Hybrid Pair Of Suzuki-Type Contractions And Related Coincidence Point Results*

Sushanta Kumar Mohanta ${ }^{\dagger}$, Ratul Kar ${ }^{\ddagger}$

Received 26 October 2020

Abstract

In this paper, we introduce the concept of hybrid pair of Suzuki-type (α, φ, ζ)-contractions via Bianchini-Grandolfi gauge functions and utilize this to obtain points of coincidence for a hybrid pair of mappings on metric spaces. As some consequences of this study we obtain several important results of the existing literature.

1 Introduction

Let (X, d) be a metric space, $C L(X)$ be the family of all nonempty closed subsets of X and $C B(X)$ be the family of all nonempty closed and bounded subsets of X. For $A, B \in C B(X)$, define $\mathcal{H}(A, B)=$ $\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}$. Then \mathcal{H} is called Pompeiu-Hausdorff metric on $C B(X)$. Let $T: X \rightarrow$ $C B(X)$ be a multivalued mapping. If there exists $\lambda \in(0,1)$ such that $\mathcal{H}(T x, T y) \leq \lambda d(x, y)$ for all $x, y \in X$, then T is called a multivalued contraction. In 1969, Nadler [9] proved that every multivalued contraction on a complete metric space has a fixed point. Thereafter, several authors successfully established some interesting fixed point results for multivalued mappings with application in control theory, differential equations and convex optimization(see $[3,4,5])$. The study of fixed point theory combining simulation functions and gauge functions is a new development in the domain of contractive type multivalued theory. Following Nadler, many researchers have developed fixed point theory for multivalued mappings in different spaces; see for examples $[7,11,12,13,14]$. In this study, we introduce the concept of hybrid pair of Suzuki-type (α, φ, ζ) contractions via Bianchini-Grandolfi gauge functions and obtain a sufficient condition for existence of points of coincidence for a hybrid pair of mappings on metric spaces. Finally, an example is given to justify the validity of our main result.

2 Basic Definitions and Results

We begin with some basic notations, definitions, and necessary results that will be needed in the sequel.
Definition 1 ([6]) A mapping $\zeta: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ is called a simulation function if:
$\left(\zeta_{1}\right) \quad \zeta(0,0)=0 ;$
$\left(\zeta_{2}\right) \zeta(t, s)<s-t$ for all $t, s>0$;
$\left(\zeta_{3}\right)$ if $\left(t_{n}\right),\left(s_{n}\right)$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}>0$ then $\limsup _{n \rightarrow \infty} \zeta\left(t_{n}, s_{n}\right)<0$.

We note that $\zeta(t, t)<0$ for all $t>0$.

[^0]Example 1 ([6]) Let $\zeta: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ be defined by
(i) $\zeta(t, s)=\varphi_{1}(s)-\varphi_{2}(t)$ for all $t, s \in[0,+\infty)$, where $\varphi_{1}, \varphi_{2}:[0, \infty) \rightarrow[0, \infty)$ are continuous functions such that $\varphi_{1}(t)=\varphi_{2}(t)=0$ if and only if $t=0$ and $\varphi_{1}(t)<t \leq \varphi_{2}(t)$ for all $t>0$;
(ii) $\zeta(t, s)=s-\frac{f(t, s)}{g(t, s)}$ t for all $t, s \in[0, \infty)$, where $f, g:[0, \infty) \times[0, \infty) \rightarrow(0, \infty)$ are continuous functions with respect to each variable such that $f(t, s)>g(t, s)$ for all $t, s>0$;
(iii) $\zeta(t, s)=s-\varphi(s)-t$ for all $t, s \in[0, \infty)$, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a lower semicontinuous function such that $\varphi(t)=0$ if and only if $t=0$;
(iv) $\zeta(t, s)=\varphi(s)-t$ for all t, $s \in[0,+\infty)$, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is an upper semicontinuous function such that $\varphi(t)<t$ for all $t>0$ and $\varphi(0)=0$;
$(v) \zeta(t, s)=s-\int_{0}^{t} \nu(u) d u$ for all $t, s \in[0, \infty)$, where $\nu:[0, \infty) \rightarrow[0, \infty)$ is a function such that $\int_{0}^{\epsilon} \nu(u) d u$ exists and $\int_{0}^{\epsilon} \nu(u) d u>\epsilon$ for all $\epsilon>0$.

