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Abstract

This paper deals with the ruin probability evaluation in a classical risk theory model, under different
hypotheses about claims distribution. Our approach is totally innovative, and is based on the application
of the Mean-Value Theorem to solve the associated Volterra integral equation. The numerical experiments
show that the procedure we are proposing works well in all circumstances, compared to other pre-existing
methodologies.

1 Introduction and Preliminaries

Keeping abreast of an insurance company’s solvency is an indispensable information. In this view, the
risk theory has proffered numerous tools to manage the risk that the aforementioned health inexorably
deteriorates for very long time, see e.g. [12] for a comprehensive survey. The literature refers to suitable
stochastic processes to describe the evolution of the reserve over time, defining the so called surplus process.
Traditionally, the reserve consists of incoming premia P and outgoing claims S such that

U(t) = U(0) + P (t)− S(t), t ≥ 0, (1)

where U(0) := u ≥ 0 is the initial capital.
Depending on the choice for P and S, the resulting surplus process can be managed in an appropriate

manner, from a mathematical point of view. In the classical compound Poisson risk model we set

S(t) =

N(t)∑
i=1

Xi, t ≥ 0,

where N(t) is a Poisson process with parameter λ > 0, and {X1, X2, . . . , XN(t)} is a sequence of non-negative
and i.i.d. random variables representing the claim sizes. Concerning the income process, we have

P (t) = ct, t ≥ 0,

where c is the premium rate. Usually, c is set equal to (1 + θ)λp1, with p1 = E[Xi], i = 1, . . . , N(t) the
expected claim size, while (1 + θ) represents the loading factor applied to the net premium rate.
The claim distribution represents a degree of freedom in the model: [13] involve to exponential random

variables, thanks to the features of the latter, ensuring to attain closed-form solutions. In [22, 9, 10, 23]
the authors refer to heavy-tailed distributions. Despite a higher adherence to reality, such a choice pays for
the existence of exclusively asymptotic results. More recently, [6] addressed the same issue, by exploiting
finite-moments distributed claims.
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However, once the evolution of the process has been established, we need to verify whether there exists
a threshold representing a tipping point, thus marking the insolvency status. This can be accomplished in
terms of ruin probability, defined as

φ(u) := P[U(t) < 0, for some t > 0 |U(0) = u]. (2)

In order to assign a value to φ(u), we would like to write the latter as explicitly as possible. Applying
Taylor expansion, or even looking at the surplus process as a particular case of a renewal process, see e.g.
[11], we can easily derive the following integro-differential equation for (2)

φ′(u) =
λ

c
φ(u)− λ

c

∫ u

0

φ(u− z)dF (z) a.e., (3)

being φ′ the derivative of function φ, and F (x) the cumulative distribution function (CDF) for Xi, for all
i = 1, . . . , N(t). Therefore, if the theoretical framework is formally defined, problems arise when we need
to determine a numerical value to be assigned to φ(u). The literature suggests several alternatives, with
strengths and weaknesses. In [14, 2, 16], Monte Carlo techniques are exploited, either in deterministic or
stochastic frameworks, see also [8], [15] and [3] for a complete survey. On the other hand, several authors
have highlighted the close relationship between Eq. (3) and a Volterra equation of second type, i.e.

φ(u) =
1

1 + θ

(
A(u) +

∫ u

0

K(u, t)φ(t)dt

)
, (4)

with

A(u) =

∫ ∞
u

1− F (t)

p1
dt, (5)

