\mu}\right) \lim _{t \rightarrow \nu \infty} q_{\nu}(t) a(t) p^{-\mu}(t) \max \left(1, \gamma^{\mu}(t)\right)=0
$$

and

$$
\begin{aligned}
& \left.\int_{-\infty}^{+\infty} \delta(s) \phi(s) \Psi_{\rho}(r \gamma(t))\right) d s \\
= & \int_{-\infty}^{+\infty} \delta(s) a(s)\left(p^{-\mu}(s)\right) \max \left(\rho^{\mu}, r^{\mu}\right) \max \left(1,(\gamma(s))^{\mu}\right) d s \\
\leq & \max \left(\rho^{\mu}, r^{\mu}\right) \int_{-\infty}^{+\infty} \delta(s) a(s) p^{-\mu}(s) \max \left(1, \gamma^{\mu}(s)\right) d s<\infty
\end{aligned}
$$

Moeover, we have

$$
\left\{\begin{array}{lll}
f^{0}=0 & \text { and } & f_{\infty}(\theta)=+\infty \text { for all } \theta>0, \\
\text { if } \mu>0 \\
f^{\infty}=0 & \text { and } & f_{0}(\theta)=+\infty \text { for all } \theta>0,
\end{array} \text { if } \mu \leq 0 .\right.
$$

Therefore, Theorem 1 guarantees existence of a positive solution to such a case of bvp (1).
Example 1 Consider the bvp

$$
\left\{\begin{align*}
-u^{\prime \prime}+u^{\prime}+2 u & =F(t, u), t \in \mathbb{R} \tag{8}\\
\lim _{t \rightarrow-\infty} e^{-|t|} u(t) & =\lim _{t \rightarrow+\infty} e^{|t|} u(t)=0
\end{align*}\right.
$$

where

$$
F(t, u)=e^{-8|t|}\left(\frac{a e^{4|t|} u}{e^{3|t|}+u}+\frac{b e^{2|t|} u^{2}}{e^{2|t|}+u}\right)
$$

and a, b are positive constants.
We have then $r_{1}=-1, r_{2}=2, k=-1, l=1, p(t)=e^{-2|t|}, q_{-}(t)=e^{-|t|}, q_{+}(t)=e^{|t|}, \gamma(t)=$ $\min \left(e^{4 t}, e^{-3 t}\right), \delta(t)=\min \left(e^{t}, e^{-2 t}\right), \Gamma=\frac{7}{30}$ and $\lim _{\theta \rightarrow+\infty} \Theta(\theta)=\frac{2}{21}$.

Taking

$$
\phi(t)=e^{-4|t|} \quad \text { and } f(t, u)=\frac{a u}{e^{|t|}+u}+\frac{b u^{2}}{1+u}
$$

we obtain $\Psi_{\rho}(x)=a \rho+b \rho^{2}$ and

$$
\begin{aligned}
& \lim _{t \rightarrow-\infty} q_{-}(t) \phi(t) \Psi_{\rho}(r \gamma(t))=\lim _{t \rightarrow-\infty} e^{-5|t|}=0 \\
& \lim _{t \rightarrow+\infty} q_{+}(t) \phi(t) \Psi_{\rho}(r \gamma(t))=\lim _{t \rightarrow+\infty} e^{-3|t|}=0
\end{aligned}
$$

Since $f^{0}=a$ and $f_{\infty}(\theta)=b$ for all $\theta>0$, we conclude from Theorem 1 that if $a<\frac{30}{7}$ and $b>\frac{21}{2}$, then the bvp (8) admits a positive solution.

Example 2 Consider the bvp

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u^{\prime}+6 u=e^{-8|t|} u^{-2}, t \in \mathbb{R} \tag{9}\\
\lim _{t \rightarrow-\infty} e^{|t|} u(t)=\lim _{t \rightarrow+\infty} e^{2|t|} u(t)=0
\end{array}\right.
$$

We have then $r_{1}=-2, r_{2}=3, k=1, l=2, p(t)=e^{-3|t|}, q_{-}(t)=e^{|t|}, q_{+}(t)=e^{2|t|}, \gamma(t)=\min \left(e^{6 t}, e^{-5 t}\right)$ and $\delta(t)=\min \left(e^{2 t}, e^{-3 t}\right)$.

