
Applied Mathematics E-Notes, 21(2021), 599-609 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Properties Of Harmonic Mappings Associated With
Polylogarithm Functions∗

Muhammad Ghaffar Khan†, Bakhtiar Ahmad‡, Nak Eun Cho§

Received 13 July 2020

Abstract

The polylogarithm functions, also known as Jonquiére’s functions, are important due to its various
applications in quantum statistics and quantum electrodynamics. In this article a new variety of their
applications have been searched and these functions are connected with the concepts of harmonic analysis.
A new subclass of harmonic mappings involving integral operator is defined by polylogarithm functions in
the region of circular domain. Furthermore, we investigate necessary and suffi cient conditions involving
convolution, coeffi cient bounds, topological properties, radii problems, distortion theorem and integral
representation for functions belonging to this class.

1 Introduction

A harmonic mapping f in a simply connected domain D ⊂ C is a complex-valued function of the form
f = h + g, where h and g are analytic functions and normalized by the conditions h (0) = h′ (0) − 1 = 0,
g (0) = 0. These functions h and g are also known as analytic and co-analytic parts of f respectively. The
Jacobian of f is given by

Jf (z) = |fz|2 − |fz|2 = |h′ (z)|2 − |g′ (z)|2 (z ∈ D) .

It can be noted that if f is analytic in D, then fz = 0 and fz (z) = f ′ (z) . A very familiar result, in [1],
for analytic functions states that an analytic function f is locally univalent at a point z0 if and only if its
Jacobian is never zero at that point in D. In [3] the converse of this theorem proved by Lewy, which is also
true for harmonic mappings. Thus, f is sense-preserving and locally univalent if and only if

|h′ (z)| − |g′ (z)| > 0 (z ∈ D) . (1)

We indicate by H the class of complex-valued harmonic mappings in the unit disc A := A (1), where
A (r) := {z ∈ C : |z| < r}. Then f ∈ H , if f = h + g, where h and g are analytic functions in A. Also, by
H0 we denote the class of functions f ∈ H having the following series expansion

f (z) = z +

∞∑
n=2

anz
n +

∞∑
n=2

bnzn (z ∈ A) , (2)

and let
SH := {f ∈ H0 : f is univalent and sense-preserving in A} .

If co-analytic part of f ∈ SH vanishes, then the class SH reduces to the class S, i.e, g (z) = 0 in A. Clunie
and Sheil-Small (see [2]) studied the class SH as well as some of its geometric subclasses and obtained
coeffi cient bounds. More works on SH and its subclasses can be seen in several different papers such as
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Sheil-Small [4], Jahangiri [11], Silverman [9] and Silverman and Silvia [13]. A function g1 (z) is subordinated
to function g2 (z) and symbolically represented by g1 (z) ≺ g2 (z), if there is complex-valued function w(z)
with |w(z)| ≤ 1 and w (0) = 0 in such a way that

g1(z) = g2 (w(z)) (z ∈ A) .

Further, if g2 (z) is univalent in A, we have equivalent condition

g1(z) ≺ g2(z) (z ∈ A) ⇐⇒ g1(0) = g2(0) and g1(A) ⊂ g2(A).

Convolution or Hadamard product of two function f1 , f2 is symbolized by f1 ∗ f2 and defined by

(f1 ∗ f2) (z) = z +

∞∑
n=2

(
a1a2z

n + b1b2zn
)

(z ∈ A) . (3)

The familiar generalization of Reimann zeta and polylogarithm functions, or simply the δth order polyloga-
rithm function is denoted by ϕδ (c; z), and given by

ϕδ (c; z) =

∞∑
n=1

zn

(n+ c)
δ
,

where any term n + c = 0 is precluded (see [6]). Utilizing the definition of the Gamma function (for more
details see [5]), the integral formula for ϕδ (c; z) is obtained by a simple transformation as follows:

ϕδ (c; z) =
1

Γ (δ)

∫ 1

0

z

(
log

1

t

)δ−1
tc

1− tz dt,

where Re (c) > −1 and Re (δ) > 1. For further related work, see Ponnusamy [17] and Ponnusamy and
Sabapathy [18] on polylogarithm function.
For f ∈ A expressed in series expansion (1) , Al-Shaqsi [19] defined the following integral operator

