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Abstract
In this article, we introduce the concept of Branciari Sb-metric space which is a generalization of

S-metric space and Sb-metric space. By defining a topology on such spaces some interesting topological
properties have been studied herein. We prove fixed point theorems for two contractive type mappings
over such spaces. Finally we apply our established theorem to find a unique solution of a system of linear
algebraic equations.

1 Introduction and Preliminaries

During the last ninety years, fixed point theory is one of the interesting areas of research in Mathematics.
Several generalizations of usual metric structure had been made by a good number of researchers for their
need, particularly in order to study fixed point theory, one such generalized metric space known as rectangular
metric space was introduced by Branciari [1] in the year 2000, where the triangle inequality had been replaced
by a so-called quadrilateral or rectangular inequality. Z. Kadelburg and S. Radenović in their survey article
(See [3]) discussed in a nutshell the structure of rectangular metric spaces. The definition of rectangular
metric space is given as follows:

Definition 1 ([1]) Let X be a nonempty set and ρ : X ×X → [0,∞) be a mapping. Then ρ is said to be a
rectangular metric if it satisfies the following conditions:

(i) ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(iii) ρ(x, y) ≤ ρ(x, a) + ρ(a, b) + ρ(b, y) for all x, y ∈ X and for all a, b(a 6= b) ∈ X \ {x, y}. The pair (X, ρ)
is called a rectangular metric space.

There are several rectangular metric spaces which are not usual metric spaces. Let us recall the following
example.

Example 1 ([3]) Let U = {0, 2}, V = { 1n : n ≥ 1} and X = U ∪ V. Define ρ : X2 → [0,∞) by

ρ(x, y) =


0 if x = y,
1 if x 6= y and either x, y ∈ U or x, y ∈ V,
y if x ∈ U and y ∈ V,
x if x ∈ V and y ∈ U.

Then ρ is a rectangular metric on X but not an usual metric since

ρ(0, 2) = 1 >
2

3
= ρ(0,

1

3
) + ρ(

1

3
, 2).
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In 2012, Sedghi et al. [8] introduced a new type of metric structure consisting of three variables known
as S-metric. Several authors worked on such type of spaces and proved several fixed point theorems (See
[2, 5, 6]). Subsequently in the year 2016, N. Souayah and N. Mlaiki [9] investigated the notion of Sb-metric
spaces which generalizes the concept of S-metric spaces.

Definition 2 ([8, 7]) Let X be a nonempty set. An S-metric on X is a function S : X3 → [0,∞) that
satisfies the following conditions, for all x, y, z, t ∈ X:

(i) S(x, y, z) = 0 if and only if x = y = z;

(ii) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).

The pair (X,S) is called an S-metric space.

There are various types of S-metric spaces, some of them are given below.

Example 2 ([8]) (1) Let X = Rn and ‖.‖ a norm on X, then S(x, y, z) = ‖y + z − 2x‖ + ‖y − z‖ is an
S-metric on X.

(2) Let R be the real line. Then S(x, y, z) = |x− z|+ |y − z| for all x, y, z ∈ R is an S-metric on R. This
S-metric on R is called the usual S-metric on R.

Definition 3 ([4, 9]) Let X be a nonempty set and let s ≥ 1 be a given real number. A function Sb : X3 →
[0,∞) is said to be Sb-metric if and only if for all x, y, z, t ∈ X: the following conditions hold:

(i) Sb(x, y, z) = 0 if and only if x = y = z;

(ii) Sb(x, y, z) ≤ s[Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)].

The pair (X,Sb) is called an Sb-metric space.

Example 3 ([9]) Let X be a nonempty set and card(X) ≥ 5. Suppose X = X1 ∪X2 a partition of X such
that card(X1) ≥ 4. Let s ≥ 1. Then

Sb(x, y, z) =


0 if x = y = z,
5 if x = 1 = y and z = 2,
1

n+1 if x = 1 = y and z ≥ 3,
1

n+2 if x = 2 = y and z ≥ 3,

3 otherwise.

for all x, y, z ∈ X. Then Sb is an Sb-metric on X with coeffi cient s.

