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Abstract

As a continuation of our recent work [5], we introduce a three-parameter quintic planar differential
system and after adequate regular transformations, we show that it is equivalent to a Riccati equation.
This equation is shown to be integrable. Then via the Poincaré return-map, we show that the system
admits exactly two non-algebraic limit cycles. Moreover, these limit cycles are given in an explicit way.
As far as we know, this result has no analogue in the literature.

1 Introduction

It is a fact that most of research papers devoted to the study of limit cycles concerning planar and autonomous
differential systems of degree n, of the form

.
x =

dx

dt
= Pn (x, y) ,

.
y =

dy

dt
= Qn (x, y) ,

(1)

where Pn (x, y) and Qn (x, y) are coprime polynomials of R [x, y] and n = max {degPn,degQn} , are focused
on their number, stability and location in the phase plane. A limit cycle of system (1) is an isolated periodic
orbit in the set of its all periodic orbits and it is said to be algebraic if it is contained in the zero set of an
irreducible invariant algebraic curve of the system. We recall that an algebraic curve defined by U (x, y) = 0
is an invariant curve for system (1) if there exists a polynomial K (x, y) (called the cofactor) such that

Pn (x, y)
∂U

∂x
(x, y) +Qn (x, y)

∂U

∂x
(x, y) = K (x, y)U (x, y) . (2)

A natural problem is to express analytically the limit cycles. In addition to the intrinsic theoretical
interest of the theory of exact limit cycles, we can apply it to compare the effi ciency of the numerical
methods dealing with the approximation of the shape of the limit cycle obtained by these methods with the
exact one once it is known. Until recently, the only limit cycles known in an explicit way were algebraic (see
for instance [3], [4], [9], [10], [14], and references therein). These limit cycles are searched as smooth ovals
contained in algebraic invariant curves. In 1998, M. Abdelkadder [1] presented for the first time an example
of a Liénard equation with exact algebraic limit cycle when the well known suffi cient conditions of existence
and uniqueness of the limit cycle are observed. This example was recovered as a particular case by A.
Bendjeddou and R. Cheurfa [3] when studying a more general class of planar systems. Although, limit cycles
of planar polynomial differential systems are not in general algebraic. For instance, the limit cycle appearing
in the van der Pol equation is non-algebraic as it is proved by Odani [12]. In the chronological order, the
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first examples were explicit non-algebraic limit cycles appeared are those of A. Gasull [8], Al-Dossary [2] for
n = 5 and Benterki and Llibre [6] for n = 3. The fist result for the coexistence of algebraic and non-algebraic
limit cycles goes back to J. Giné and M. Grau [9] for n = 9. In [5], we have extended this last result by
means of a different and shorter method to the case n = 5. Indeed, in [5] the system under investigation is
transformed after two regular change of variables into a generalized Riccati equation for which a particular
periodic solution is obtained. It is shown that this solution corresponds to an algebraic limit cycle of the
system. Hence, the "complete" first integral of the system follows immediately providing thus the possibility
to express the explicit analytical form for the wanted non-algebraic limit cycle, where by complete we mean
that the set of all associated level curves to the first integral determines completely the phase portrait of the
system. This work aims to give an answer to a question raised among others in this later paper, that is to
give an example of a quintic system admitting two non-algebraic limit cycles explicitly obtained. As we can
see below, by adopting the same demarche as in [5], a nonlinear differential equation arises but this time
with unknown particular solution. Fortunately, a successful guess enables us to overcome this diffi culty and
to solve completely this equation. The searched limit cycles are detected via the Poincaré return map.