J ηd f (z) = (1 + d)
η
ϕη (d; z) ∗ f (z) = − (1 + d)

η

Γ (δ)

∫ 1

0

td−1
(

log
1

t

)η−1
f (tz) dt, (4)

where d > 0, η > 1 and z ∈ A.
In [19], Al-Shaqsi realized that the operator defined by (4) can be represented by series expansion

J ηd f (z) = z +

∞∑
n=2

(
1 + d

n+ d

)η
anz

n. (5)

Now we define the operator J ηd f (z) in (5) for a function f ∈ H given by (1) as follows:

J ηd f (z) = J ηd h (z) + J ηd g (z) (z ∈ A) ,

where

J ηd h (z) = z +

∞∑
n=2

(
1 + d

n+ d

)η
anz

n and J ηd g (z) =

∞∑
n=2

(
1 + d

n+ d

)η
bnz

n,

where d > 0, η > 1 and z ∈ A.
Motivated from the work of Dziok (see [10]) and using the operator J ηd f (z) , we introduce a new subclass

of harmonic univalent mappings below:
For −Q ≤ P < Q ≤ 1 and 0 ≤ a < 1, let Sd,ηH (P,Q) denote the class of functions f ∈ SH such that

DH (J ηd f (z))

J ηd f (z)
≺ 1 + Pz

1 +Qz
, (6)

with
DHJ ηd f (z) := DHJ ηd h (z)−DHJ ηd g (z).

Note that
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1. Sd,0H (P,Q) = S∗H (P,Q) studied by Dziok (see [10]),

2. Sd,0H (2a− 1, 1) = S∗H (a) introduced by Jahangiri in [15].

In present article, we obtain analytic condition for a new class Sd,ηH (P,Q) of harmonic mappings. Some
results such as subordination conditions, coeffi cient bounds, distortion bounds, radii problems, integral means
and extreme point theorem for this class are also obtained. Let V ⊂ H0, A0 = A {0} . Using Ruscheweyh’s
approach [12] we define the dual set of V∗ by

V∗ :=
{
f ∈ H0 :

⋂
g∈V

(f ∗ g) (z) 6= 0 (z ∈ A)
}
.

2 Analytic Criteria

Theorem 1 Let f ∈ H0 be of the form (2) . Then f ∈ Sd,ηH (P,Q) if and only if

Sd,ηH (P,Q) =
{
J ηd ϕξ (z) : |ξ| = 1

}∗
,

where

ϕξ (z) = z
1 +Qξ − (1 + Pξ) (1− z)

(1− z)2
− z 1 +Qξ − (1 + Pξ) (1− z)

(1− z)2
(z ∈ A) .

Proof. Let f ∈ H0.Then f ∈ Sd,ηH (P,Q) if and only if

DH (J ηd f (z))

J ηd f (z)
6= 1 + Pξ

1 +Qξ
(ξ ∈ C, |ξ| = 1) .

Since
DHJ ηd h (z) = J ηd h (z) ∗ z

(1− z)2

and
J ηd h (z) = J ηd h (z) ∗ z

1− z ,

we have

(1 +Qξ)DH (J ηd h (z))− (1 + Pξ)J ηd h (z)

= (1 +Qξ)DH (J ηd h (z))− (1 + Pξ)J ηd h (z)−
[
(1 +Qξ)DH (J ηd g (z)) + (1 + Pξ)J ηd g (z)

]
= J ηd h (z) ∗

(
(1 +Qξ) z

(1− z)2
− (1 + Pξ) z

1− z

)
− J ηd g (z) ∗

(
(1 +Qξ) z

(1− z)2
+

(1 + Pξ) z

1− z

)
= f (z) ∗ J ηd ϕξ (z) 6= 0 (z ∈ A0, |ξ| = 1) .

Thus, f ∈ Sd,ηH (P,Q) if and only if f (z) ∗ J ηd ϕξ (z) 6= 0 for z ∈ A0, |ξ| = 1. That is, Sd,ηH (P,Q) ={
J ηd ϕξ (z) : |ξ| = 1

}∗
.

