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Abstract

In this paper, we present the Poisson modified-Lindley distribution. It constitutes a new discrete one-
parameter distribution obtained by compounding the Poisson and modified Lindley distributions. We
describe its main interesting properties, with emphasis on those related to the distribution function, raw
moments, variance, coefficient of variation, index of dispersion, factorial moments, skewness, kurtosis,
and probability generating function. Among its features, it is revealed to be useful for the analysis of
over-dispersed count data sets, motivating a statistical work in this regard. As a first step, the model
parameter is estimated by the maximum likelihood method and method of moments. Then, the utility
of the new model is illustrated through the analysis of two different data sets: the first is the number of
European corn-borer larvae pyrausta in the field, and the second one is about the number of times that
the computer breaks down in each of the 128 consecutive weeks of operation. The fit of the new model is
both satisfactory and competitive, giving better results than those of the Poisson model, as well as the
distinguished Poisson Lindley and Poisson Bilal models.

1 Introduction

The Poisson distribution is one of the most famous one-parameter distributions used for modeling count
data. It satisfies the well-known property of the mean and variance being equal, which remains an obvious
handicap for the construction of models from over-dispersed or under-dispersed count data. Despite this,
it is widely used in many fields of research, such as environmental, actuarial, biology and economics. The
reason for this popularity is its simple form and easy implementation, which is supported in most statistical
software. To overcome the drawback of “mean equality of variance”, researchers have shown great interest
in introducing mixed-Poisson distributions. In this regard, Shoukri et al. [33] introduced the Poisson inverse
gaussian regression model, Shmueli et al. [32] revived the Conway-Maxwell-Poisson distribution, Rodriguez-
Avi et al. [21] introduced a regression model for count data, Lord and Geedipally [18] introduced the negative
binomial-Lindley distribution for analyzing the crash data in the case of zero-inflation, Deniz [8] proposed the
uniform Poisson distribution, Saez-Castillo and Conde-Sanchez [22] developed the hyper Poisson regression
model, Cheng et al. [6] used the Poisson-Weibull generalized linear model for analyzing motor vehicle crash
data and emphasized that the Poisson-Weibull model yields better results than the Poisson-gamma model,
Zamani et al. [36] introduced the Poisson weighted exponential model, Gencturk and Yigiter [9] proposed the
negative binomial gamma distribution for modeling a certain type of claim counts, Bhati et al. [4] presented
the Poisson-transmuted exponential linear model and applied it to health-care data sets, and Imoto et al. [16]
introduced the modified Conway-Maxwell-Poisson type binomial distribution. Recently, Altun [2] introduced
the Poisson Bilal (PB) distribution and its associated two models for modeling the over-dispersed count data
sets.

As amatter of fact, compound distributions are useful for modeling phenomena that show over-dispersion,
i.e., a greater amount of variability than would be expected under a certain model. For this reason, some of
the notable Poisson distributions have been compounded with different versions of the Lindley distribution.
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Some of them are mentioned below. Sankaran [23] introduced the discrete Poisson-Lindley (PL) distribution
by combining the Poisson and Lindley distributions. The statistical aspects of the PL distribution can be
found in [12]. The PL distribution itself has been generalized by many researchers. Ghitany et al. [10] and
Asgharzadeh et al. [1] derived the zero-truncated PL and Pareto Poisson-Lindley distributions, respectively,
Mahmoudi and Zakerzadeh [19] proposed an extended version of the compound Poisson distribution, which
was obtained by compounding the Poisson distribution with the generalized Lindley distribution (established
by [37]), to model the over-dispersed count data sets and showed that the generalized Poisson-Lindley
distribution provides better results than the Poisson and PL distributions in case of over-dispersion. Gomez-
Déniz et al. [13] introduced the multivariate discrete PL distributions and studied their extensions as
well as its applications in actuarial science. Shanker and Mishra [31] introduced a two-parameter Poisson-
Lindley distribution by compounding the Poisson distribution with the two-parameter Lindley distribution
introduced by [26]. A quasi Poisson-Lindley distribution was developed by [25], by compounding the Poisson
distribution with a quasi Lindley distribution introduced by [27]. Shanker et al. [28] proposed a discrete
two-parameter PL distribution by mixing the Poisson distribution with a two-parameter Lindley distribution
to model waiting and survival time’s data introduced by [29]. Further, Shanker and Tekie [30] obtained a
new quasi Poisson-Lindley distribution by compounding the Poisson distribution with a new quasi Lindley
distribution introduced by [31]. In addition, Nedjar and Zeghdoudi [40] and Zeghdoudi and Nedjar [35]
presented two new compound Poisson distributions, named the Poisson gamma Lindley distribution and
Poisson pseudo-Lindley distributions, by compounding Poisson with the gamma Lindley and pseudo-Lindley
distributions, both proposed by [39] and [38], respectively. Also, Grine and Zeghdoudi [14] studied the Poisson
quasi Lindley distribution and its applications, Wongrin and Bodhisuwan [34] investigated the generalized
PL linear model for count data and showed that the related linear model provides better modeling ability
than the Poisson and negative binomial regression models in the case of over-dispersion, and Mohammadpour
et al. [20] studied the PL INAR(1) model with applications.