Taking $a(t)=e^{-8|t|}$ and $\mu=-2$ we have

$$
\begin{aligned}
& \lim _{t \rightarrow-\infty} q_{-}(t) a(t) p^{-\mu}(t) \max \left(1, \gamma^{\mu}(t)\right)=\lim _{t \rightarrow-\infty} e^{t}=0 \\
& \lim _{t \rightarrow+\infty} q_{+}(t) a(t) p^{-\mu}(t) \max \left(1, \gamma^{\mu}(t)\right)=\lim _{t \rightarrow+\infty} e^{-2 t}=0
\end{aligned}
$$

and

$$
\int_{-\infty}^{+\infty} \delta(s) a(s) p^{-\mu}(s) \max \left(1, \gamma^{\mu}(s)\right) d s=\int_{-\infty}^{0} e^{4 s} d s+\int_{0}^{+\infty} e^{-7 s} d s<\infty
$$

Hence, all the conditions in Corollary 1 are satisfied and the bvp (9) admits a positive solution.

2 Abstract Background

It has been mentioned in the above section that Theorem 1 will be obtained by means of Guo-Krasnoselskii's fixed point theorem. Let us recall this powerfull theorem and the necessary theorical background to its statement.

Let $(E,\|\|$.$) be a real Banach space. A nonempty closed convex subset C$ of E is said to be a cone in E if $C \cap(-C)=\left\{0_{E}\right\}$ and $t C \subset C$ for all $t \geq 0$.

Let Ω be a nonempty subset in E. A mapping $A: \Omega \rightarrow E$ is said to be compact if it is continuous and $A(\Omega)$ is relatively compact in E.

The Guo-Krasnoselskii's version of expansion and compression of a cone principle in a Banach space is the following theorem.

Theorem 2 Let P be a cone in E and let Ω_{1}, Ω_{2} be bounded open subsets of E with $0 \in \Omega_{1}$ and $\bar{\Omega}_{1} \subset \Omega_{2}$. If $T: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ is a compact mapping such that either:

1. $\|T u\| \leq\|u\|$ for $u \in P \cap \partial \Omega_{1}$ and $\|T u\| \geq\|u\|$ for $u \in P \cap \partial \Omega_{2}$, or
2. $\|T u\| \geq\|u\|$ for $u \in P \cap \partial \Omega_{1}$ and $\|T u\| \leq\|u\|$ for $u \in P \cap \partial \Omega_{2}$.

Then T has at least one fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3 Fixed Point Formulation

We start this section by the following important lemma. It proposes a cone in a specific functional favorable to the use of Theorem 2.

Lemma 1 For all $t, \tau, s \in \mathbb{R}$,

$$
p(t) G(t, s) \geq \gamma(t) p(\tau) G(\tau, s)
$$

Proof. Set $Q(t, \tau, s)=\frac{p(t) G(t, s)}{p(\tau) G(\tau, s)}$. Then we distinguish between four cases.
a) $\tau, t \geq 0$, in this case we have

$$
Q(t, \tau, s)=\left\{\begin{array}{l}
\exp \left(-\left(r_{2}-r_{1}\right) t+\left(r_{2}-r_{1}\right) \tau\right) \geq e^{-\left(r_{2}-r_{1}\right) t}, \text { if } s \leq \tau \leq t \\
\exp \left(-\left(r_{2}-r_{1}\right) t+\left(r_{2}-r_{1}\right) s\right) \geq e^{-\left(r_{2}-r_{1}\right) t}, \text { if } \tau \leq s \leq t \\
1, \text { if } \tau \leq t \leq s, \\
\exp \left(-\left(r_{2}-r_{1}\right) t+\left(r_{2}-r_{1}\right) \tau\right) \geq e^{-\left(r_{2}-r_{1}\right) t}, \text { if } s \leq t \leq \tau, \\
\exp \left(\left(r_{2}-r_{1}\right) \tau-\left(r_{2}-r_{1}\right) s\right) \geq 1, \text { if } t \leq s \leq \tau \\
1, \text { if } t \leq \tau \leq s
\end{array} \geq \gamma(t)\right.
$$

b) $\tau, t \leq 0$, in this case we have

$$
Q(t, \tau, s)=\left\{\begin{array}{l}
\exp \left(\left(r_{2}+r_{1}\right) t-\left(r_{2}+r_{1}\right) \tau\right) \geq e^{\left(r_{2}+r_{1}\right) t}, \text { if } s \leq \tau \leq t \\
\exp \left(-\left(r_{2}-r_{1}\right) t-2 r_{2} \tau+\left(r_{2}-r_{1}\right) s\right) \geq e^{-\left(r_{2}-r_{1}\right) t}, \text { if } \tau \leq s \leq t \\
\exp \left(2 r_{2} t-2 r_{2} \tau\right) \geq e^{2 r_{2} t}, \text { if } \tau \leq t \leq s, \\
\exp \left(\left(r_{2}+r_{1}\right) t-\left(r_{2}+r_{1}\right) \tau\right) \geq e^{\left(r_{2}+r_{1}\right) t}, \text { if } s \leq t \leq \tau, \\
\exp \left(2 r_{2} t-\left(r_{2}+r_{1}\right) \tau-\left(r_{2}-r_{1}\right) s\right) \geq e^{2 r_{2} t}, \text { if } t \leq s \leq \tau \\
\exp \left(2 r_{2} t-2 r_{2} \tau\right) \geq e^{2 r_{2} t}, \text { if } t \leq \tau \leq s
\end{array} \quad \geq \gamma(t)\right.
$$