2 Introduction to Branciari Sb-Metric Space

In this section we give the definition of Branciari Sb-metric space and discuss some properties of such spaces.

Definition 4 Let X be a nonempty set and σ : X3 → R+0 be a function. Then σ is said to be Branciari
Sb-metric if it satisfies the following conditions:

(i) σ(x, y, z) = 0 if and only if x = y = z;
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(ii) For any x, y, z ∈ X and for a, b ∈ X \ {x, y, z} with a 6= b we have

σ(x, y, z) ≤ k[σ(x, x, a) + σ(y, y, a) + σ(z, z, b) + σ(a, a, b)],

where k ≥ 1. The pair (X,σ) is called Branciari Sb-metric space.

Definition 5 A Branciari Sb-metric σ on a nonempty set X is said to be symmetric if σ(x, x, y) = σ(y, y, x)
for all x, y ∈ X.

Proposition 1 (i) Let (X,S) be an S-metric space (See Definition 2). The X is also a Branciari Sb-
metric space for k = 2.

(ii) Let (X,Sb) be an Sb-metric space with coeffi cient s ≥ 1 (See Definition 3). The X is also a Branciari
Sb-metric space for k = 2s2.

Proof. (i) The first condition of Definition 4 follows trivially for an S-metric. Now let us choose x, y, z ∈ X
and a, b ∈ X \ {x, y, z} with a 6= b. Then we get

S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a)

≤ S(x, x, a) + S(y, y, a) + 2S(z, z, b) + S(a, a, b)

≤ 2[S(x, x, a) + S(y, y, a) + S(z, z, b) + S(a, a, b)].

Therefore all the conditions of Definition 4 are satisfied and therefore S is a Branciari Sb-metric for k = 2.
(ii) Clearly, Sb satisfies the first condition of Definition 4. Now let us take x, y, z ∈ X and a, b ∈

X \ {x, y, z} with a 6= b. Then we get

Sb(x, y, z) ≤ s[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, a)]

≤ s[Sb(x, x, a) + Sb(y, y, a)] + s2[2Sb(z, z, b) + Sb(a, a, b)]

≤ 2s2[Sb(x, x, a) + Sb(y, y, a) + Sb(z, z, b) + Sb(a, a, b)].

Therefore Sb is a Branciari Sb-metric for k = 2s2.

Proposition 1 shows that any S-metric space or an Sb-metric space is also a Branciari Sb-metric space
but there are several Branciari Sb-metric spaces which are neither S-metric spaces nor Sb-metric spaces.

Example 4 Let X = N and σ : X3 → [0,∞) be defined by

σ(x, y, z) =


0 if x = y = z,
5 if x = 1 = y and z = 2,
1

n+1 if x = 1 = y and z ≥ 3,
1

n+2 if x = 2 = y and z ≥ 3,

3 otherwise.

Also we take σ(x, x, y) = σ(y, y, x) for all x, y ∈ X. Then σ is a symmetric Branciari Sb-metric on X for
k = 5

3 but it is neither an S-metric nor an Sb-metric for any k ≥ 1.

Definition 6 Let (X,σ) be a Branciari Sb-metric space. Then

(i) A sequence {xn} in X is said to be convergent to some z ∈ X if σ(xn, xn, z)→ 0 as n→∞.

(ii) A sequence {xn} in X is said to be Cauchy if σ(xn, xn, xm)→ 0 as n,m→∞.
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(iii) X is said to be complete if every Cauchy sequence in X is convergent to some element in X.

Next we prove some lemmas with respect to symmetric Branciari Sb-metric space which will be useful
for our further results.

Lemma 1 Let (X,σ) be a symmetric Branciari Sb-metric space and {xn} be a Cauchy sequence in X such
that xn 6= xm for n 6= m. Then {xn} converges to atmost one point.