The essentials of the PL distribution are now discussed. The PL distribution is defined by the following
probability mass function (pmf):

6*(z + 6+ 2)
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where 6 > 0. It has been introduced by [23] with the aim of providing a new model for count data, and
a suitable alternative to the Poisson model as well. It is the distribution of a random variable X following
the Poisson distribution with parameter A, assuming that A is a random variable following the Lindley
distribution. In this regard, we recall that the Poisson distribution is defined with the following pmf:
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where A > 0, and the Lindley (L) distribution is defined by the following probability density function (pdf):
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where 6 > 0. Formerly, the Lindley distribution was introduced by [17] with a pdf having the feature to be a
mixture of exponential distribution with scale parameter § and gamma distribution with shape parameter 2
and scale parameter 6, where the mixing proportion is specified as 8/(1+6). In this setting, X remains with
support on N, the pmf of the random vector (X, \) is given as p.(x, A) = pp(x; A) f.(\; 0) and, consequently,
the pmf of X is obtained by
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Following this spirit, we aim to introduce a new discrete distribution for count modeling by the use of a
new extension of the Lindley distribution developed by [7], called the modified Lindley (ML) distribution.
The ML distribution is defined by the pdf given as

0
1+46

where 6 > 0. The prime motivation for using the ML distribution is that it provides a simple alternative
to the exponential and Lindley distributions, with the following remarkable first order stochastic ordering
property: Fr(z;0) < Fyp(z;0) < Fg(x;0), where Fr(x;6) denotes the cumulative distribution function
(cdf) of the Lindley distribution, Fasr(x;0) is the one of the ML distribution and Fg(z;6) is the one of the
exponential distribution.

fur(x;0) =

e 20w [(1+ 6)e?* + 20z — 1], x>0,

Thus, we introduce the Poisson-modified Lindley (P-ML) distribution defined by the distribution of
a random variable X following the Poisson distribution with parameter A, assuming that A is a random
variable following the ML distribution. Then, X is with support N, the pmf of (X, \) is given as p..(z, \) =
pp(z; A) farn(A; 0), from which we derive the pmf of X by
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Particular attention is paid to the P-ML distribution in the next, examining various of its characteristics
from both theoretical and practical sides. To summarize the next developments, the benefits of the P-ML
distribution are to (i) enjoy manageable distribution functions, (ii) possess tractable moments measures and
functions, (iii) be enough flexible to handle over-dispersed data, (iv) permit simple estimation procedures,
and (v) present better fits in comparison to modern discrete distributions for some data sets, such as the
Poisson, Poisson Lindley and Poisson Bilal distributions.

The paper is structured as follows. Section 2 presents the properties of the P-ML distribution. Estimation
and applications can be found in Section 3. Some final remarks are formulated in Section 4.

2 Properties of the P-ML Distribution

In this section, let Y be a random variable following the P-ML distribution, i.e., with pmf given as (1).
Here, we provide some statistical properties of the P-ML distribution through the use of Y. These include
a reformulation of the pmf, distribution function, raw moments, variance, coefficient of variation, index of
dispersion, factorial moments, skewness, kurtosis, and probability generating function.

2.1 Probability Mass Function
The pmf of the P-ML distribution, i.e., pp_ar.(x;68) = P(Y = z) where P denotes the probability measure,

is defined in (1). After simple developments, it can also be reduced to the following ratio:
0[(20 + 1)=+2 + (202 — 1)(0 + 1)?]
(0 + 1)=t1(20 + 1)=+2 ’

pp,ML(x;o): xr € N. (2)
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Figure 1: Plots of the pmf of the P-ML distribution for some parameter values of

One can show that pp_ s L( ;0) € (O, 1) for any k € N. Moreover, by using the following geometric formulas:
Z 2* =1/(1 — 2) and Z 22" 1 =1/(1 — 2)? with |z| < 1, we verify that Z pp—mrL(x;0) = 1, ensuring
0

the basic pmf property. As the former ML distribution, it provides a one- paframeter alternative to the PL
distribution and the former Poisson distribution as well.