c) $\tau \leq 0, t \geq 0$, in this case we have

$$
Q(t, \tau, s)=\left\{\begin{array}{l}
\exp \left(-\left(r_{2}-r_{1}\right) t-\left(r_{2}+r_{1}\right) \tau\right) \geq e^{-\left(r_{2}-r_{1}\right) t}, \text { if } s \leq \tau \leq t \\
\exp \left(-\left(r_{2}-r_{1}\right) t-2 r_{2} \tau+\left(r_{2}-r_{1}\right) s\right) \geq e^{-\left(r_{2}-r_{1}\right) t}, \text { if } \tau \leq s \leq t, \quad \geq \gamma(t) \\
\exp \left(-2 r_{2} \tau\right) \geq 1, \text { if } \tau \leq t \leq s
\end{array}\right.
$$

d) $\tau \geq 0, t \leq 0$, in this case we have

$$
Q(t, \tau, s)=\left\{\begin{array}{l}
\exp \left(\left(r_{2}+r_{1}\right) t+\left(r_{2}-r_{1}\right) \tau\right) \geq e^{\left(r_{2}+r_{1}\right) t}, \text { if } s \leq t \leq \tau \\
\exp \left(2 r_{2} t+\left(r_{2}-r_{1}\right) \tau-\left(r_{2}-r_{1}\right) s\right) \geq e^{2 r_{2} t}, \text { if } t \leq s \leq \tau, \geq \gamma(t) \\
\exp \left(2 r_{2} t\right), \text { if } t \leq \tau \leq s
\end{array}\right.
$$

The proof is complete.
The functional framework in which we will solve the bvp (1) consists in the following Banach space E and the cone P given below and suggested by Lemma 1. In this paper, we let E be the linear space defined by

$$
E=\left\{u \in C(\mathbb{R}, \mathbb{R}): \lim _{|t| \rightarrow \infty} p(t) u(t)=0\right\}
$$

Equipped with the norm $\|\cdot\|$, where for $u \in E,\|u\|=\sup _{t \in \mathbb{R}}(p(t)|u(t)|), E$ becomes a Banach space.
The subset P of E given by

$$
P=\{u \in E: u(t) \geq \widetilde{\gamma}(t)\|u\| \text { for all } t \in \mathbb{R}\}
$$

is a cone of E.
The following lemma is an adapted version to the case of the space E of Corduneanu's compactness criterion ([3], p. 62). It will be used in this work to prove that the operator in the fixed point formulation coresponding to the bvp (1), maps bounded sets of $P \backslash B(0, \epsilon)$ (for arbitrary $\epsilon>0$), into relatively compact sets.

Lemma 2 A nonempty subset M of E is relatively compact if the following conditions hold:
(a) M is bounded in E,
(b) the set $\{u: u(t)=p(t) x(t), x \in M\}$ is locally equicontinuous on \mathbb{R}, and
(c) the set $\{u: u(t)=p(t) x(t), x \in M\}$ is equiconvergent at $\pm \infty$.

Lemma 3 Assume that Hypotheses (2) and (3) hold $l<r_{2}$ and $k<-r_{1}$. Then there exists a continuous operator $T: P \backslash\{0\} \rightarrow P$ such that for all r, R with $0<r<R, T(P \cap(B(0, R) \backslash B(0, r)))$ is relatively compact and fixed points of T are positive solutions to the bvp (1).

Proof. The proof is divided into four steps.
Step 1. In this step we prove the existence of the operator T. To this aim let $u \in P \backslash\{0\}$. By means of Hypothesis (3) with $R=\|u\|$, for all $t \in \mathbb{R}$ we have from (5) and Hypothesis (3),

$$
\begin{aligned}
\int_{-\infty}^{+\infty} G(t, s) \phi(s) f(s, u(s)) d s & \leq \int_{-\infty}^{+\infty} G(t, s) \phi(s) \Psi_{R}(R \gamma(s)) d s \\
& \leq \frac{1}{\left(r_{2}-r_{1}\right) \delta(t)} \int_{-\infty}^{+\infty} \delta(s) \phi(s) \Psi_{R}(R \gamma(s)) d s<\infty
\end{aligned}
$$