Proof. If possible let {xn} converges to two distinct points x and y. Since all the elements of {xn} are
distinct, we see that there exists p ≥ 1 such that xn /∈ {x, y} for all n > p. Thus

σ(x, x, y) ≤ k[2σ(x, x, xn) + σ(y, y, xn+1) + σ(xn, xn, xn+1)]

= k[2σ(xn, xn, x) + σ(xn+1, xn+1, y) + σ(xn, xn, xn+1)] for all n > p.

Taking n→∞ we get σ(x, x, y) = 0, a contradiction. Hence {xn} can converge to atmost one point in X.

Lemma 2 Let (X,σ) be a symmetric Branciari Sb-metric space and {xn} be a sequence in X with distinct
terms, which is both Cauchy and convergent. Then the limit of {xn} is unique say x and moreover for all
z ∈ X one can get

1

k
σ(x, x, z) ≤ lim inf

n→∞
σ(xn, xn, z) ≤ lim sup

n→∞
σ(xn, xn, z) ≤ kσ(x, x, z).

Proof. If z = x then the inequality is clearly satisfied. So let z( 6= x) ∈ X. Then there exists q ≥ 1 such that
xn /∈ {x, z} for all n > q. Therefore

σ(xn, xn, z) ≤ k[2σ(xn, xn, xn+1) + σ(z, z, x) + σ(xn+1, xn+1, x)]

= k[2σ(xn, xn, xn+1) + σ(x, x, z) + σ(xn+1, xn+1, x)] for all n > q.

Taking n→∞ we have lim supn→∞ σ(xn, xn, z) ≤ kσ(x, x, z). Also we get

σ(x, x, z) ≤ k[2σ(x, x, xn+1) + σ(z, z, xn) + σ(xn+1, xn+1, xn)]

= k[2σ(xn+1, xn+1, x) + σ(xn, xn, z) + σ(xn+1, xn+1, xn)] for all n > q.

Taking n → ∞ we have lim infn→∞ σ(xn, xn, z) ≥ 1
kσ(x, x, z). Hence by combining these two we get the

required conclusion.

The following remark shows the distinction between some behavioral properties namely convergence and
Cauchyness of a sequence in a Branciari Sb-metric space with that in an S-metric space and Sb-metric space.

Remark 1 (i) In an S-metric space, the limit of a convergent sequence is always unique but from Example
4 it is clear that {n}n≥3 converges to both 1 and 2.

(ii) Any convergent sequence in an S-metric space is Cauchy but in Example 4 we see that {n}n≥3 is
convergent but it is not Cauchy since σ(n, n,m) = 3 for all n,m ≥ 3.

(iii) It is also known that an S-metric is continuous that is limn→∞ S(xn, xn, z) = S(x, x, z) for all z ∈ X
whenever {xn} converges to x but in Example 4 we see that limn→∞ σ(n, n, 1) = 0 6= 5 = σ(2, 2, 1)
though {n}n≥3 converges to 2.

We can define open balls in a Branciari Sb-metric space (X,σ) in a usual way. For an x ∈ X and ε > 0
we define Bσ(x, ε) = {y ∈ X : σ(y, y, x) < ε}.
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Remark 2 Let us take

τσ = {∅} ∪ {Uσ(6= ∅) ⊂ X : there exists εx > 0 for every x ∈ Uσ such that Bσ(x, εx) ⊂ Uσ}.

Then τσ forms a topology on X.

The topology τσ of X possesses some interesting properties, which are as follows.

Remark 3 (i) (X,σ) may not be Hausdorff with respect to the topology τσ. If it is, then in Example
4 there exists two open sets U and V such that 1 ∈ U , 2 ∈ V and U ∩ V = ∅. Now there exists
r1, r2 > 0 such that Bσ(1, r1) ⊂ U , Bσ(2, r2) ⊂ V and therefore Bσ(1, r1) ∩ Bσ(2, r2) = ∅, but we see
that Bσ(1, r) ∩ Bσ(2, t) 6= ∅ for any r, t > 0, a contradiction. Hence in Example 4 the topology τσ is
not Hausdorff.