K(u, t) =
1− F (u− t)

p1
, (6)

as it is shown e.g. in [20]. Therefore, attention was shifted to the latter, and an intense scientific production
has been carried out in this sense, see e.g. [17] for further details. The techniques mainly investigated concern
the use of the Laplace transform, to reduce the Volterra equation into an algebraic equation, see e.g. [21] and
references therein. The present paper would like to contribute to the last strand of the literature, providing
a new approach to evaluate (4) by exploiting the Mean-Value Theorem (MVT), see e.g. [24] and references
therein. The algorithm proposed is inspired by the technique introduced in [7]: under some regularity
hypotheses, MVT allows to suitably disentangle the integrating function. Thus, the integral equation can
be discretized and transformed into a system of linear equations, whose solution is obtained by means of
simple and fast quadrature methods. Our findings show that the proposed procedure works well under any
claim distribution hypothesis, and it is comparable to preexisting methods in the literature, see e.g. [6] and
[18], for Gamma and Pareto distributions respectively, while refer to e.g. [4] and [19] for Exponential and
Weibull-distributed claims, respectively.
This paper is structured as follows. Section 2 describes the algorithm, along with the main theoretical

results. The numerical applications are displayed in Section 3. Section 4 concludes.

2 The Proposal

To describe the algorithm we would like to propose, we should start by recalling a couple of results. The
first one is the well-known Mean-Value Theorem in the generalized version proposed in [24].

Theorem 1 Let ψ : [a, b] → [0,∞) be a monotonic function and φ : [a, b] → R a Lebesgue integrable
function. Then, there exists ξ ∈ [a, b] such that∫ b

a

ψ(u)φ(u) du = φ(a+)

∫ ξ

a

ψ(u) du+ φ(b−)

∫ b

ξ

ψ(u) du,

where φ(a+) := lim
u→a+

φ(u) and φ(b−) := lim
u→b−

φ(u).
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Moreover, we consider the following Volterra integral equation

φ(u) = f(u) +

∫ t

0

k(u, s)φ(s) ds, (7)

where u, s ∈ I = [0, U ], f is a given continuous function, k(u, s) is the kernel function, assumed to be
continuous in I × I. It is worth recalling that φ in (7) coincides with the ruin probability related to the
surplus process (1), where f and k are given in (5) and (6), respectively. Furthermore, we assume a partition
Γ of length n for the interval [0, U ], being U <∞ a suffi ciently large value for the initial reserve, i.e.

Γ = {0 = u0, u1, . . . , un−1, un = U}. (8)

Given the partition Γ, and exploiting the linearity property, Eq. (7) can be rewritten as

φ(ui) = f(ui) +

i∑
m=1

∫ um

um−1

k(ui, s)φ(s) ds, for i = 1, . . . , n. (9)

Next, we define the operators K and K̃ by

(Kφ)(ui) :=

i∑
m=1

[
φ(um−1)

∫ ξm

um−1

k(ui, s) ds+ φ(um)

∫ um

ξm

k(ui, s)ds

]
,

(K̃φ)(ui) :=

i∑
m=1

[
φ(um−1)

∫ ξ̃m

um−1

k(ui, s) ds+ φ(um)

∫ um

ξ̃m

k(ui, s) ds

]
,

for i = 1, . . . , n.

Remark 1 In [7] the authors show that

ξm = ξm(um, φ(um)) ∈ [um−1, um], m = 1, . . . , n,

and w.l.o.g. we can choose ξ̃m ∈ [um−1, um] as a constant, for all m.

To complete the procedure, we should ensure the convergence of the operator K. In this respect, we evoke
the following

Proposition 1 Let the kernel function k(u, t) be continuous in I×I. Assume also that functions u 7→ k(u, t)
and t 7→ k(u, t) are monotonic and non-negative, for any fixed t ∈ I and u ∈ I, respectively. Let L > 0 be
a constant such that |k(u, t)| ≤ L for each (u, t) ∈ I × I. Then

|(K̃φ)(u)− (Kφ)(u)| → 0, as n →∞.

Prop. 1 was proved in [7] for a broad class of integral equations, being our Volterra equation (7) a special
case.
As a consequence of Prop. 1, if we set φ (resp.,φ̃) the true (resp., approximated) solution to (7), it is

straightforward to prove the following

Corollary 1 Under the hypotheses of Proposition 1, then

|φ̃(u)− φ(u)| → 0, as n→∞.
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2.1 The MVT-Based Algorithm

We provide the following algorithm in order to find a numerical solution to Eq. (7).