A suffi cient coeffi cient bound for the class Sd,ηH (P,Q) is provided in the following.

Theorem 2 Let f ∈ H0 of the form (2) satisfy the condition

∞∑
n=2

(Cn |an|+Dn |bn|) ≤ Q− P, (7)
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where

Cn =

∣∣∣∣( 1 + d

n+ d

)η∣∣∣∣ [(1 +Q)n− (1 + P )] (8)

and

Dn =

∣∣∣∣( 1 + d

n+ d

)η∣∣∣∣ [(1 +Q)n+ (1 + P )] . (9)

Then f ∈ Sd,ηH (P,Q) . The above inequality (7) is sharp for function defined by

f (z) = z +

∞∑
n=2

xn
Q− P
Cn

zn +

∞∑
n=2

yn
Q− P
Dn

zn (z ∈ A)

such that
∑∞
n=2 (|xn|+ |yn|) = 1.

Proof. It is easy to see that the theorem is true for f (z) = z. Let f ∈ H0 be expressed in series expansion
(2) and let there exist n ≥ 2 such that an 6= 0 or bn 6= 0. Since

Cn ≥ n (Q− P ) , Dn ≥ (Q− P )n, n = 2, 3, · · · ,

from (7) we obtain
∞∑
n=2

(n |an|+ n |bn|) ≤ 1 (10)

and

|h′ (z)| − |g′ (z)| ≥ 1−
∞∑
n=2

n |an| |z|n −
∞∑
n=2

n |bn| |z|n ≥ 1− |z|
∞∑
n=2

(n |an|+ n |bn|)

≥ 1− |z|
Q− P

∞∑
n=2

(Cn |an|+Dn |bn|) ≥ 1− |z| > 0 (z ∈ A) .

Therefore, by (1), f is locally univalent and sense-preserving in A. Moreover, if z1, z2 ∈ A with z1 6= z2, then∣∣∣∣zn1 − zn2z1 − z2

∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

zk−11 zn−k2

∣∣∣∣∣ ≤
n∑
k=1

∣∣zk−11

∣∣ ∣∣zn−k2

∣∣ < n (n = 2, 3, · · · ) .

Hence ∣∣∣∣ f (z1)− f (z2)

h (z1)− h (z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g (z1)− g (z2)

h (z1)− h (z2)

∣∣∣∣
= 1−

∣∣∣∣ ∑∞
n=2 bn (zn1 − zn2 )

(z1 − z2) +
∑∞
n=2 an (zn1 − zn2 )

∣∣∣∣
> 1−

∑∞
n=2 nbn

1−
∑∞
n=2 nan

≥ 1−
∑∞
n=2

Dn

P−Qbn

1−
∑∞
n=2

Cn
P−Qan

≥ 0,

which shows that f is univalent. On the other hand, f ∈ Sd,ηH (P,Q) if and only if there exists a complex-
valued function ω (ω (0) = 0, |ω (z)| < 1 (z ∈ A)), such that

DH (J ηd f (z))

J ηd f (z)
=

1 + Pω (z)

1 +Qω (z)
(z ∈ A) ,

or alternatively, ∣∣∣∣ DH (J ηd f (z))− J ηd f (z)

QDH (J ηd f (z))− PJ ηd f (z)

∣∣∣∣ < 1 (z ∈ A) . (11)
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Thus, it is suffi cient to establish that