Thus, let v be the function defined by

$$
v(t)=\int_{-\infty}^{+\infty} G(t, s) \phi(s) f(s, u(s)) d s
$$

Clealy, v is continuous on \mathbb{R} and $v(t)>0$ for all $t \in \mathbb{R}$. Moreover, we have

$$
p(t) v(t) \leq \frac{1}{\left(r_{2}-r_{1}\right)}\left(J_{1}(t)+J_{2}(t)\right)
$$

where

$$
J_{1}(t)=\frac{\int_{-\infty}^{t} e^{-r_{1} s} \phi(s) \Psi_{R}(R \gamma(s)) d s}{\exp \left(r_{2}|t|-r_{1} t\right)} \text { and } J_{2}(t)=\frac{\int_{t}^{+\infty} \phi(s) \Psi_{R}(R \gamma(s)) d s}{\exp \left(r_{2}|t|-r_{2} t\right)}
$$

Since for $t \leq 0$,

$$
J_{1}(t) \leq \int_{-\infty}^{t} \delta(s) \phi(s) \Psi_{R}(R \gamma(s)) d s
$$

and for $t \geq 0$,

$$
J_{2}(t)=\int_{t}^{+\infty} \delta(s) \phi(s) \Psi_{R}(R \gamma(s)) d s
$$

we obtain from Hypothesis (3) that $\lim _{t \rightarrow-\infty} J_{1}(t)=\lim _{t \rightarrow+\infty} J_{2}(t)=0$.

Now applying L'Hopital's rule, we obtain from Hypothesis (3) that

$$
\lim _{t \rightarrow+\infty} J_{1}(t)=\lim _{t \rightarrow+\infty} \frac{e^{-r_{1} t} \phi(t) \Psi_{R}(R \gamma(t))}{\left(r_{2}-r_{1}\right) \exp \left(\left(r_{2}-r_{1}\right) t\right)}=\frac{1}{\left(r_{2}-r_{1}\right)} \lim _{t \rightarrow+\infty} p(t) \phi(t) \Psi_{R}(R \gamma(t))=0
$$

and

$$
\lim _{t \rightarrow-\infty} J_{2}(t)=\lim _{t \rightarrow-\infty} \frac{e^{-r_{2} t} \phi(t) \Psi_{R}(R \gamma(t))}{2 r_{2} \exp \left(-2 r_{2} t\right)}=\frac{1}{2 r_{2}} \lim _{t \rightarrow-\infty} p(t) \phi(t) \Psi_{R}(R \gamma(t))=0
$$

Hence, we conclude that $\lim _{|t| \rightarrow+\infty} p(t) v(t)=0$ and $v \in E$.
Finally, Lemma 1 leads to

$$
p(t) v(t)=\int_{-\infty}^{+\infty} p(t) G(t, s) \phi(s) f(s, u(s)) d s \geq \gamma(t) \int_{-\infty}^{+\infty} p(\tau) G(\tau, s) \phi(s) f(s, u(s)) d s
$$

for all $t, \tau \in \mathbb{R}$.
Taking the supremum on τ yields

$$
v(t) \geq \widetilde{\gamma}(t)\|v\|
$$

proving that $v \in P$ and the operator $T: P \backslash\{0\} \rightarrow P$, where for $u \in P \backslash\{0\}$

$$
T u(t)=\int_{-\infty}^{+\infty} G(t, s) \phi(s) f(s, u(s)) d s
$$

is well defined.
Step 2. In this step we prove that the operator T is continuous. Let $\left(u_{n}\right)$ be a sequence in $P \backslash\{0\}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$ in E with u in $P \backslash\{0\}$ and let $R>r>0$ be such that $\left(u_{n}\right) \subset B(0, R) \backslash B(0, r)$. If Ψ_{R} is the function given by Hypothesis (3), then for all $n \geq 1$ we have

$$
\begin{aligned}
\left\|T u_{n}-T u\right\| & =\sup _{t \in \mathbb{R}}\left(p(t)\left|T u_{n}(t)-T u(t)\right|\right) \\
& \leq \sup _{t \in \mathbb{R}}\left(\left.\frac{p(t)}{\left(r_{2}-r_{1}\right) \delta(t)} \int_{-\infty}^{+\infty} \delta(s) \phi(s) \right\rvert\, f\left(s, u_{n}(s)\right)-f((s, u(s)) \mid d s)\right. \\
& \left.\leq \frac{1}{\left(r_{2}-r_{1}\right)} \int_{-\infty}^{+\infty} \delta(s) \phi(s) \right\rvert\, f\left(s, u_{n}(s)\right)-f((s, u(s)) \mid d s .
\end{aligned}
$$