Figure 1 displays the plots of the pmf of the P-ML distribution for some values of . From the plots
in Figure 1, we observe that, as the value of the parameter 6 increases, the distribution assigns higher
probability to smaller values of the variable, which can be of interest to model rare events.

2.2 Distribution Function

The distribution function of Y is given as Fp_jrr(m;6) = P(Y < m) for any positive integer m. Based on
(1), we have

Fp_yr(m;0) = ZP}LML@;H)
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Now, through the use of the following formulas:

Z 2 =(1-2"/(1-2) and szx =z[mz™ — (m+1)2" +1]/(1 — 2)?
x=0 x=1

for z # 1, after some factorizations, we get

1
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Fp_prp(m;0) =
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We can express the quantile function of Y as Qp_nr(q;0) = inf{m € N: Fp_p;(m;0) > q}. Even if
we have a closed-form expression for Fp_jrp,(m;6), an analytical expression for Qp—_prr.(q;0) seems to be
impossible. With the help of mathematical software, however, we can easily have a numerical point-wise
evaluation of it.

2.3 Raw Moments

The rt" raw moment of Y is defined by u. = E(Y") where E denotes the expectation related to the
probability measure P. Mathematically, for » > 1, we can obtain it as follows:

+oo
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where Lig(z) = > 2%/x° with s € R and |z| < 1, is the known Polylogarithm function. There is no
r=1

synthetic formula for Lis(z) for all s, but for the first four integer values, the following equalities hold:
Li1(2) = 2/(1 — 2)2, Li_g(2) = 2(z + 1)/(1 — 2)3, Li_z(2) = 2(22 +42 4+ 1)/(1 — 2)* and Li_4(z) =
2(2% 4+ 1122 + 112 + 1) /(1 — 2)°. Based on these results, after some developments, we can express the four
first raw moment of Y as

, 40+5 , _ (0+2)(40+5) ,  86°+ 586 4 1086 + 57
p=p = ooy M= ey 0 M3 = 3
4600 + 1) 462(0 + 1) 863(6 + 1)

and
46* + 616° 4 21462 + 2670 + 108

A
Ha= 1050+ 1)

In particular, the variance of Y is given as

s o (4045)(20+1)(20 +3)
7 T 1602(0 + 1) '

We are able to prove that o2 is a decreasing function with respect to 8 with . lim o2 = 0. Figure 2 illustrates
— 00

the comportment of 02 when it is viewed as a function of §. The coefficient of variation (CV) follows:
ov -7 [EE IO
I 40 +5
and the index of dispersion (DI) as well:
2
pr-% _ (20 +1)(260 + 3)
1 406 + 1)

Since (20 + 1)(20 + 3) = 46% + 80 + 3 > 40(6 + 1), we have the important inequality: DI > 1. More

specifically, we can prove that DI is a decreasing function with respect to 6 with . lim DI = 1. Thus, the
— 00
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Figure 2: Illustration of the variance of the P-ML distribution defined as a function with respect to 6
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Figure 3: Ilustration of the DI of the P-ML distribution defined as a function with respect to 6
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Figure 4: Illustration of skewness and kurtosis of the P-ML distribution for the parameter 6

P-ML distribution can be used for the modeling of over-dispersed count data sets. The analytical properties
of DI are illustrated in Figure 3.
Also, the skewness and kurtosis of Y are, respectively, defined by

o = Bpap 2 — Aphp+ Gy — 3yt

o3 ’ ot

S:

By substituting the expressions of the first four moments of Y, we arrive at the following expression for S:

106 + 5166 + 10046% + 9286 + 4000* + 646°

S
(15 + 5260 + 5262 + 1663)3/2

We can set a similar expression for K but we omit it for the sake of place. Then, one can prove that S and

K are both increasing functions with respect to 6, satisfying elim S = 400 and elim K = +o00. These
— 400 ——+00

aspects can be observed in Figure 4.
2.4 Factorial Moments

An alternative way to determine various moments can be done through the use of factorial moments. That
is, let Y(,) = Y(Y —=1)...(Y —r +1). Since Y has the distribution of a random variable X following the
Poisson distribution with parameter A, assuming that A is a random variable following the ML distribution,
the 7" factorial moment of Y is given as

1wy = E(Y(»y) = B [E(X(y | N)] = B(X).

Hence, owing to the r*" raw moment of A obtained in [7, Section 3.2], we get

Ny VN
/L(r) - or 2r+1(1 +9) .

From this relation, all the obtained measures with the raw moments can be deduced.