|DH (J ηd f (z))− J ηd f (z)| − |QDH (J ηd f (z))− PJ ηd f (z)| < 0,

where z ∈ A\ {0}. Now by setting |z| = r, (0 < r < 1) we get

|DH (J ηd f (z))− J ηd f (z)| − |QDH (J ηd f (z))− PJ ηd f (z)|

=

∣∣∣∣∣
∞∑
n=2

(
1 + d

n+ d

)η
(n− 1) anz

n −
∞∑
n=2

(
1 + d

n+ d

)η
(n+ 1) bnzn

∣∣∣∣∣
−
∣∣∣∣∣(Q− P ) z +

∞∑
n=2

(
1 + d

n+ d

)η
(Qn− P ) anz

n −
(

1 + d

n+ d

)η
(Qn+ P ) bnzn

∣∣∣∣∣
≤

∞∑
n=2

∣∣∣∣( 1 + d

n+ d

)η∣∣∣∣ (n− 1) |an| rn +

∞∑
n=2

∣∣∣∣( 1 + d

n+ d

)η∣∣∣∣ (n+ 1) |bn| rn

− (Q− P ) r +
∞∑
n=2

∣∣∣∣( 1 + d

n+ d

)η∣∣∣∣ (Qn− P ) |an| rn +

∞∑
n=2

∣∣∣∣( 1 + d

n+ d

)η∣∣∣∣ (Qn+ P ) |bn| rn

≤ r

{ ∞∑
n=2

(Cn |an|+Dn |bn|) rn − (Q− P )

}
< 0,

which completes the proof.
Motivated from the work of Silverman [9], we now denote by τk (k ∈ N0 = {0, 1, 2, · · · }) the class of

functions f ∈ H0 of the form (2) such that

f (z) = h (z) + g (z) = z −
∞∑
n=2

|an| zn + (−1)
k
∞∑
n=2

|bn| zn (z ∈ A) . (12)

Further, we define
Sd,η,kτ (P,Q) = τk ∩ Sd,ηH (P,Q) .

We note that for η = 0 and k = 0, the class Sd,0,0τ (P,Q) was studied by Dziok (see [10]).

Theorem 3 Let f ∈ τk has series expansion of the form (12) . Then f ∈ Sd,η,kτ (P,Q) if and only if condition
(7) holds true.

Proof. From Theorem 2 it is enough to show that each function f ∈ Sd,η,kτ (P,Q) satisfies the relation (7) .
If f ∈ Sd,η,kτ (P,Q) , then it is of the form (12) and must satisfy (11) or equivalently∣∣∣∣∣∣

−
∑∞
n=2

(
1+d
n+d

)η
(n− 1) anz

n −
∑∞
n=2

(
1+d
n+d

)η
(n+ 1) bnzn

(Q− P ) z −
∑∞
n=2

(
1+d
n+d

)η
(Qn− P ) anzn −

∑∞
n=2

(
1+d
n+d

)η
(Qn+ P ) bnzn

∣∣∣∣∣∣ < 1

for z ∈ A. Therefore by putting z = r (r ∈ [0, 1)), we get∑∞
n=2

∣∣∣( 1+dn+d

)η∣∣∣ [(n− 1) |an|+ (n+ 1) |bn|] rn−1

(Q− P ) +
∑∞
n=2

∣∣∣( 1+dn+d

)η∣∣∣ {(Qn− P ) |an|+ (Qn+ P ) |bn|}
< 1. (13)

It is clear that the denominator of the left hand side cannot vanish for r ∈ (0, 1). Moreover, it is positive for
r = 0, and in consequence for r ∈ (0, 1). Thus, by (13) we have

∞∑
n=2

(Cn |an|+Dn |bn|) rn−1 ≤ Q− P r ∈ [0, 1) . (14)
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Let {Sn} be a sequence of partial sums connected with the series
∑∞
n=2 (Cn |an|+Dn |bn|). Then {Sn} is a

non-decreasing sequence and by (14) , it is bounded by Q− P . So, the sequence {Sn} is convergent and
∞∑
n=2

(Cn |an|+Dn |bn|) rn−1 = lim
n→∞

Sn ≤ Q− P,

which yields assertion (7) .

Theorem 4 Let the functions ft (z) (t = 1, 2, 3, · · · , l) defined by (2) be in the class Sd,η,kτ (P,Q) . Then the
function F ∈ Sd,η,kτ (P,Q) , where

F (z) =

l∑
k=1

λkfk (z) ;

(
λk ≥ 0,

l∑
k=1

λk = 1

)
. (15)

Proof. The proof is straight forward and so omitted for details.

