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Abstract
The aim of this work is to give new estimates to the ratios of gamma functions P1 and P2 given

by Mortici, Cristea and Lu [Completely monotonic functions and inequalities associated to some ratio
of gamma function, Appl. Math. Comp. Vol. 240, (2014), 168-174] and to show the lower and upper
bounds for P1 and P2.

1 Introduction and Motivation

The following ratios
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defined for all integers n = 1, 2, 3 · · · , have an important role in pure mathematics or applied statistics,
statistical physics and they are closely related to the gamma function given by

Γ(x) =

∫ ∞
0

tx−1e−tdt,

for all real numbers x > 0, see [1]. There are many mathematicians who have obtained results related to P1

and P2 and we can mention them: Mortici, Cristea and Lu [19], Lin, Deng and Chen [15], Farhangdoost and
Kargar Dolatabadi [13], Bai, Dong and Liu [3], Cao and Wang [4], Cao, Tanigawa and Zhai [5], Chen [6],
Zhang and Wang [20], Deng, Tao and Chen [12], Chen and Paris [7]—[9], You, Huang and Liu [23], Crînganu
[10]—[11], Yang and Tian [22], You [24].
Mortici, Cristea and Lu [19] obtained, in 2014, the following inequalities, for all integers n ≥ 1:
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Motivated by Mortici, Cristea and Lu, Chen and Paris, Lin, Deng, You, Crînganu, Cao, Wang, Huang,
Liu, Bai and Dong, I intend to show a double inequality related to P1 and P2 and to propose the following
approximations for the ratios P1 and P2:
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and

P2 ≈
1

Γ( 23 )

3

√
n+ 1

3 + 1
27n

exp

(
1

243n3
− 17

2187n4

)
. (4)

In this work, we want to establish the lower and upper bounds for P1 and P2 using the above approximations.

2 The Results

Let us consider P1 and P2 given by (1) and (2). We propose the following approximation:
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The above approximation (5) is obtained by considering the following classes of approximation
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where a, b are real parameters. To find the best approximation (7), we set the relative error sequence vn by
the following formulas, for every integer n ≥ 1
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and we take into account an approximation (7) better as the speed of convergence of vn is higher. We obtain:
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The sequence vn is the fastest possible when vn − vn+1 is the fastest possible; that is when the first three
coeffi cients in (8) are zero [19]. We obtain a = 1

3 , b = 2
27 . Then, (8) is written in this form
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As we discussed, (5) is the best approximation among all approximations (7). Now, we present the bounds
for P1 related to the approximation (3):



48 New Estimates Related to the Ratios of Gamma Functions

Theorem 1 We have the following double inequality for every integer n ≥ 1 √
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Proof. Double inequality (9) is equivalent to an > 0 for left side inequality and bn < 0 for the right side
inequality, for every integer n ≥ 1, where
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As an and bn converge to 0, it suffi ces to prove that an is strictly decreasing and bn is strictly increasing, for
every integer n ≥ 1. Then, we get an+1 − an = f(n) and bn+1 − bn = g(n), where
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Then, we get
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where

P (x) = 196 830x10 + 742 365x9 + 1776 735x8 + 4005 594x7

+6579 606x6 + 6703 512x5 + 4195 032x4 + 1641 689x3

+404 889x2 + 59 712x+ 4180

and

Q(x) = 10 935x8 + 56 295x7 + 116 910x6 + 126 897x5

+78 836x4 + 29 860x3 + 7291x2 + 1076x+ 76

are two polynomials with all coeffi cients positive numbers, for all real numbers x ≥ 1. Thus, f is strictly
increasing on [1,∞) and g is strictly decreasing on [1,∞), with limx→∞ f(x) = limx→∞ g(x) = 0, so f < 0
and g > 0 on [1,∞). The proof is completed.

The above approximation (6) is obtained by considering the following classes of approximation
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1
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√
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where a, b are real parameters. To find the best approximation (10), we set the relative error sequence vn
by the following formulas, for every integer n ≥ 1 :
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and we take into account an approximation (10) better as the speed of convergence of vn is higher. We
obtain:
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and using Maple software

vn − vn+1 =

(
1

3
a− 1

9

)
1

n2
+

(
2

3
b− 1

3
a− 1

3
a2 +

10

81

)
1

n3

+

(
1

3
a− b− ab+

1

2
a2 +

1

3
a3 − 19

162

)
1

n4

+

(
4

3
b− 1

3
a+ 2ab− 2

3
a2 − 2

3
a3 − 2

3
b2 − 1

3
a4 +

4

3
a2b+

26

243

)
1

n5

+O

(
1

n6

)
. (11)

The sequence vn is the fastest possible when vn − vn+1 is the fastest possible; that is when the first two
coeffi cients in (11) are zero [16]. We obtain a = 1

3 , b = 1
27 . Then, (11) is written in this form
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As we argued, (6) is the best approximation among all approximations (10). Now, we introduce the bounds
for P2 related to this approximation (4):

Theorem 2 We have the following double inequality for every integer n ≥ 1 1
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Proof. Double inequality (12) is equivalent to an > 0 for left side inequality and bn < 0 for the right side
inequality, for every integer n ≥ 1, where
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As an and bn converge to 0, it suffi ces to prove that an is strictly decreasing and bn is strictly increasing, for
every integer n ≥ 1. Then, we get an+1 − an = f(n) and bn+1 − bn = g(n), where
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and
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Then, we get
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where
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and
Q(x) = 3240x7 + 20 520x6 + 47 709x5 + 53 022x4 + 29 879x3 + 8430x2 + 1199x+ 74

are two polynomials with all coeffi cients positive numbers, for all real numbers x ≥ 1. Thus, f is strictly
increasing on [1,∞) and g is strictly decreasing on [1,∞), with limx→∞ f(x) = limx→∞ g(x) = 0, so f < 0
and g > 0 on [1,∞). The proof is completed.

3 Comparison Test

For P1, let us consider the following sequences given by Mortici, Cristea and Lu
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We give the following table with the above sequences:

n |P1 − r1
n| |P1 − c1n|

1 2.790 21× 10−4 1.907 37× 10−4

100 1.593 11× 10−15 7.817 44× 10−16

1000 3.415 54× 10−21 1.704 53× 10−21

10000 7.865 07× 10−27 3.166 62× 10−27

Using the values from the above table, we conclude the superiority of the Cristea’s sequence
(
c1n
)
n≥1

over

Mortici, Cristea and Lu’s sequence
(
r1
n

)
n≥1

.
For P2, let us consider the following sequences given by Mortici, Cristea and Lu
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and given by Cristea

c2n =

 1

Γ( 23 )

3

√
n+ 1

3 + 1
27n

 exp

(
1

243n3
− 17

2187n4

)
.

We give the following table with the above sequences:

n |P2 − r2
n| |P2 − c2n|

1 6.659 91× 10−3 4.233 28× 10−3

100 1.962 01× 10−7 1.088 10× 10−11

1000 9.116 12× 10−10 5.063 61× 10−16

10000 4.231 75× 10−12 2.350 93× 10−20

Using the values from the above table, we conclude the superiority of the Cristea’s sequence
(
c2n
)
n≥1

over

Mortici, Cristea and Lu’s sequence
(
r2
n

)
n≥1

.
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