(ii) Also the open balls in (X, τσ) may not be always open sets. In Example 4 we see that Bσ(3, 12 ) = {1, 2, 3}
but Bσ(1, r) contains all but finitely many elements of N for any r > 0 and therefore Bσ(1, r) * Bσ(3, 12 )
for any r > 0. Hence Bσ(3, 12 ) is not open in τσ.

3 Some Fixed Point Theorems in Symmetric Branciari Sb-Metric
Space

Theorem 1 (Analogue to Banach Contraction Theorem) Let (X,σ) be a complete symmetric Bran-
ciari Sb-metric space and T : X → X satisfies

σ(Tx, Tx, Ty) ≤ ασ(x, x, y) for all x, y ∈ X, (1)

where α ∈ (0, 1). Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be arbitrarily chosen and we construct the sequence {xn} by xn = Txn−1 for all n ≥ 1.
If xp−1 = xp for some p ∈ N, then T has a fixed point in X. So we assume that xn 6= xn+1 for all n ≥ 0. We
show that {xn} is Cauchy sequence in X.
Case-I: α ∈ (0, 1√

k
). Then

Sn = σ(xn, xn, xn+1)

≤ ασ(xn−1, xn−1, xn)

≤ α2σ(xn−2, xn−2, xn−1)

...

≤ αnσ(x0, x0, x1) = αnS0 for all n ≥ 1.

Similarly, we have

S∗n = σ(xn, xn, xn+2) ≤ αnσ(x0, x0, x2) = αnS∗0

for all n ∈ N. Now if xn = xm for some m > n, then we have

0 < Sn = σ(xn, xn, xn+1) = σ(xm, xm, xm+1) = Sm.
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Therefore Sn = Sm ≤ αSm−1 ≤ ... ≤ αm−nSn < Sn, which is a contradiction. From this it follows that
xn 6= xm for any n,m(n 6= m) ∈ N. Now for p = 2m+ 1, we have

σ(xn, xn, xn+p)

≤ k[2σ(xn, xn, xn+1) + σ(xn+p, xn+p, xn+2) + σ(xn+1, xn+1, xn+2)]

= 2kσ(xn, xn, xn+1) + kσ(xn+1, xn+1, xn+2) + kσ(xn+2, xn+2, xn+p)

≤ 2kσ(xn, xn, xn+1) + kσ(xn+1, xn+1, xn+2)

+k2[2σ(xn+2, xn+2, xn+3) + σ(xn+p, xn+p, xn+4) + σ(xn+3, xn+3, xn+4)]

= 2kσ(xn, xn, xn+1) + kσ(xn+1, xn+1, xn+2)

+2k2σ(xn+2, xn+2, xn+3) + k2σ(xn+3, xn+3, xn+4) + k2σ(xn+4, xn+4, xn+p)

...

≤ 2k[σ(xn, xn, xn+1) + σ(xn+1, xn+1, xn+2)]

+2k2[σ(xn+2, xn+2, xn+3) + σ(xn+3, xn+3, xn+4)] + · · ·
+2km[σ(xn+2m−2, xn+2m−2, xn+2m−1) + σ(xn+2m−1, xn+2m−1, xn+2m)]

+kmσ(xn+2m, xn+2m, xn+2m+1)

≤ 2[{k(αn + αn+1) + k2(αn+2 + αn+3) + · · ·
+km(αn+2m−2 + αn+2m−1)}+ kmαn+2m]σ(x0, x0, x1)

= 2k(1 + α)αn[1 + kα2 + ...+ kmα2m]S0

≤ 2k(1 + α)

1− kα2 αnS0 for all n ≥ 1. (2)