3 Topological Properties

We consider the usual topology on H in which a sequence {fn} in H converges to f if and only if it converges
to f uniformly on each compact subset of A. The metric induces the usual topology on H. It is easy to verify
that the obtained topological space is complete.
Let F be a subclass of the class H. A function f ∈ F is called an extreme point of F if the condition

f = uf1 + (1− u) f2 (f1, f2 ∈ F , 0 < u < 1)

implies f1 = f2 = f . We shall indicate EF to represent the set of all extreme points of F . It is clear that
EF ⊂ F .
We say that F is locally uniformly bounded if for each r (0 < r < 1), there is a real constant M = M (r)

so that
|f (z)| ≤M (f ∈ F , |z| ≤ r) .

We say that a class F is convex if

uf + (1− u) g ∈ F (f, g ∈ F , 0 ≤ u ≤ 1) .

Moreover, the closed convex hull of F is denoted by coF and defined as the intersection of all closed convex
subsets of H that contain F .
A real-valued function I : H → R is called convex on a convex class F ⊂ H if

I (uf + (1− u) g) ≤ uI (f) + (1− u) I (g) (f, g ∈ F , 0 ≤ u ≤ 1) .

The Krein-Milman theorem (see [7]) is fundamental in the theory of extreme points. In particular, it implies
the following lemma.

Lemma 1 Let F be a non-empty convex compact subclass of the class H and let I : H → R be a real-valued,
continuous and convex function on F . Then

max {J (f) : f ∈ F} = max {J (f) : f ∈ EF} .

Lemma 2 A class F ⊂ H is compact if and only if F is closed and locally uniformly bounded.

Since H is complete metric space, Montel’s theorem (see [14]) implies the following lemma.

Lemma 3 Let F be a non-empty compact subclass of the class H. Then EF is non-empty and coEF = coF .
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Theorem 5 The class Sd,η,kτ (P,Q) is a convex and compact subset of H.

Proof. Let fl ∈ Sd,η,kτ (P,Q) be functions of the form

fl (z) = z −
∞∑
n=2

(
|al,n| zn − (−1)

k |bl,n| zn
)

(z ∈ A, l ∈ N = {1, 2, · · · }) , (16)

and 0 ≤ u ≤ 1. Letting

uf1 (z) + (1− u) f2 (z) = z −
∞∑
n=2

{
(u |a1,n|+ (1− u) |a2,n|) zn + (−1)

k
(u |b1,n|+ (1− u) |b2,n|) zn

}
and using Theorem 3, we have

∞∑
n=2

{Cn (u |a1,n|+ (1− u) |a2,n|) zn +Dn (u |b1,n|+ (1− u) |b2,n|)}

= u

∞∑
n=2

{Cn |a1,n|+Dn |b1,n|}+ (1− u)

∞∑
n=2

{Cn |a2,n|+Dn |b2,n|}

≤ u (Q− P ) + (1− u) (Q− P ) = Q− P,

which implies that the function Ψ = υf1 + (1− υ) f2 ∈ Sd,ητ (P,Q). Hence, the class Sd,ητ (P,Q) is convex.
Furthermore, for f ∈ Sd,η,kτ (P,Q), |z| ≤ r (r ∈ (0, 1)), we have

|f (z)| ≤ r +

∞∑
n=2

(|an|+ |bn|) rn ≤ r +

∞∑
n=2

(Cn |an|+Dn |bn|) ≤ r + (Q− P ) . (17)

Thus, we conclude that the class Sd,η,kτ (P,Q) is locally uniformly bounded. By Lemma 2, we need only
to show that it is closed, i.e. if fl → f , then f ∈ Sd,η,kτ (P,Q). Let fl and f be given by (16) and (12),
respectively. Using Theorem 3, we have

∞∑
n=2

(Cn |ai,n|+Dn |bi,n|) ≤ Q− P (i ∈ N) . (18)

Since fi → f , we conclude that |ai,n| → |an| and |bi,n| → |bn| as i → ∞ (n ∈ N) . The sequence {Sn} of
partial sums associated with the series

∑∞
n=2 (Cn |ai,n|+Dn |bi,n|) is non-decreasing sequence. Moreover,

by (18) it is bounded by Q− P . Therefore, the sequence {Sn} is convergent and
∞∑
n=2

(Cn |ai,n|+Dn |bi,n|) = lim
n→∞

{Sn} ≤ Q− P.

