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Abstract

In this paper, we show that 2, 4, 6, 8 and 44 are the only repdigits that are sums of two associated Pell
numbers, which again confirms that the sum of two Lucas-balancing numbers can never be a repdigit
with at least two digits. As a consequence of our main result, we show that 4, 8 and 88 are the only
repdigits which are sums of two Pell-Lucas numbers.

1 Introduction

The Lucas sequence (Un(r, s))n≥0 and companion Lucas sequence (Vn(r, s))n≥0 are defined by

Un+1(r, s) = rUn(r, s)− sUn−1(r, s), Vn+1(r, s) = rVn(r, s)− sVn−1(r, s), (1)

where r, s are integers such that ∆ = r2 − 4s > 0 and the initial terms are given by (U0, U1) = (0, 1) and
(V0, V1) = (2, r) respectively. The Binet formulas for these sequences are given by

Un =
αn − βn

α− β , Vn = αn + βn (2)

where (α, β) = ( r+
√
r2−4s
2 , r−

√
r2−4s
2 ) are roots of the characteristic equation X2 − rX + s = 0. Clearly,

α+ β = r, αβ = s, α− β =
√

∆. These sequences can be extended to negative indices n as U−n = −s−nUn
and V−n = s−nVn respectively. The sequences of Fibonacci (Fn), Lucas (Ln), Pell (Pn) and Pell-Lucas (Qn)
numbers satisfy the above recurrences with particular values of r and s. In particular, Fn = Un(1,−1), Ln =
Vn(1,−1), Pn = Un(2,−1), Qn = Vn(2,−1).
The solution n, of the Diophantine equation 1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r)

is called a balancing number (see [4]) with corresponding balancer r. The sequence of balancing numbers
is denoted by (Bn)n≥1 and can be viewed as a particular Lucas sequence since Bn = Un(6, 1). If Bn is
the nth balancing number, then

√
8B2

n + 1 is called the nth Lucas-balancing number denoted by Cn (see
[18]). The Lucas-balancing numbers satisfy the same recurrence as that of balancing numbers. The sequence
of balancing and Lucas-balancing numbers can be expressed in terms of Pell and Pell-Lucas numbers. In
particular, Bn = PnQn/2 = Pnqn, Cn = q2n, where qn = Qn/2 is called as the associated Pell number. The
associated Pell numbers satisfy the same recurrence as that of Pell numbers. It can be seen that Qn are all
even and qn are all odd.
Let g ≥ 2 be any positive integer. A natural number N is called a base g repdigit if it is of the form

N = a

(
gm − 1

g − 1

)
, for some m ≥ 1, where a ∈ {1, 2, · · · , g − 1}.

The base 10 repdigits are simply called repdigits.
The existence of repdigits in Fibonacci, Lucas, Pell, Pell-Lucas, balancing and Lucas-balancing sequences

has been studied in [6, 9, 19]. Similar study have been carried out by replacing Fibonacci, Lucas, balancing
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and Lucas-balancing numbers by their respective consecutive products (see [7, 12, 19]). In [20], the authors
studied the existence of repdigits that are expressible as products of balancing and Lucas-balancing numbers
with their indices in arithmetic progressions. Fibonacci, Lucas, Pell and Pell-Lucas numbers which are
expressible as sum of two repdigits have been studied in [1, 2, 3]. Repdigits which are sums of three
Fibonacci or Lucas numbers have been investigated in [10, 16]. Subsequently, repdigits that are sums of four
Fibonacci or Lucas or Pell numbers have been investigated in [11, 15]. Repdigits in the base b expansion as
sum of four balancing numbers can be found in [8]. Repdigits that are sum of two Fibonacci and two Lucas
numbers appear in [17], where as those which are product of two Pell or Pell-Lucas numbers can be seen in
[21]. In [22], Şiar and Keskin searched for the repdigits that are sum of two Lucas numbers.
In this paper, we use the method similar to that of [22] to prove the following result:

Theorem 1 The only repdigits which are sum of two associated Pell numbers are 2, 4, 6, 8 and 44.