Step 1 Let n be a positive integer and consider the partition Γ in (8) of n + 1 evenly spaced points, with
ui − ui−1 = un−u0

n = U
n for all i = 1, . . . , n. Thanks to Proposition 1, equation (7) can be written as

follows

φ(ui) = f(ui) +

[
i∑

m=1

φ(um−1)

∫ ξm

um−1

k(ui, s)ds+ φ(um)

∫ um

ξm

k(ui, s)ds

]
, (10)

where ξm ∈ (um−1, um) for m = 1, 2, . . . , i.

Step 2 First, we observe that φ(u0) = f(u0). In view of Remark 1, ξm = ξ̃m, for all m. In particular,
we draw ξm, m = 1, . . . , n from a uniformly distributed sample over (um−1, um). The n-dimensional
random vector {ξ̃1, ξ̃2, . . . , ξ̃n} can be replaced in (10), giving rise to the following linear system

φ(u0) = f(u0)

φ(u1)− φ(u0)
∫ ξ̃1
u0
k(u1, s) ds− φ(u1)

∫ u1
ξ̃1
k(u1, s)] ds = f(u1),

φ(u2)−
[∑2

m=1 φ(um−1)
∫ ξ̃m
um−1

k(u2, s) ds+ φ(um)
∫ um
ξ̃m

k(u2, um)ds
]

= f(u2),

...

φ(un)−
[∑n

m=1 φ(um−1)
∫ ξ̃m
um−1

k(un, s) ds+ φ(um)
∫ um
ξ̃m

k(un, s)ds
]

= f(un).

(11)

Step 3 We choose a positive integer q. We perform Step 2 q times, obtaining a q × (n + 1)-matrix, where
each row represents an approximation of the solution to (7), namely

φ̃1(u0) φ̃1(u1) · · · φ̃1(un)
φ2(u0) φ2(u1) · · · φ2(un)
... · · · . . .

...
φ̃q(u0) φ̃q(u1) · · · φ̃q(un)

 . (12)

According to the weak law of large numbers, the approximated solution φ̄ is obtained computing the
mean value on each column of the matrix (15), given by

φ̄ =

∑q
j=1 φ̃j(ui)

q
for i = 0, . . . , n. (13)

Remark 2 To further reduce the computational time, we notice that (11) in matrix form becomes

A · Φ = G, (14)

where Φ = [φ(u0), φ(u1), . . . , φ(un)]T , G = [f(u0), f(u1), . . . , f(un)]T and

A =


1 0 0 · · · 0

−
∫ ξ̃1
u0
k(u1, s) ds 1−

∫ u1
ξ̃1
k(u1, s) ds 0 · · · 0

...
...

...
. . .

...

−
∫ ξ̃1
u0
k(un, s) ds −

∫ ξ̃2
ξ̃1
k(un, s) ds −

∫ ξ̃3
ξ̃2
k(un, s) ds · · · 1−

∫ un
ξ̃n

k(un, s) ds

 . (15)
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3 Numerical Results

In this section, we present some examples to test the effi ciency of our proposal. Calculations were made by
exploiting MATLAB software. We run our algorithm on a MacBook Pro with processor 2.6 GHz Intel Core
i7 with 16-GB RAM.
In the sequel, we will refer to the classical compound Poisson process

U(t) = u+ ct−
N(t)∑
i=1

Xi, (16)

where the parameters involved have been described in Section 1.

3.1 Exponential Distribution for Claim Sizes

Consider a sequence {X1, . . . , XN(t)} of independent and identically Exponential-distributed random vari-
ables to put into Eq. (16). The corresponding Cumulative Distribution Function (CDF) is

F (t) = 1− e−λt, (17)

with rate parameter λ > 0. In this case, the ruin probability can be analytically computed, so that

φ(u) =
1

1 + θ
exp

(
− λθu

1 + θ

)
, λ > 0, u > 0,

see e.g. [12]. Hence, we might use the closed-form solution (17) as a benchmark for our numerical test. The
results are displayed in Table 1.