Because of

$$
\left|f\left(s, u_{n}(s)\right)-f(s, u(s))\right| \rightarrow 0, \text { as } n \rightarrow+\infty
$$

for all $s>0$ and

$$
\delta(s) \phi(s) \mid f\left(s, u_{n}(s)\right)-f\left((s, u(s)) \mid \leq \delta(s) \phi(s) \Psi_{R}(r \gamma(s))\right.
$$

with $\int_{-\infty}^{+\infty} \delta(s) \phi(s) \Psi_{R}(r \gamma(s)) d s<\infty$, the Lebesgue dominated convergence theorem guarantees that $\lim _{n \rightarrow \infty}\left\|T u_{n}-T u\right\|=0$. Hence, we have proved that T is continuous.
Step 3. In this step, we prove that for $R>r>0, T(P \cap(B(0, R) \backslash B(0, r)))$ is relatively compact. Set $\Omega=P \cap(B(0, R) \backslash B(0, r))$ and let Φ be defined by

$$
\Phi(s)=\phi(s) \Psi_{R}(r \gamma(s))
$$

where Ψ_{R} is the function given by Hypothesis (3). For all $u \in \Omega$, we have

$$
\|T u\| \leq \sup _{t \geq 0}\left(\frac{p(t)}{\left(r_{2}-r_{1}\right) \delta(t)} \int_{-\infty}^{+\infty} \delta(s) \Phi(s) d s\right) \leq \frac{1}{r_{2}-r_{1}} \int_{-\infty}^{+\infty} \delta(s) \Phi(s) d s<\infty
$$

proving that $T \Omega$ is bounded in E.

Let $t_{1}, t_{2} \in[\eta, \zeta] \subset \mathbb{R}$, for all $u \in \Omega$ we have

$$
\begin{aligned}
\left|p\left(t_{2}\right) T u\left(t_{2}\right)-p\left(t_{1}\right) T u\left(t_{1}\right)\right| \leq & \left|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right| \int_{-\infty}^{\zeta} e^{-r_{1} s} \Phi(s) d s \\
& +\left|p_{2}\left(t_{2}\right)-p_{2}\left(t_{1}\right)\right| \int_{\eta}^{+\infty} e^{-r_{2} s} \Phi(s) d s+C_{\eta, \zeta} \int_{t_{1}}^{t_{2}} \Phi(s) d s
\end{aligned}
$$

where for $i=1,2, p_{i}(t)=e^{-r_{2}|t|+r_{i} t}$ and $C_{\eta, \zeta}=2 \sup _{t, s \in[\eta, \zeta]} p(t) G(t, s)$.
Because that p_{1}, p_{2} and $t \rightarrow \int_{0}^{t} \Phi_{r, R}(s) d s$ are uniformly continuous on compact intervals, the above estimates prove that $T \Omega$ is equicontinuous on compact intervals.

For all $u \in \Omega$ and $t>0$, we have

$$
p(t) T u(t) \leq p(t) \int_{-\infty}^{+\infty} G(t, s) \Phi(s) d s=H(t)
$$

By means of L'Hopital's rule, we obain from Hypothesis (3) that

$$
\lim _{|t| \rightarrow \infty} H(t)=\lim _{|t| \rightarrow \infty} p(t) \Phi(t)=0
$$

proving the equiconvergence of $T \Omega$.
In view of Lemma $2, T \Omega$ is relatively compact in E.
Step 4. We claim that fixed points of T are positive solutions to the bvp (1). Let $u \in P \backslash\{0\}$ be a fixed point of T with $\|u\|=R$. For all $t \in \mathbb{R}$ we have

$$
\begin{gathered}
u(t)=\frac{1}{r_{2}-r_{1}}\left(e^{r_{1} t} \int_{-\infty}^{t} e^{-r_{1} s} f(s, u(s)) d s+e^{r_{2} t} \int_{t}^{+\infty} e^{-r_{2} s} f(s, u(s)) d s\right) \\
u^{\prime}(t)=\frac{r_{1} e^{r_{1} t}}{r_{2}-r_{1}} \int_{-\infty}^{t} e^{-r_{1} s} f(s, u(s)) d s+\frac{r_{2} e^{r_{2} t}}{r_{2}-r_{1}} \int_{t}^{+\infty} e^{-r_{2} s} f(s, u(s)) d s
\end{gathered}
$$

and

$$
u^{\prime \prime}(t)=\frac{\left(r_{1}\right)^{2} e^{r_{1} t}}{r_{2}-r_{1}} \int_{-\infty}^{t} e^{-r_{1} s} \phi(s) f(s, u(s)) d s+\frac{\left(r_{2}\right)^{2} e^{r_{2} t}}{r_{2}-r_{1}} \int_{t}^{+\infty} e^{-r_{2} s} \phi(s) f(s, u(s)) d s-\phi(s) f(t, u(t))
$$