2 The Main Result

As a main result, we shall prove:

Theorem 1 Let the quintic system

.
x = x+ x

(
x2 + y2 − 2c

) (
ax2 − 4bxy + ay2

)
− 4y

(
x2 + y2

) (
x2 + y2 − c

)
,

.
y = y + y

(
x2 + y2 − 2c

) (
ax2 − 4bxy + ay2

)
+ 4x

(
x2 + y2

) (
x2 + y2 − c

)
,

(3)

in which a, b and c are real parameters such that a > 0 and c < 0. Then, under the hypotheses

(H1) ac2 − 1 6= 0,

(H2)
(
ac2 − 1

)2 − 4c4b2 > 0,

(H3)
∫ 2π

0

ac2 − 1− 2bc2 sin 2s

exp (as+ b cos 2s)
ds <

c2

eb
,

this system possesses exactly two non-algebraic limit cycles
(
γ±
)
enclosing an unstable improper node and

explicitly given in polar coordinates (r; θ) by the equation

r (θ; r∗) =

√√√√√c±

√√√√c2 + eaθ+b cos 2θ

(
(r2
∗ − c)

2

eb
+

∫ θ

0

1−ac2+2bc2 sin 2s
exp(as+b cos 2s) ds

)
, (4)

where

r∗ =

√√√√
c±

√
eb
∫ 2π

0

ac2 − 1 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds.

Note that the conditions above can be fulfilled, for example for a = 4, c = 1 and b ranging from −1 to 3.
To prove this theorem, we need the following lemmas. The first one is concerned with the equilibrium points
of system (3).

Lemma 1 The origin is the unique equilibrium point of system (3).
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Proof. Obviously the origin is an equilibrium point. If we remark that any equilibrium point must satisfy

x
.
y − y .x = 4

(
x2 + y2

)2 (
x2 + y2 − c

)
= 0,

so, any other, if exists, must lie on the circle x2 +y2 = c. Let (x0, y0) be such a point. Then from the remark
above, x0 and y0 must satisfy

x0

(
1− c

(
ax2

0 − 4bx0y0 + ay2
0

))
= 0,

y0

(
1− c

(
ax2

0 − 4bx0y0 + ay2
0

))
= 0.

From (H1), there are no equilibrium point belonging to one of the axes. so this algebraic system reduces to
the equation

1− c
(
ax2

0 − 4bx0y0 + ay2
0

)
= 0.

It remains the possibility to get equilibrium points on the circle x2 + y2 = c. But according to (H2), it is
not diffi cult to see that this equality is impossible, and this ends the proof of the lemma.
We recall according to the last lines of the introduction that our strategy in the search for analytically

given non-algebraic limit cycles requires the integration of the system, in fact, we have

Lemma 2 The system (3) is integrable and its complete first integral F is given by

F (x, y) =

(
x2 + y2 − c

)2
exp

(
bx

2−y2
x2+y2 + a arctan y

x

) − ∫ arctan y
x

0

1−ac2+2bc2 sin 2s
exp(as+b cos 2s) ds. (5)

Proof. In polar coordinates, this system turns into

.
r = (a− 2b sin 2θ) r5 − 2c (a− 2b sin 2θ) r3 + r,
.

θ = 4r2
(
r2 − c

)
.

(6)

Taking θ as an independent variable, we obtain the equation

4r
(
r2 − c

) dr
dθ

= (a− 2b sin 2θ) r4 − 2c (a− 2b sin 2θ) r2 + 1. (7)

Via the change of variable ρ = r2, this equation is transformed into the nonlinear differential equation

2 (ρ− c) ρ′ = (a− 2b sin 2θ) ρ2 − 2c (a− 2b sin 2θ) ρ+ 1. (8)

Let Φ : R→ R be an arbitrary C1 function. We seek a solution of (8) quadratic in ρ of the form (ρ (θ)− c)2
+

Φ (θ) = 0, or under the explicit form ρ (θ) = c + ε
√

Φ (θ), with ε = ±1. This choice leads to the following
linear ordinary differential equation in term of the unknown function Φ

dΦ

dθ
− (a− 2b sin 2θ) Φ− 2bc2 sin 2θ + ac2 − 1 = 0, (9)

we deduce that

Φ = eaθ+b cos 2θ

(
k +

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds

)
, (10)

where k is an arbitrary real constant. We recall that ρ is related to Φ by ρ (θ) = c ±
√

Φ (θ). Thus we get
the solution of eq. (8) as follows

ρ (θ; k) = c+ ε

√√√√eaθ+b cos 2θ

(
k +

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds

)
. (11)
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Hence the general solution of eq. (7) is

r (θ; k) =

√√√√√c+ ε

√√√√eaθ+b cos 2θ

(
k +

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds

)
. (12)

Consequently, the system (3) is integrable and the passage to the Cartesian coordinates in (12) allow us to
write down the expression (5) of the fist integral F (x, y).
For our purpose, let us introduce the function g defined on [0, 2π] by

g (θ) = c2 − 2eaθ+b cos 2θ

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds.