Also for p = 2m we get

σ(xn, xn, xn+p)

≤ k[2σ(xn, xn, xn+1) + σ(xn+p, xn+p, xn+2) + σ(xn+1, xn+1, xn+2)]

= 2kσ(xn, xn, xn+1) + kσ(xn+1, xn+1, xn+2) + kσ(xn+2, xn+2, xn+p)

≤ 2kσ(xn, xn, xn+1) + kσ(xn+1, xn+1, xn+2)

+k2[2σ(xn+2, xn+2, xn+3) + σ(xn+p, xn+p, xn+4) + σ(xn+3, xn+3, xn+4)]

= 2kσ(xn, xn, xn+1) + kσ(xn+1, xn+1, xn+2)

+2k2σ(xn+2, xn+2, xn+3) + k2σ(xn+3, xn+3, xn+4) + k2σ(xn+4, xn+4, xn+p)

...

≤ 2k[σ(xn, xn, xn+1) + σ(xn+1, xn+1, xn+2)]

+2k2[σ(xn+2, xn+2, xn+3) + σ(xn+3, xn+3, xn+4)] + · · ·
+2km−1[σ(xn+2m−4, xn+2m−4, xn+2m−3) + σ(xn+2m−3, xn+2m−3, xn+2m−2)]

+km−1σ(xn+2m−2, xn+2m−2, xn+2m)

≤ 2[{k(αn + αn+1) + k2(αn+2 + αn+3) + · · ·
+km−1(αn+2m−4 + αn+2m−3)}σ(x0, x0, x1) + km−1αn+2m−2σ(x0, x0, x2)]

= 2k(1 + α)αn[1 + kα2 + ...+ km−2α2m−4]S0 + km−1αn+2m−2S∗0

≤ 2k(1 + α)

1− kα2 αnS0 + αn(kα2)m−1S∗0 =
2k(1 + α)

1− kα2 αnS0 + αnS∗0 for all n ≥ 1. (3)

Therefore from (2) and (3) we conclude that {xn} is Cauchy in X. Since X is complete it follows from
Lemma 1 that {xn} converges to a unique point z ∈ X. Now,

σ(xn+1, xn+1, T z) ≤ ασ(xn, xn, z)→ 0 as n→∞.
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Hence Tz = z and z is a fixed point of T in X. The uniqueness of fixed point is very much clear.
Case-II: α ∈ [ 1√

k
, 1). Then there exists N ∈ N such that αN ∈ (0, 1√

k
). Now due to the contractive condition

(1) we see that TN also satisfies the contractive condition (1) for the Lipschitz constant αN . Therefore by
Case-I, TN has a unique fixed point in X and thus in this case also T has a unique fixed point.

Example 5 Let X = N and σ : X3 → [0,∞) be defined by σ(x, x, x) = 0 and σ(x, x, y) = σ(y, y, x) for all
x, y ∈ X with

σ(x, y, z) =


10 if x = 1 = y and z = 2,

1
2(n+1) if x = 1 = y and z ≥ 3,
1

n+2 if x = 2 = y and z ≥ 3,

5 otherwise.

Then σ is a complete symmetric Branciari Sb-metric space for k = 4 but it is neither an S-metric nor an
Sb-metric space. Let T : X → X be given by

T (x) =

{
4 if x = 1,
5 if x 6= 1.

Then T 2 satisfies the contractive condition (1) for any α ∈ (0, 1) and thus T 2 has a unique fixed point in X.
Therefore T has a unique fixed point x = 5 in X.

Theorem 2 (Analogue to Kannan fixed point theorem) Let (X,σ) be a complete symmetric Branciari Sb-
metric space and T : X → X satisfies

σ(Tx, Tx, Ty) ≤ β[σ(x, x, Tx) + σ(y, y, Ty)] for all x, y ∈ X, (4)

where β ∈ (0, 12 ). Then T has a unique fixed point in X.