Thus, we obtain

$$
\begin{aligned}
-u^{\prime \prime}(t)+c u^{\prime}(t)+\lambda u(t)= & \frac{-r_{1}^{2}+c r_{1}+\lambda}{r_{2}-r_{1}} \int_{-\infty}^{t} G(t, s) \phi(s) f(s, u(s)) d s \\
& +\frac{-r_{2}^{2}+c r_{2}+\lambda}{r_{2}-r_{1}} \int_{t}^{+\infty} G(t, s) \phi(s) f(s, u(s)) d s+\phi(t) f(t, u(t)) \\
= & \phi(t) f(t, u(t))
\end{aligned}
$$

Now, we need to prove that u satisfies the boundary conditions, $\lim _{t \rightarrow-\infty} e^{||t|} u(t)=\lim _{t \rightarrow+\infty} e^{k|t|} u(t)=0$. We have

$$
e^{l|t|} u(t) \leq \frac{1}{r_{2}-r_{1}}\left(L_{1}(t)+L_{2}(t)\right)
$$

and

$$
e^{k|t|} u(t) \leq \frac{1}{r_{2}-r_{1}}\left(K_{1}(t)+K_{2}(t)\right),
$$

where

$$
L_{1}(t)=\frac{\int_{-\infty}^{t} e^{-r_{1} s} \phi(s) \Psi_{R}(R \gamma(s)) d s}{\exp \left(-l|t|-r_{1} t\right)}, \quad L_{2}(t)=\frac{\int_{t}^{+\infty} e^{-r_{2} s} \phi(s) \Psi_{R}(R \gamma(s)) d s}{\exp \left(-l|t|-r_{2} t\right)}
$$

$$
K_{1}(t)=\frac{\int_{-\infty}^{t} e^{-r_{1} s} \phi(s) \Psi_{R}(R \gamma(s)) d s}{\exp \left(-k|t|-r_{1} t\right)} \text { and } K_{2}(t)=\frac{\int_{t}^{+\infty} e^{-r_{2} s} \phi(s) \Psi_{R}(R \gamma(s)) d s}{\exp \left(-k|t|-r_{2} t\right)}
$$

Since for $t \leq 0$,

$$
L_{1}(t) \leq\left\{\begin{array}{l}
\int_{-\infty}^{t} \delta(s) \phi(s) \Psi_{R}(R \gamma(s)) d s, \text { if } l \leq r_{1} \\
\frac{\int_{-\infty}^{t} \delta(s) \phi(s) \Psi_{R}(R \gamma(s)) d s}{\exp \left(\left(l-r_{1}\right) t\right)}, \text { if } l>r_{1}
\end{array}\right.
$$

and for $t \geq 0$,

$$
K_{2}(t) \leq\left\{\begin{array}{l}
\int_{t}^{+\infty} \delta(s) \phi(s) \Psi_{R}(R \gamma(s)) d s, \text { if } k \leq-r_{2} \\
\frac{\int_{t}^{+\infty} \delta(s) \phi(s) \Psi_{R}(R \gamma(s)) d s}{\exp \left(-\left(k+r_{2}\right) t\right)}, \text { if } k>-r_{2}
\end{array}\right.
$$

Hypothesis (3) and L'Hopital's rule lead to $\lim _{t \rightarrow-\infty} L_{1}(t)=\lim _{t \rightarrow+\infty} K_{2}(t)=0$.
Taking in account the conditions $k<-r_{1}$ and $l<r_{2}$ and Hypothesis (3), the L'Hopital's rule leads to

$$
\lim _{t \rightarrow-\infty} L_{2}(t)=\lim _{t \rightarrow-\infty} \frac{-e^{-r_{2} t} \phi(t) \Psi_{R}(R \gamma(t))}{\left(l-r_{2}\right) \exp \left(\left(l-r_{2}\right) t\right)}=\frac{1}{r_{2}-l} \lim _{t \rightarrow-\infty} e^{l|t|} \phi(t) \Psi_{R}(R \gamma(t))=0
$$

and

$$
\lim _{t \rightarrow+\infty} K_{1}(t)=\lim _{t \rightarrow+\infty} \frac{e^{-r_{1} t} \phi(t) \Psi_{R}(R \gamma(t))}{-\left(k+r_{1}\right) \exp \left(-\left(k+r_{1}\right) t\right)}=\frac{-1}{\left(k+r_{1}\right)} \lim _{t \rightarrow+\infty} e^{k|t|} \phi(t) \Psi_{R}(R \gamma(t))=0
$$

Hence, we have proved that $\lim _{t \rightarrow-\infty} e^{l|t|} u(t)=\lim _{t \rightarrow+\infty} e^{k|t|} u(t)=0$, completing the proof of the lemma.