2.5 Probability Generating Function

Since Y has the distribution of a random variable X following the Poisson distribution with parameter A,
assuming that X is a random variable following the ML distribution, the probability generating function of
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Y is given by

G(s;0) = E(s") = E [E(sY | \)] = E(eC~1%).
It follows from the moment generating function of A determined in [7, Section 3.2] with ¢ = s — 1 that
B 0 (s—1)0

G0 = s T U o+ 1= 9

for s < #+1. The moment generating and characteristic functions immediately follow; they are respectively
given as

M(t;6) = B(e™) = Gle56) = 5 f— G 9§§29_+1)19— et)?

for t < log(6 + 1), and
B 0 n (et —1)0
SO0+ 1—et T (1460)(20+ 1 —eit)2’

o(t;0) = E(e™) = G(e™;0)

with i2 = —1, for t € R. From these functions, we can re-find some basic characteristics of the P-ML distri-
bution (raw moments, skewness. .. ), set some probabilistic inequalities, such as, by the Markov inequality,
for any t € (0,1og(0 + 1)), P(Y > m) < e '™M(t;0), and investigate the distribution of linear combinations
of random variables involving the P-ML distribution, among others.

3 Estimation and Applications

Now, the P-ML model is considered, assuming that 6 is unknown. We adopt the maximum likelihood method
to estimate this parameter, with the method of moments discussed in brief, and we illustrate the applicability
of the P-ML distribution by using two real data examples.

3.1 Estimation of Parameters

Let z1,...,2, be n observations of Y, k the greatest integer value among them, and n, be the number of
k
observed values z, hence satisfying the following equality: > m, = n. Then, based on (2), the likelihood

=0
function of 6 is given as

k

1
20 + 1)*12 + (202 — 1)(6 + 1)*]™=.
(6 + 1) Xm0 me(o+1) (20 + 1) Tho ma(@+2) g[( + 1T+ (202 = 1)(0 +1)°]

L(o) = 0"

Therefore, the log-likelihood function, defined by ¢(6) = log[L(6)], can be expressed as

k k
((0) = nlogh —log(f+1) Y nu(z+1) —log(20 + 1) > nu(x +2)
x=0 x=0

k
+ ) nalogl(20 4 1)7F2 + (202 — 1)(6 4 1)7]
x=0
k
=nlogh —nlog(f + 1)(T + 1) —nlog(20 + 1)(F +2) + »_ng log[(20 + 1)"F2 + (202 — 1)(0 + 1)7],
x=0

where T = (1/n) Y ;. The maximum likelihood estimate (MLE) of 6, say 8, is the solution of the following
i=1

non-linear equation: 94(0)/00 = 0, with
o)  n n o on
o6~ 8 griv Y g @)
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N z’“: o, 2+ 2)(20 + D™ 4 22(0 + )7 + (202 — (9 +1)"7"

(20 + 1)*+2 4 (202 — 1)(6 + 1)~

=0

Alternatively to the MLE, one can consider the moment estimate (MME) for § which is obtained by solving
1 = T according to #. Mathematically, this MME corresponds exactly to the one of # in the former ML
distribution, i.e.,
G_1l-7+ [( —1)% + 57]/2
B 2 '

We refer to [7] for more details. Under standard regularity conditions, one can prove that both 0 and 6
are consistent and asymptotically normal. These properties are useful for constructing diverse statistical
objects, allowing a precise evaluation of 6, such as confidence intervals and statistical tests.

3.2 Applications

In this subsection, two applications to real data are developed to emphasize the importance of the P-ML
model. The MLE of the parameter 6 is computed and goodness-of-fit statistics for the new model are
compared with those of other competing models.

The first real data set described in Table 1 is obtained from [5]. It contains biological experiment data
which represent the number of European corn-borer larvae pyrausta in the field. It was an experiment
conducted randomly on eight hills in 15 replications, where the experimenter counted the number of borers
per hill of corn.

The second real data set presented in Table 2 is available in [3] and Data set 141 of [15]. It represents
the number of times that the computer breaks down in each of the 128 consecutive weeks of operation.