2 Preliminaries

To solve the Diophantine equations involving repdigits and the terms of binary recurrence sequences, many
authors have used Baker’s theory to reduce lower bounds concerning linear forms in logarithms of algebraic
numbers. These lower bounds play an important role while solving such Diophantine equation. We start
with recalling some basic definitions and results from algebraic number theory.
A modified version of a result of Matveev [14] appears in [5, Theorem 9.4]. Let L be an algebraic number

field of degree D. Let η1, η2, . . . , ηl ∈ L not 0 or 1 and b1, b2, . . . , bl be nonzero integers. Put

B = max{|b1|, . . . , |bl|}, and Γ =

l∏
i=1

ηbii − 1.

Let A1, . . . , Al be positive integers such that

Aj ≥ h
′
(ηj) := max{Dh(ηj), |logηj |, 0.16}, j = 1, . . . , l,

where η is an algebraic number having the minimal polynomial

f(X) = a0(X − η(1)) · · · (X − η(k)) ∈ Z[X]

over the integers with a0 > 0. The logarithmic height of η is given by

h(η) =
1

k

(
log a0 +

k∑
j=1

max{1, log|η(j)|}
)
.

In particular, if η = a/b is a rational number with gcd(a, b) = 1 and b > 1, then h(η) = log(max{|a|, b}).
The following properties of logarithmic height holds.

h(η ± γ) ≤ h(η) + h(γ) + log2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηm) = |m|h(η).

Theorem 2 ([5, Theorem 9.4]) If Γ 6= 0 and L ⊆ R, then

log|Γ| > −1.4 · 30l+3l4.5D2(1 + logD)(1 + logB)A1, · · · , Al.
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Another main tool for the proof of our main results is a variant of Baker and Davenport reduction method
due to de Weger [13].
Let ϑ1, ϑ2, ε ∈ R and let x1, x2 ∈ Z be unknowns. Let

Γ = ε+ x1ϑ1 + x2ϑ2. (3)

Let c, δ be positive constants. Set X = max{|x1|, |x2|}. Let X0, Y be positive. Assume that

|Γ| < c · exp(−δ · Y ), (4)

Y ≤ X ≤ X0. (5)

When ε = 0 in (3), we get
Γ = x1ϑ1 + x2ϑ2.

Put ϑ = −ϑ1/ϑ2. We assume that x1 and x2 are coprime. Let the continued fraction expansion of ϑ be
given by

[a0, a1, a2, . . .],

and let the kth convergent of ϑ be pk/qk for k = 0, 1, 2, . . .. We may assume without loss of generality that
|ϑ1| < |ϑ2| and that x1 > 0. We have the following results.

Lemma 3 ([13, Lemma 3.2]) Let
A = max

0≤k≤Y0
ak+1.

If (4) and (5) hold for x1, x2 and ε = 0, then

Y <
1

δ
log

(
c(A+ 2)X0

|ϑ2|

)
.

When ε 6= 0 in (3), put ϑ = −ϑ1/ϑ2 and ψ = ε/ϑ2. Then, we have

Γ

ϑ2
= ψ − x1ϑ+ x2.

Let p/q be a convergent of ϑ with q > X0. For a real number x, we let ||x|| = min{|x − n|, n ∈ Z} be the
distance from x to the nearest integer. We have the following result.

Lemma 4 ([13, Lemma 3.3]) Suppose that

||qψ|| > 2X0

q
.

Then, the solutions of (4) and (5) satisfy

Y <
1

δ
log

(
q2c

|ϑ2|X0

)
.

3 Proof of Theorem 1

Proof of Theorem 1. Assume that

N = qm1
+ qm2

= d

(
10k − 1

9

)
(6)
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for some positive integers 0 ≤ m2 ≤ m1, k > 0 and d ∈ {1, 2, . . . , 9}. A quick computer search reveals the
solutions in the range 0 ≤ m2 ≤ m1 ≤ 100. Precisely, the solutions to (6) are given by

(N,m1,m2, k) ∈

 (2, 0, 0, 1), (2, 0, 1, 1), (2, 1, 1, 1),
(4, 0, 2, 1), (4, 1, 2, 1), (6, 2, 2, 1),
(8, 0, 3, 1), (8, 1, 3, 1), (44, 2, 5, 2)

 .