4 Proof of Theorem 1

Step 1. Existence in the case where (6) holds

Let $\epsilon>0$ be such that $\left(f^{0}+\epsilon\right) \Gamma<1$. For such a ϵ, there exists $R_{1}>0$ such that $f\left(t, \frac{w}{p(t)}\right) \leq\left(f^{0}+\epsilon\right) w$ for all $w \in\left(0, R_{1}\right)$. Let $\Omega_{1}=\left\{u \in E,\|u\|<R_{1}\right\}$.

Therefore, for all $u \in P \cap \partial \Omega_{1}$ and all $t \in \mathbb{R}$, we have

$$
\begin{aligned}
p(t) T u(t) & =p(t) \int_{-\infty}^{+\infty} G(t, s) \phi(s) f\left(s, \frac{1}{p(s)}(p(s) u(s))\right) d s \\
& \leq\left(f^{0}+\epsilon\right) p(t) \int_{-\infty}^{+\infty} G(t, s) \phi(s)(p(s) u(s)) d s \\
& \leq\|u\|\left(f^{0}+\epsilon\right) p(t) \int_{-\infty}^{+\infty} G(t, s) \phi(s) d s \\
& \leq \Gamma\left(f^{0}+\epsilon\right)\|u\| \leq\|u\|
\end{aligned}
$$

leading to $\|T u\| \leq\|u\|$.
Now, suppose that $f_{\infty}(\theta) \Theta(\theta)>1$ for some $\theta>0$ and let $\varepsilon>0$ be such that

$$
\left(f_{\infty}(\theta)-\varepsilon\right) \Theta(\theta)>1
$$

There exists $R_{2}>R_{1}$ such that $f\left(t, \frac{w}{p(t)}\right)>\left(f_{\infty}(\theta)-\varepsilon\right) w$ for all $t \in I_{\theta}$ and all $w \geq R_{2}$. Let $\gamma_{\theta}=$
$\min \left\{\widetilde{\gamma}(s): s \in I_{\theta}\right\}, \widetilde{R}_{2}=R_{2} / \gamma_{\theta}$ and $\Omega_{2}=\left\{u \in E:\|u\|<\widetilde{R}_{2}\right\}$. For all $u \in P \cap \partial \Omega_{2}$ and all $t \in \mathbb{R}$, we have

$$
\begin{aligned}
\|T u\| & \geq \sup _{t \in \mathbb{R}}\left(p(t) \int_{-\theta}^{\theta} G(t, s) \phi(s) f\left(s, \frac{1}{p(s)}(p(s) u(s))\right) d s\right) \\
& \geq\left(f_{\infty}(\theta)-\varepsilon\right) \sup _{t \in \mathbb{R}}\left(p(t) \int_{-\theta}^{\theta} G(t, s) \phi(s)(p(s) u(s)) d s\right) \\
& \geq\left(f_{\infty}(\theta)-\varepsilon\right) \sup _{t \in \mathbb{R}}\left(p(t) \int_{-\theta}^{\theta} G(t, s) \phi(s)(\gamma(s)\|u\|) d s\right) \\
& \geq\|u\|\left(f_{\infty}(\theta)-\varepsilon\right) \Theta(\theta) \geq\|u\|
\end{aligned}
$$

We deduce from Assertion 1 of Theorem 2, that T admits a fixed point $u \in P$ with $R_{1} \leq\|u\| \leq \widetilde{R}_{2}$ which is, by Lemma 3, a positive solution to the bvp (1).

Step 2. Existence in the case where (7) holds

Let $\varepsilon>0$ be such that $\left(f_{0}(\theta)-\varepsilon\right) \Theta(\theta)>1$, there exists R_{1} such that $f\left(t, \frac{w}{p(t)}\right)>\left(f_{0}(\theta)-\varepsilon\right) w$ for all $t \in I_{\theta}$ and all $w \in\left(0, R_{1}\right)$. Let $\Omega_{1}=\left\{u \in E:\|u\|<R_{1}\right\}$, for all $u \in P \cap \partial \Omega_{1}$ and all $t \in \mathbb{R}$, we have

$$
\begin{aligned}
\|T u\| & \geq \sup _{t \in \mathbb{R}}\left(p(t) \int_{-\theta}^{\theta} G(t, s) \phi(s) f\left(s, \frac{1}{p(s)}(p(s) u(s))\right) d s\right) \\
& \geq\left(f_{0}(\theta)-\varepsilon\right) \sup _{t \in \mathbb{R}}\left(p(t) \int_{-\theta}^{\theta} G(t, s) \phi(s)(p(s) u(s)) d s\right) \\
& \geq\left(f_{0}(\theta)-\varepsilon\right) \sup _{t \in \mathbb{R}}\left(p(t) \int_{-\theta}^{\theta} G(t, s) \phi(s)(\gamma(s)\|u\|) d s\right) \\
& \geq\|u\|\left(f_{0}(\theta)-\varepsilon\right) \Theta(\theta) \geq\|u\| .
\end{aligned}
$$