Table 1: Number of European corn-borer larvae pyrausta in the field with the obtained statistical results

Expected frequency

Observed

Y frequency Poisson PL PB P-ML
0 43 44.145534184 44.9999986 39.8862899 44.1157918
1 35 44.145532941 29.9999997 33.6138756 31.2144367
2 17 22.072765849 18.7500002 21.3426248 19.2709893
3 11 7.357588409 11.2500004 12.0995966 11.2005392
4 5 1.839397050 6.5625003 6.4591469 6.3208825
5 4 0.367879400 3.7500003 3.3244158 3.5170072
6 1 0.061313232 2.1093752 1.6704471 1.9454977
7 2 0.008759033 1.1718751 0.8255575 1.0748488
8 2 0.001094879 0.6445313 0.4031898 0.5945558
Total 60 60 60 60
A - 1 - - -
0 - - 1 0.5624285 0.7700874
—2logL - 462.7437 400.8745 402.1484  400.6870
X2 - 4162.608 5.4990496 10.0146132 5.6789650
p-value - 0.000 0.5992985 0.1877469 0.5776942
AIC - 464.7437 402.8745  404.1484  402.6870
AICc - 464.7776 402.9084 404.1823  402.7209
BIC - 467.5312 405.6620 406.9358  405.4745

In the two applications, we shall compare the P-ML model with the Poisson, PL. and PB models. The
measures of goodness-of-fit include the Akaike information criterion (AIC), Akaike information criterion
corrected (AICc), Bayesian information criterion (BIC), and Chi-square statistics (x?). In general, the
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Table 2: Distribution of the number of times that computer break down in each of the 128 consecutive week
of operation with the obtained statistical results

Expected frequency

No. of times

the computer broke down for:;flg;ecc; Poisson PL PB P-ML
0 15 4.708857e+01 19.27560383 14.42977774 17.7259203
1 19 4.708857e+-01 19.13170881 19.08231193 19.6220324
2 23 2.354428e+-01 17.36852330 18.95570258 18.2549947
3 14 7.848094e+-00 14.96193268 16.76368107 15.6530792
4 15 1.962024e+-00 12.45058537 13.91999018 12.8183756
5 10 3.924047e-01 10.10964793 11.11329656 10.2024619
6 8 6.540078e-02 8.05988261 8.63910859 7.9718041
7 4 9.342968e-03 6.33514960 6.58853505 6.1531345
8 6 1.167871e-03 4.92341554 4.95346750 4.7110926
9 2 1.297634e-04 3.79105622 3.68353642 3.5881866
10 3 1.297634e-05 2.89676320 2.71566028 2.7241949
11 3 1.179668e-06 2.19908843 1.98833716 2.0646421
12 2 9.830563e-08 1.66018086 1.44768579 1.5636915
13 1 7.561971e-09 1.24731297 1.04921528 1.1843565
16 1 2.250586e-12 0.51675851 0.39135270 0.5170605
17 1 1.323874e-13 0.38278119 0.28028170 0.3931708
22 1 4.189369e-20 0.08240787 0.05157894 0.1018824
A - 1 - - -
0 - - 0.4232876  0.2077904 0.2963483
—2logLL - 1427 634.2476 633.2061 632.9591
X2 - 2.386995e+19 17.3813201 24.58311211 13.9381964
p-value - 0.0000e+00 0.2965847  0.05583001 0.5302216
AIC - 1429.0671 636.2476 635.2061 634.9591
AICc - 1429.0988 636.2793 635.2378  634.9908
BIC - 1431.9191 639.0996 638.0581 637.8111

smaller the values of these statistics, the better the fit to the data. In addition, the p-values of the Chi-
square test are communicated. The required computations are carried out using a script in the R-language.

The numerical values of —2LogL i.e., the —2 times the estimated log-likelihood function, x? and p-values,
AIC, AICc and BIC are listed in Tables 1 and 2 for the fitted Poisson, PL, PB and P-ML models for the
first and second data set, respectively.

From Tables 1 and 2, we see that the smallest x2, AIC, AICc, and BIC statistics are achieved for the
P-ML model, except for the first data set where the PL model is better to the other in terms of x? only.
Therefore, from these results, we can modestly say that the new P-ML distribution is a better model than
the others; it can be preferred for fitting the current data sets.

Figures 5 and 6 illustrate the plots of the estimated pmfs for the two data sets, respectively.

4 Conclusions

In this paper, a new one-parameter lifetime distribution is introduced, defined as the distribution of a
random variable X following the Poisson distribution with a parameter A, assuming that X is a random
variable following the modified Lindley distribution. It is called the P-ML distribution. Its properties and
applications are studied. Explicit mathematical expressions for some of its basic statistical properties, such
as the distribution function, mean, variance, coefficient of variation, index of dispersion, factorial moments,
skewness, kurtosis, and probability generating function are discussed. The method of maximum likelihood
estimation is used in estimating the sole parameter of the P-ML distribution. The goodness-of-fits of the
P-ML distribution over other competitive distributions is evaluated for two real datasets. It is seen that the
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P-ML distribution gives a competitive fit, and thus, it can be considered as an important discrete distribution
for modeling count data.
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