From now on, we assume that m1 > 100. Further, since associated Pell numbers are all odd, (6) has no
solution for odd d. Thus, d ∈ {2, 4, 6, 8}.
Since the associated Pell numbers satisfy αn−1 ≤ 2qn < αn+1 for all n > 1, where α = 1 +

√
2 and from

(6), we have q101 ≤ qm1
+ qm2

< 10k − 1. It follows that

10k−1 ≤ d
(

10k − 1

9

)
= qm1

+ qm2
≤ 2qm1

< αm1+1.

Taking logarithm on both sides of the last inequality, we get

(k − 1)
log10

logα
≤ m1 + 1

yielding
2.61k − 3.61 < m1.

Since q101 < 10k − 1, the above inequality implies that 37 ≤ k < m1. Using the Binet formula of associated
Pell numbers in (6), we get

αm1 + βm1

2
+
αm2 + βm2

2
= d
(10k − 1

9

)
, (where β = 1−

√
2)

i.e.,

αm1 + αm2 − 2d
10k

9
= −

(
βm1 + βm2 +

2d

9

)
,

which implies ∣∣∣∣αm2(1 + αm1−m2)− 2d
10k

9

∣∣∣∣ ≤ |β|m1 + |β|m2 +
2d

9
≤ 4.

Dividing both sides by αm2(1 + αm1−m2), we get∣∣∣∣1− 10kα−m2
2d

9(1 + αm1−m2)

∣∣∣∣ ≤ 4

αm2(1 + αm1−m2)
<

4

αm1
< α1.58−m1 . (7)

Put

Γ := 1− 10kα−m2
2d

9(1 + αm1−m2)
. (8)

If Γ = 0, then αm1 + αm2 = 2d 10k

9 and hence, αm1 + αm2 ∈ Q, which is not possible for any m1,m2 > 0.
Therefore Γ 6= 0. Take

η1 = α, η2 = 10, η3 =
2d

9(1 + αm1−m2)
, b1 = −m2, b2 = k, b3 = 1.

Using the properties of logarithmic height, we get h(η1) = logα
2 , h(η2) = log10 and

h(η3) ≤ h(2d) + h(9) + h(αm1−m2) + log2

≤ log18 + log9 + (m1 −m2)
logα

2
+ log2

< 5.8 + (m1 −m2)
logα

2
.
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The degree of L := Q(
√

2) is D = 2. Since 1 ≤ |logα| ≤ 2h(α), |log10| ≤ 2h(10) and
∣∣log 2d

9(1+αm1−m2 )

∣∣ ≤
2h(η3), we take

A1 := logα, A2 := 4.61, A3 := 11.6 + (m1 −m2)logα.

Also B = m1 ≥ max{m2, k, 1}. In view of Theorem 2 and (7), we have

m1logα− 1.58logα < 3.97 · 1012(1 + logm1)(11.6 + (m1 −m2)logα). (9)

Once again, using the Binet formula of associated Pell numbers in (6), we get

αm1 − 2d
10k

9
= −

(
βm1 + βm2 + αm2 +

2d

9

)
.

Taking the absolute on both sides of the above equation, we have∣∣∣∣αm1 − 2d
10k

9

∣∣∣∣ =

∣∣∣∣βm1 + βm2 + αm2 +
2d

9

∣∣∣∣
which implies ∣∣∣∣αm1 − 2d

10k

9

∣∣∣∣ ≤ |β|m1 + |β|m2 + αm2 +
2d

9
≤ αm2 + 4 < αm2+1.83.

Dividing both sides by αm1 , we get ∣∣∣∣1− α−m110k
2d

9

∣∣∣∣ < αm2−m1+1.83. (10)

Put

Γ′ = 1− α−m110k
2d

9
. (11)

As above, one can justify that Γ′ 6= 0. Take

η1 = α, η2 = 10, η3 =
2d

9
, b1 = −m1, b2 = k, b3 = 1.

A similar argument to the above gives

A1 := logα, A2 := 4.61, A3 := 10.2, B = m1.