Let $\epsilon>0$ be such that $\left(f^{\infty}+\epsilon\right) \Gamma<1$, there exists $R_{\epsilon}>0$ such that

$$
f\left(t, \frac{w}{p(t)}\right) \leq\left(f^{\infty}+\epsilon\right) w+\Psi_{R_{\epsilon}}(w), \text { for all } t \in \mathbb{R} \text { and } w>0
$$

where $\Psi_{R_{\epsilon}}$ is the functions given by Hypothesis (3) for $R=R_{\epsilon}$. Let

$$
\Phi_{\epsilon}(t)=\phi(s) \Psi_{R_{\epsilon}}\left(R_{\epsilon} \gamma(s)\right) \quad \text { and } \quad \widetilde{R}_{2}=\frac{\bar{\Phi}_{\epsilon} \Gamma}{1-\left(f^{\infty}+\epsilon\right) \Gamma} \text { with } \bar{\Phi}_{\epsilon}=\sup _{t \geq 0}\left(p(t) \int_{-\infty}^{+\infty} G(t, s) \Phi_{\epsilon}(s) d s\right)
$$

and notice that $\Gamma^{-1}\left(f^{\infty}+\epsilon\right) R+\bar{\Phi}_{\epsilon} \leq R$ for all $R \geq \widetilde{R}_{2}$.
Let $R_{2}>\max \left(R_{1}, \widetilde{R}_{2}, R_{\epsilon}\right)$ and $\Omega_{2}=\left\{u \in E,\|u\|<R_{2}\right\}$. For all $u \in P \cap \partial \Omega_{2}$ and all $t \in \mathbb{R}$, we have

$$
\begin{aligned}
p(t) T u(t) & =p(t) \int_{-\infty}^{+\infty} G(t, s) \phi(s) f\left(s, \frac{1}{p(s)}(p(s) u(s))\right) d s \\
& \leq p(t) \int_{-\infty}^{+\infty} G(t, s) \phi(s)\left(\left(f^{\infty}+\epsilon\right)(p(s) u(s))+\Psi_{\epsilon}(p(s) u(s))\right) d s \\
& \leq\left(f^{\infty}+\epsilon\right)\|u\| p(t) \int_{-\infty}^{+\infty} G(t, s) \phi(s) d s+\bar{\Phi}_{\epsilon} \\
& \leq\left(f^{\infty}+\epsilon\right) \Gamma\|u\|+\bar{\Phi}_{\epsilon} \leq\|u\|
\end{aligned}
$$

leading to

$$
\|T u\| \leq\|u\|
$$

We deduce from Assertion 2 of Theorem 2, that T admits a fixed point $u \in P$ with $R_{1} \leq\|u\| \leq R_{2}$ which is, by Lemma 3, a positive solution to the bvp (1).

Thus, the proof of Theorem 1 is complete.
Acknowledgment. The authors are thankful to the anonymous referee for his deep and careful reading of the manuscript and for all his comments and suggestions, which led to a substantial improvement of the original manuscript.

References

[1] R. P. Agarwal and D. O'Regan, Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic Publisher, Dordrecht, 2001.
[2] O. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon, Oxford (1975).
[3] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
[4] S. Djebali and K. Mebarki, Mutiple positive solutions for singular multi-point boundary value problem with general growth on the positive half-line, Electron. J. Differential Equations, 2011(2011), 1-29.
[5] S. Djebali and O. Saifi, Positive solutions for singular BVPs on the positive half-line arising from epidemiology and combustion theory, Acta Math. Scientia, 32(2012), 672-694.
[6] S. Djebali and O. Saifi, Positive solutions for singular BVPs with sign changing and derivative depending nonlinearity on the half-line, Acta Appl. Math., 110(2010), 639-665.
[7] J. D. Murray, Mathematical Biology, I: An introduction, Springer-Verlag, 2002.
[8] L. Sanchez, A note on a nonautonomous O.D.E. related to the Fisher equation, J. Comput. Appl. Math., 113(2000) 201-209.
[9] Y. Tian and W. Ge, Positive solutions for multi-point boundary value problem on the half-line, J. Math. Anal. Appl., 325(2007), 1339-1349.
[10] Y. Tian, W. Ge and W. Shana, Positive solutions for three-point boundary value problem on the halfline, Comput. Math. Appl., 53(2007), 1029-1039.

[^0]: *Mathematics Subject Classifications: 35K57, 34B15, 34B16, 34B18, 34B40.
 \dagger National Higher School of Mathematics, Sidi-Abdallah, Algiers, Algeria
 \ddagger Faculty of Sciences, UMB, Boumerdes, Algeria