Proof. Let x0 ∈ X be taken as arbitrary and let us construct the sequence {xn} by xn = Txn−1 for all
n ≥ 1. If xi−1 = xi for some i ∈ N then T has a fixed point in X. So we assume that xn 6= xn+1 for all n ≥ 0.
Here we show that {xn} is Cauchy sequence in X.
Case-I: β ∈ (0, 1

k+1 ). From the contractive condition (4) we get

σ(xn, xn, xn+1) = σ(Txn−1, Txn−1, Txn)

≤ β[σ(xn−1, xn−1, xn) + σ(xn, xn, xn+1)] for all n ≥ 1. (5)

From which we get Sn = σ(xn, xn, xn+1) ≤ β
1−βσ(xn−1, xn−1, xn) = γσ(xn−1, xn−1, xn) = γSn−1 ≤ ... ≤

γnS0 for all n ∈ N, where γ = β
1−β <

1
k . Also we have,

S∗n = σ(xn, xn, xn+2) = σ(Txn−1, Txn−1, Txn+1)

≤ β[σ(xn−1, xn−1, xn) + σ(xn+1, xn+1, xn+2)]

≤ β[γn−1 + γn+1]S0

= β(1 + γ)γn−1S0 for all n ≥ 1. (6)

By a similar calculation as the previous theorem we can show that {xn} is Cauchy in X and therefore due
to the completeness of X there exists a unique u ∈ X such that xn → u as n→∞. Now,

σ(xn+1, xn+1, Tu) = σ(Txn, Txn, Tu)

≤ β[σ(xn, xn, xn+1) + σ(u, u, Tu)]

≤ βσ(xn, xn, xn+1) + βk[2σ(u, u, xn) + σ(Tu, Tu, xn+1)+

σ(xn, xn, xn+1)] for all n ∈ N. (7)
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Therefore σ(xn+1, xn+1, Tu) ≤ β(1+k)σ(xn,xn,xn+1)+2kβσ(xn,xn,u)
1−βk → 0 as n → ∞. Hence Tu = u and u is a

fixed point of T. The uniqueness of fixed point is evident.
Case-II: β ∈ [ 1

k+1 ,
1
2 ). Then there exists N ∈ N such that βγN−1 ∈ (0, 1

k+1 ), where γ = β
1−β < 1. Now

due to the contractive condition (4) we see that TN satisfies the contractive condition (4) for the Lipschitz
constant βγN−1. Therefore by Case-I, TN has a unique fixed point in X and hence T has a unique fixed
point.

Example 6 Let X = { 12 ,
1
3 , ...} and σ : X3 → [0,∞) be defined by σ(x, x, x) = 0 and σ(x, x, y) = σ(y, y, x)

for all x, y ∈ X with

σ(x, y, z) =

 |n−m| if x = 1
n = y, z = 1

m and |n−m| > 1,
1
3 if x = 1

n = y, z = 1
m and |n−m| = 1,

1 otherwise.

Then σ is a complete symmetric Branciari Sb-metric space for k = 3 but not an S-metric, since

σ(
1

2
,

1

2
,

1

4
) = 2 > 2σ(

1

2
,

1

2
,

1

3
) + σ(

1

4
,

1

4
,

1

3
) = 1.

Let T : X → X be given by

T (x) =

{
1
4 if x = 1

2 ,
1
5 if x ≤ 1

3 .

Then T satisfies the contractive condition (4) for β = 1
6 and thus T has a unique fixed point x = 1

5 in X.