Again applying Theorem 2, we have

(m1 −m2)logα− 1.83logα < 4.02 · 1013(1 + logm1). (12)

Substituting (12) into (9) gives m1 < 8.88 · 1029. Put X0 = 8.88 · 1029. Let

Λ = log
(2d

9

)
−m1logα+ klog10.

Using (6), we obtain that

αm1 − 2d
10k

9
= −2d

9
− βm1 − 2qm2

≤ −2d

9
− βm1 − 2 < 0.

So Λ > 0. From (10), we see that
0 < Λ < eΛ − 1 < αm2−m1+1.83,

which implies that
|Λ| < α1.83 αm2−m1 < α1.85 exp(−0.88 · (m1 −m2)).



S. G. Rayaguru and G. K. Panda 407

Thus, Λ < α1.85 exp(−0.88 · Y ) holds with Y := m1 −m2. We also have

Λ

log10
=

log(2d/9)

log10
−m1

logα

log10
+ k.

Thus, we take

c = α1.85, δ = 0.88, x1 = m1, x2 = k, ψ =
log(2d/9)

log10
,

ϑ = − logα

log10
, ϑ1 = logα, ϑ2 = log10, ε = log(2d/9).

Clearly, max{|x1|, |x2|} = m1 ≤ X0. The smallest value of q > X0 is

q68 = 2512046602227734280329853086909.

We find that
q70 = 144803942540586860757348134097483

satisfies the hypothesis of Lemma 4. Applying it, we get m1−m2 = Y < 90.85. Now, we take 0 ≤ m1−m2 ≤
90. Put

Λ′ = log

(
2d

9(1 + αm1−m2)

)
−m2logα+ klog10.

It can be easily seen that Λ′ > 0. Using (7), it follows that

0 < Λ′ < eΛ′ − 1 = |Γ′| < α1.58−m1 ,

which implies that
|Λ′| = α1.58−m1exp(−0.88 ·m1).

We consider

c = α1.58, δ = 0.88, x1 = m2, x2 = k, ψ = log

(
2d

9(1 + αm1−m2)

)
/log10,

Y = m1, ϑ = − logα

log10
, ϑ1 = logα, ϑ2 = log10, ε = log

(
2d

9(1 + αm1−m2)

)
.

The smallest value of q > X0 is q = q69. For ε 6= 0, we find that q = q75 satisfies the hypothesis of Lemma
4. Applying it, we obtain m1 ≤ 100.842 i.e., m1 ≤ 100, which is a contradiction to our assumption that
m1 > 100.
Now, when ε = 0. The largest partial quotient ak for 0 ≤ k ≤ 144 is a120 = 561. Applying Lemma 3, we

get

n <
1

0.88
· log

(
α1.58(561 + 2) · 8.88 · 1029

|log10|

)
.

We obtain n < 86.2 i.e. n ≤ 86, which again contradicts the assumption that n > 100. This completes the
proof.
The following two corollaries are consequences of Theorem 1.

Corollary 5 The only repdigits which are sum of two Pell-Lucas numbers are 4, 8 and 88.

Proof. Since Pell-Lucas numbers are all even,

N = Qm1
+Qm2

= d

(
10k − 1

9

)
(13)

has no solution for odd d. Thus, d ∈ {2, 4, 6, 8}. Hence, the solutions in the statement follows directly from
Theorem 1. Precisely,

(N,m1,m2, k) ∈
{

(4, 0, 0, 1), (4, 0, 1, 1), (4, 1, 1, 1),
(8, 0, 2, 1), (8, 1, 2, 1), (88, 2, 5, 2)

}
are the only solutions to (13).
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Corollary 6 The only repdigits which are sum of two Lucas-balancing numbers are 2, 4 and 6.

Proof. Since the Lucas-balancing numbers are all even indexed associated Pell numbers, Theorem 1 assures
that

N = Cm1
+ Cm2

= d

(
10k − 1

9

)
has only solutions (N,m1,m2, k) ∈ {(2, 0, 0, 1), (4, 0, 1, 1), (6, 1, 1, 1)}.
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[21] Z. Şiar, F. Erduvan and R. Keskin, Repdigits as product of two Pell or Pell-Lucas numbers, Acta Math.
Univ. Comenian., 88(2019), 247—256.
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