Then we have

Lemma 3 ∀θ ∈ [0, 2π] : g (θ) > 0.

Proof. For any θ ∈ [0, 2π] , the hypothesis (H2) gives

1− ac2 + 2bc2 sin 2θ

eaθ+b cos 2θ
≥ 0

and then

0 ≤
∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds ≤

∫ 2π

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds,

from which, we deduce that

eaθ+b cos 2θ

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds ≤ eaθ+b

∫ 2π

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds.

So

c2 − 2eaθ+b cos 2θ

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds ≥ c2 − 2eaθ+b

∫ 2π

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds.

But the function θ 7−→ c2 − 2eaθ+b
∫ 2π

0
1−ac2+2bc2 sin 2s
exp(as+b cos 2s) ds is decreasing on [0, 2π] , we deduce the inequalities

c2 − 2e2πa+b

∫ 2π

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds ≤ c2 − 2eaθ+b cos 2θ

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds.

Thus

c2 − 2eaθ+b cos 2θ

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds ≥ c2 − 2e2πa+b

∫ 2π

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds,

i.e.,

g (θ) ≥ c2 − 2e2πa+b

∫ 2π

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds,

and using (H3), we conclude our proof.

Lemma 4 Equation (8) admits exactly two periodic solutions.

Proof. In (11), we put θ = 0. Let ρ0 = ρ (0; k) = c ±
√
keb so k = (ρ0−c)2

eb
. A necessary condition of the

positivity of this solution is ρ0 > 0, which requires that 0 < k < c2

eb
. In function of ρ0, the solution (11)

becomes

ρ (θ; ρ0) = c±

√√√√eaθ+b cos 2θ

(
(ρ0 − c)

2

eb
+

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds

)
. (13)
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To be a periodic solution, it must satisfy the condition

ρ (2π; ρ0) = ρ (0; ρ0) = ρ0 > 0, (14)

providing the value of k∗of k :

k∗ =

∫ 2π

0

ac2 − 1 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds. (15)

From (H2), k∗ is non negative and taking (H3) in consideration, we obtain two positive values of ρ0:
ρ0 = ρ∗ = c±

√
k∗eb, thus

ρ∗ = c±

√
eb
∫ 2π

0

ac2 − 1 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds, (16)

and consequently the two values r∗ as in the theorem. Thus a rewriting of the two possible periodic solutions
of eq.(9) is

ρ± (θ; ρ∗) = c±

√√√√eaθ+b cos 2θ

(
(ρ∗ − c)

2

eb
+

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds

)
. (17)

It is clear that ρ+ (θ; ρ∗) > 0 for all θ ∈ [0, 2π[. But ρ− (θ; ρ∗) + ρ+ (θ; ρ∗) = 2c > 0 and

ρ− (θ; ρ∗) ρ+ (θ; ρ∗) = c2 − 2eaθ+b cos 2θ

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds = g (θ) .

Using the preceding lemma, we deduce that ρ− (θ; ρ∗) > 0 for all θ ∈ [0, 2π[ and this ends the proof.

Proof of Theorem 1. It is obvious that to any periodic solution of eq. (7) corresponds a periodic solution
of eq. (8) via the relation ρ = r2 providing the two periodic solutions of eq.(7) under the form

r± (θ; r∗) =

√√√√√c±

√√√√eaθ+b cos 2θ

(
(r2
∗ − c)

2

eb
+

∫ θ

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds

)
. (18)

As a consequence of the lemma above, the two solutions given by (4) are periodic. The inequality r± (θ; ρ∗) >
0 means that the solution curves

(
γ±
)
do not pass through the origin. Finally, it remains to show that

(
γ±
)

are in fact limit cycles. For that, it is more advantageous to consider the solutions (13), and introduce the
two Poincaré return-maps Π± with the positive x-axis as Poincaré section by

ρ0 → Π±(2π; ρ0) = ρ± (2π; ρ0) , (19)

where

ρ± (2π; ρ0) = c±

√√√√e2πa+b

(
(ρ0 − c)

2

eb
+

∫ 2π

0

1− ac2 + 2bc2 sin 2s

exp (as+ b cos 2s)
ds

)
.