This gives condition (7) and in consequence, f ∈ Sd,η,kτ (P,Q), which completes the proof.

Theorem 6 Let fk (z) ∈ Sd,η,kτ (P,Q) of the form (16) for k = 1, 2. Then their weighted mean wj (z) for
any real number j is also in the class Sd,η,kτ (P,Q) , where wj (z) is given by

wj (z) =

{
(1− j) f1 (z) + (1 + j) f2 (z)

2

}
. (19)

Proof. From (19) one can easily write

wj (z) = z +

∞∑
n=2

[
(1− j) an,1 + (1 + j) an,2

2
zn + (−1)

k (1− j) bn,1 + (1 + j) bn,2
2

zn
]
.



606 Properties of Harmonic Mappings Associated with Polylogarithm Functions

To prove wj (z) ∈ Sd,η,kτ (P,Q) , we consider

∞∑
n=2

(
Cn

∣∣∣∣ (1− j) an,1 + (1 + j) an,2
2

∣∣∣∣+Dn

∣∣∣∣(−1)
k (1− j) bn,1 + (1 + j) bn,2

2

∣∣∣∣)

=

∞∑
n=2

(
Cn

(1− j)
2

|an,1|+Dn
(1− j)

2
|bn,1|

)
+

∞∑
n=2

(
Cn

(1 + j)

2
|an,2|+Dn

(1− j)
2

|bn,2|
)

=
(1− j)

2

∞∑
n=2

(Cn |an,1|+Dn |bn,1|) +
(1 + j)

2

∞∑
n=2

(Cn |an,2|+Dn |bn,2|)

≤ (1− j)
2

(Q− P ) +
(1 + j)

2
(Q− P ) = (Q− P ) .

Hence by Theorem 3, wj (z) ∈ Sd,η,kτ (P,Q) .

Theorem 7 We have
ESd,η,kτ (P,Q) = {hn : n ∈ N} ∪ {gn : n ∈ {2, 3, · · · }} ,

where

h1 (z) = z, hn (z) = z − Q− P
Cn

zn, gn (z) = (−1)
k Q− P

Dn
zn (n = 2, 3, · · · ; z ∈ A) . (20)

Proof. Assume that 0 < u < 1 and

gn (z) = uf1(z) + (1− u) f2(z),

where the functions f1,f2 ∈ Sd,η,kτ (P,Q) of the form (16). Then, by (7) we have

|b1,n| = |b2,n| =
Q− P
Dn

,

and in consequence, a1,k = a2,k = 0 for k ∈ {2, 3, · · · } and b1,k = b2,k = 0 for k ∈ {2, 3, · · · } \ {n} . It follows
that gn = f1 = f2, and consequently gn ∈ ESd,η,kτ (P,Q). Similarly, we can verify that the functions hn of
the form (20) are extreme points of the class Sd,η,kτ (P,Q). Now, suppose that f of the form (16) is in the
class of extreme point of the class Sd,η,kτ (P,Q) and f is not of the form (20). Then there exists k ∈ {2, 3, · · · }
such that

0 < |ak| <
Q− P
Ck

or 0 < |bk| <
Q− P
Dk

.

If 0 < |ak| < Q−P
Ck

, then putting

u =
|ak|Ck
Q− P , φ =

1

1− u (f − uhk) ,

we obtain 0 < u < 1, hk, φ ∈ Sd,η,kτ (P,Q) , hk 6= φ and

f = uhk + (1− u)φ.

Thus,the function f is not in the class of extreme point of the class Sd,η,kτ (P,Q). Similarly, if 0 < |bk| < Q−P
Dk

,
then putting

u =
|bk|Dk

Q− P , φ =
1

1− u (f − ugk) ,

we obtain 0 < u < 1, gk, φ ∈ Sd,η,kτ (P,Q) , gk 6= φ and

f = ugk + (1− u)φ.

It follows that f /∈ Sd,η,kτ (P,Q). This proves the theorem.