4 An Application to the System of Linear Algebraic Equations

In this section we give an application of Theorem 1 for solving a system of linear algebraic equations.
Let us consider the system of n linear algebraic equations in n unknowns

p11x1 + p12x2 + ...+ p1nxn + c1 = 0,
p21x1 + p22x2 + ...+ p2nxn + c2 = 0,
...
pn1x1 + pn2x2 + ...+ pnnxn + cn = 0,

(8)

where pij , ci ∈ R for all 1 ≤ i, j ≤ n. We can write the system of linear equations in matrix notation as
PX + C = O, where P = (pij)n×n, X = (x1, x2, ..., xn), C = (c1, c2, ..., cn) and O = (0, 0, ..., 0). To find a
solution of the system of linear equations (8) we have to find a fixed point of the mapping T : Rn → Rn
defined by TX = QX + C, where Q = P + In that is Q = (qij)n×n with qij = pij if i 6= j and qii = pii + 1
for all i = 1, ..., n.
Now we define σ : (Rn)3 → [0,∞) by

σ(x, y, z) = max
1≤i≤n

[(xi − yi)2 + (yi − zi)2], where x = (xi), y = (yi) and z = (zi). (9)

Then σ is a symmetric Sb-metric space that is a symmetric Branciari Sb-metric space for k = 4.

Theorem 3 If
n∑
j=1

|qij | ≤
√
α < 1 for all 1 ≤ i ≤ n,

then the system of linear equations (8) has a unique solution in (Rn, σ).
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Proof. To find a unique solution of (8) we show that the mapping T : Rn → Rn defined by Tx = Qx+C for
all x ∈ Rn, where Q = P + In that is Q = (qij)n×n with qij = pij if i 6= j and qii = pii + 1 for all i = 1(1)n,
satisfies the contractive condition (1). Now for any x = (xi) and y = (yi) in Rn we have

σ(Tx, Tx, Ty) = max
1≤i≤n

 n∑
j=1

qij(xj − yj)

2

=

 max
1≤i≤n

|
n∑
j=1

qij(xj − yj)|

2

≤

 max
1≤i≤n

n∑
j=1

|qij(xj − yj)|

2

≤

 max
1≤i≤n

n∑
j=1

|qij |
√
σ(x, x, y)

2

=

 max
1≤i≤n

n∑
j=1

|qij |

2 σ(x, x, y)

≤ ασ(x, x, y).

Since (Rn, σ) is complete, and by Theorem 1, T has a unique fixed point that is the system of linear equations
(8) has a unique solution in Rn.

We now give a numerical example in support of Theorem 3.

Example 7 Let us consider the following system of linear algebraic equations in three variables 0.7x1 + 0.2x2 + 0.1x3 + 1 = 0,
0.1x1 + 0.9x2 + 0.4x3 + 2 = 0,
0.3x1 + 0.1x2 + 0.8x3 + 3 = 0.

(10)

Then the system of linear algebraic equations (10) has a unique solution.
Let X = R3 be the symmetric Branciari Sb-metric space endowed with the metric σ : X3 → [0,∞) defined

by
σ(x, y, z) = max

1≤i≤3
[(xi − yi)2 + (yi − zi)2], for all x = (xi), y = (yi) and z = (zi) in X.

We can write the above system of linear algebraic equations (10) as

−0.7x1 − 0.2x2 − 0.1x3 − 1 = 0,

−0.1x1 − 0.9x2 − 0.4x3 − 2 = 0,

−0.3x1 − 0.1x2 − 0.8x3 − 3 = 0.

Here p11 = −0.7, p12 = −0.2, p13 = −0.1; p21 = −0.1, p22 = −0.9, p23 = −0.4; p31 = −0.3, p32 = −0.1,
p33 = −0.8; c1 = −1, c2 = −2 and c3 = −3. Thus q11 = 0.3, q12 = −0.2, q13 = −0.1; q21 = −0.1, q22 = 0.1,
q23 = −0.4; q31 = −0.3, q32 = −0.1 and q33 = 0.2. Here we see that

3∑
j=1

|qij | = 0.6 for all 1 ≤ i ≤ 3.

Hence from the Theorem 3 it follows that the system of linear algebraic equations (10) has a unique solution
in R3, which is given by x1 w −0.792, x2 w −0.656 and x3 w −3.507.
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