Table 1: Ruin probability for Exponential-distributed claims for different values of the maximum initial
reserve U and several loading factors θ. Here, Exp refers to the closed-form solution when the claims are

Exponential-distributed. MVT stands for our proposal. We set λ = 1, n = 200 and q = 1000.

3.2 Weibull Distribution for Claim Sizes

Consider a sequence {X1, . . . , XN(t)} of independent and identically Weibull-distributed random variables
to put into Eq. (16). The corresponding Cumulative Distribution Function (CDF) is

F (t) = 1− e−(αt)
r

,

with parameters α, r > 0. In this case, we liken our findings to the ones provided in [19], where the ruin
probability is asymptotically related to Erlang-Mixture distributions. The results are given in Table 2.
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Table 2: Ruin probability for Weibull-distributed claims for different values of the maximum initial reserve
U and several loading factors θ. Here, ErM17 refers to the approximation method proposed in [19], while

MVT stands for our proposal. Conforming to [19], we set r = 0.5, α = 1, n = 100 and q = 1000.

3.3 Pareto Distribution for Claim Sizes

Consider a sequence {X1, . . . , XN(t)} of independent and identically Pareto-distributed random variables to
put into Eq. (16). The corresponding Cumulative Distribution Function (CDF) is

F (t) = 1−
(

α

t+ α

)α+1
,

with shape parameter α > 0.We are going to compare our proposal described in Section 2 with the Laplace-
transform approach introduced in [18]. The results are displayed in Table 3, where we set α = 1 and n = 320.
As regards parameter q in Eq. (13), in our numerical experiments we set q = 100.

Table 3: Ruin probability for Pareto-distributed claims for different values of the maximum initial reserve
U and several loading factors θ. Here, Ram03 refers to the Laplace transforms-based method introduced in

[18], while MVT stands for our proposal. Following [18], we set p1 = 1 and q = 100.

3.4 Gamma Distribution for Claim Sizes

Consider a sequence {X1, . . . , XN(t)} of independent and identically Gamma-distributed random variables
to put into Eq. (16). The corresponding Cumulative Distribution Function (CDF) is

F (t) =
γ(r, tα )

Γ(α)
,

where γ(r, tα ) is the lower incomplete gamma function. We can compare our findings with three procedures
proposed in [6], where Mittag-Leffl er functions and moments of the claims distribution are involved, and the
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Laplace transform as a vehicle to manage the Volterra equation is presented. In this case, results are given
in terms of survival probability

ψ(u) := 1− φ(u), u ∈ [0, U ],

being φ the ruin probability. The aforementioned results are displayed in Table 4.

Table 4: Survival probability for Gamma-distributed claims for different values of the maximum initial
reserve U. CSZ18− 1, CSZ18− 2, CSZ18− 3 indicate Methods 1, 2 and 3 introduced in [6] with different
sizes for discretization step h, while MTV stands for our proposal. We set r = 2, α = 2.4, θ = 0.2. In
Method 2, Method 3 and MTV we use h = 0.05. As regards parameter q in Eq. (13), in our numerical

experiments we set q = 100.

4 Conclusion

In this paper we have implemented a numerical algorithm for the evaluation of the ruin probability, expressed
in the form of a solution to a Volterra integral equation. For the first time in the literature, we propose a
methodology based solely on the application of the Mean-Value-Theorem. Despite the structural difference
with respect to the techniques already in use within the scientific community, our numerical experiments
prove that the algorithm is competitive, and produces significant results.
We would like to further contribute to the existing literature by broadening the results illustrated in

this paper. In particular, starting from the theoretical findings developed in [5], it would be interesting to
numerically study the ruin probability in non-homogeneous compound Poisson risk models. Furthermore,
we aim to extend the outreach of the proposed algorithm also to the case of non-Markovian inter-arrival
times, see e.g. [1]. The aforementioned open problems are part of our ongoing research.
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project “Life market: a renewal boost for quantitative management of longevity and lapse risks”, grant no.
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