Khan et al. 607

4 Radii of Starlikeness and Convexity

A function f ∈ H0 is said to be starlike of order α in A (r) if

∂

∂t

(
arg f

(
ρeit

))
> α (0 ≤ t ≤ 2π; (0 < ρ < r < 1). (21)

Also a function f ∈ H0 is said to be convex of order α in A (r) if

∂

∂t

(
∂

∂t

(
arg f

(
ρeit

)))
> α (0 ≤ t ≤ 2π; 0 < ρ < r < 1).

It is very simple to verify that the condition (21) is identical to the following

Re
DHf (z)

f (z)
> α (z ∈ A (r)) ,

or equivalently, ∣∣∣∣DHf (z)− (1 + α) f (z)

DHf (z) + (1 + α) f (z)

∣∣∣∣ < 1 (z ∈ A (r)) . (22)

Let B be a subclass of the class H0. Now we define the radii of starlikeness and convexity, respectively, as
follows:

R∗α (B) = inf
f∈B

(sup {0 < r ≤ 1 : f is starlike of order α in A (r)})

and
Rcα (B) = inf

f∈B
(sup {0 < r ≤ 1 : f is convex of order α in A (r)}) .

Theorem 8 The radius of starlikeness of order α for the class Sd,η,kτ (P,Q) is given by

R∗α
(
Sd,η,kτ (P,Q)

)
= inf
n≥2

(
1− α
Q− P min

{
Cn
n− α,

Dn

n+ α

})
, (23)

where Cn and Dn are define by (8) and (9), respectively.

Proof. Let f ∈ Sd,η,kτ (A,B) be expressed in the series expansion (12) . Then, for |z| = r < 1 we have∣∣∣∣DHf (z)− (1 + α) f (z)

DHf (z) + (1 + α) f (z)

∣∣∣∣ =

∣∣∣∣ −αz +
∑∞
n=2 ((n− 1− α) |an| zn − (n+ 1 + α) |bn| zn)

(2− α) z +
∑∞
n=2 ((n+ 1− α) |an| zn − (n− 1 + α) |bn| zn)

∣∣∣∣
≤ α+

∑∞
n=2 ((n− 1− α) |an| − (n+ 1 + α) |bn|) rn−1

(2− α)−
∑∞
n=2 ((n+ 1− α) |an| − (n− 1 + α) |bn|) rn−1

.

So, the condition (22) is true if and only if

∞∑
n=2

(
n− α
1− α |an|+

n+ α

1− α |bn|
)
rn−1 ≤ 1. (24)

By Theorem 2, we have
∞∑
n=2

(
Cn

Q− P |an|+
Dn

Q− P |bn|
)
≤ 1z, (25)

where Cn and Dn are defined by (8) and (9) respectively. Thus the conditions (24) is true if

n− α
1− α r

n−1 ≤ Cn
Q− P ,

n+ α

1− α r
n−1 ≤ Dn

Q− P (n = 2, 3, · · · ) ,
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i.e.,

r ≤
(

1− α
Q− P min

{
Cn
n− α,

Dn

n+ α

})n−1
(n = 2, 3, · · · ) .

It follows that the function f is starlike of order α in the disc A (r∗) , where r∗

r∗ := inf

(
1− α
Q− P min

{
Cn
n− α,

Dn

n+ α

})n−1
.

The functions hn and gn defined by (20) realize equality in (25) , and the radius r∗ cannot be larger. Thus
we get (23) .

Theorem 9 The radius of convexity of order α for the class Sd,η,kτ (P,Q) is given by

Rcα
(
Sd,η,kτ (P,Q)

)
= inf
n≥2

(
1− α
Q− P min

{
Cn
n− α,

Dn

n+ α

})
,

where Cn and Dn are define in (8) and (9) respectively.

Proof. The proof of this theorem is identical as Theorem 8. So we omitted for details.

5 Conclusion

In this article, we defined an integral operator using polylogrithm functions. On the basis of this operator
we introduced a new subclass of harmonic functions. For better understanding of this class we investigated
its various geometric and topological properties. With the numerous applications of harmonic functions in
pure and applied sciences, the theory developed here will serve as a potential ingredient for research. The
means and methods used here can also be utilized for various new directions in the area of geometric function
theory.
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