We compute dΠ±
dρ0

(2π; ρ0) at the values ρ0 = ρ∗ where ρ∗ are given by (16). Few calculations lead to

dΠ±
dρ0

(2π; ρ0) =
eπa√(

c2 − 2cρ0 + ρ2
0 +

∫ 2π

0
1−ac2+2bc2 sin 2s

exp( 12as2−bs+
b
2 sin 2s)

ds

) .

For ρ0 = ρ∗, we find
dΠ±
dρ0

(2π; ρ0)

∣∣∣∣
ρ0=ρ∗

= ±e
πa

√
2
. (20)
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Figure 1: The phase portrait in the Poincaré disk of the polynomial differential system (21).

We conclude that
(
γ±
)
are in fact limit cycles. It is not diffi cult to see that for any θ, we have r− (θ; r0) < c

and r+ (θ; r0) > c, which means that the circle x2 + y2 − c = 0 is located between the two limit cycles.
Furthermore, inside the circle x2 + y2 − c = 0 we have

.

θ < 0, hence the inner limit cycle
(
γ−
)
is stable.

Outside this circle, we have
.

θ > 0, thus the outer limit cycle
(
γ+

)
is unstable (see [6], section 1.6 for more

details). Finally from the fact that the Poincaré return-map (19) do not possess other fixed points, the
system (3) admits exactly two limit cycles. It remains to show the limit cycles

(
γ±
)
are non-algebraic.

In the phase plane, all the trajectories of system (3) are represented by the level curves associated to the
first integral F (x, y) and particularly, the limit cycles

(
γ±
)
are defined by the equations F (x, y) = k∗ were

k∗ is given by (15). If we suppose that
(
γ±
)
are algebraic, then F (x, y) should be a polynomial, so there

exists an integer n such that ∂nF
(∂x)n vanishes identically, but this is not the case since transcendental terms

such as exp
(
bx

2−y2
x2+y2 + a arctan y

x

)
already exists in F (x, y) and still reappears when partial derivatives of

arbitrary order are performed, which means that F (x, y) is not a polynomial and that the limit cycles
(
γ±
)

are non-algebraic.

Example 1 As an example, let us take a = 4, b = −1 and c = 1 in system (3). In the standard form, this
system reads

.
x = x− 8x3 − 4x2y − 8xy2 + 4y3 + 4x5 + 8x3y2 − 4x2y3 + 4xy4 − 4y5,
.
y = y − 4x3 − 8x2y − 12xy2 − 8y3 + 4x5 + 4x4y + 12x3y2 + 8x2y3 + 8xy4 + 4y5.

(21)

It is easy to verify that all conditions of the theorem are satisfied with r∗ ' 0.15018 or r∗ ' 1.406 2. We
conclude that system (19) possesses exactly two limit cycles surrounding both the origin as an unstable
improper node, plotted on the Poincaré disc as shown in Figure 1.

Concluding remark. By integrating analytically the quintic planar system under investigation, it is
shown that it possesses exactly two explicit non-algebraic limit cycles, each one correspond to a closed
isolated level curve of the complete first integral. Obtaining interesting results of this kind becomes more
and more diffi cult for systems of lower degrees. The following problems can be addressed:

- The coexistence of explicit algebraic and non-algebraic limit cycles for cubic systems.
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- Obtain a quadratic system with exact non-algebraic limit cycle (this question has been raised before
by Benterki and Llibre [5]).

- Can one obtain explicit non-algebraic limit cycles for systems arising from applications (such as Kol-
mogorov system, Kaldor system, or Liénard system)?

Acknowlegement. The authors would like to express their gratitude to the referee for his valuable
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