Each of the function considered in $(i)-(v)$ is a simulation function.
In 2017, Alolaiyan et al.[1] considered the following family of mappings:

$$
\Phi=\left\{\varphi: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R} \mid \varphi \text { satisfies } \varphi\left(r_{1}, r_{2}\right) \leq \frac{1}{2} r_{1}-r_{2}\right\}
$$

The function $\varphi: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $\varphi\left(r_{1}, r_{2}\right)=\frac{1}{2} r_{1}-r_{2}$ is an element of Φ.
Throughout the paper J denotes an interval on \mathbb{R}^{+}containing 0 , that is, an interval of the form $[0, a],[0, a)$ or $[0, \infty)$.

Definition 2 ([10]) Let $r \geq 1$. A function $\eta: J \rightarrow J$ is said to be a gauge function of order r on J if it satisfies the following conditions:
$\left(\eta_{1}\right) \eta(\lambda t) \leq \lambda^{r} \eta(t)$ for all $\lambda \in(0,1)$ and $t \in J$;
$\left(\eta_{2}\right) \eta(t)<t$ for all $t \in J \backslash\{0\}$.
It is easy to verify that condition $\left(\eta_{1}\right)$ is equivalent to the following one:

$$
\eta(0)=0 \text { and } \frac{\eta(t)}{t^{r}} \text { is nondecreasing on } J \backslash\{0\} .
$$

Definition 3 ([10]) A nondecreasing gauge function $\eta: J \rightarrow J$ is said to be a Bianchini-Grandolfi gauge function on J if

$$
\begin{equation*}
\sigma(t)=\sum_{i=0}^{\infty} \eta^{i}(t)<\infty \text { for all } t \in J \tag{1}
\end{equation*}
$$

A function $\eta: J \rightarrow J$ satisfying condition (1) is called a rate of convergence on J and noticed that η satisfies the following functional equation

$$
\sigma(t)=\sigma(\eta(t))+t
$$

Lemma 1 ([2]) Let (X, d) be a metric space, $B \in C L(X)$ and $u \in X$. Then, for each $\epsilon>0$, there exists $v \in B$ such that

$$
d(u, v) \leq d(u, B)+\epsilon
$$

Definition 4 Let (X, d) be a metric space and C be a nonempty subset of X. Let $T: C \rightarrow C L(X)$ be a multivalued mapping and $g: C \rightarrow X$ be a single valued mapping. Then T is called α-admissible w.r.t. g if there exists a mapping $\alpha: g(C) \times g(C) \rightarrow[0, \infty)$ such that

$$
a, b \in C, \alpha(g a, g b) \geq 1 \Rightarrow \alpha(u, v) \geq 1
$$

for all $u \in T a \cap g(C)$ and $v \in T b \cap g(C)$.
Definition 5 Let (X, d) be a metric space and C be a nonempty subset of X. Let $T: C \rightarrow C L(X)$ be a multivalued mapping and $g: C \rightarrow X$ be a single valued mapping. If for $x_{0} \in C$, there exists a sequence $\left(g x_{n}\right)$ in $g(C)$ such that $g x_{n} \in T x_{n-1}, n \in \mathbb{N}$, then $O\left(T, x_{0}\right)=\left\{g x_{0}, g x_{1}, \cdots\right\}$ is called an orbit of T at x_{0} in $g(C)$.
Definition 6 Let (X, d) be a metric space and C be a nonempty subset of X. A function $h: C \rightarrow \mathbb{R}$ is said to be T-orbitally lower semicontinuous w.r.t. g at $t \in C$ if $\left(g x_{n}\right)$ is a sequence in $O\left(T, x_{0}\right)$ and $g x_{n} \rightarrow g t$ implies $h(t) \leq \liminf _{n} h\left(x_{n}\right)$.

For $A, B \in C L(X)$, define

$$
H(A, B)= \begin{cases}\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\} & \text { if the maximum exists } \\ \infty & \text { otherwise }\end{cases}
$$

where $d(x, B)=\inf \{d(x, y): y \in B\}$. Such a map H is called Pompeiu-Hausdorff metric on $C L(X)$ induced by d.

Theorem 1 ([8]) Let (X, d) be a metric space and let $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be a hybrid pair of mappings such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that there exists $r \in(0,1)$ such that

$$
\begin{equation*}
H(T x, T y) \leq r d(g x, g y) \tag{2}
\end{equation*}
$$

for all $x, y \in X$. Then g and T have a point of coincidence in $g(X)$.

3 Coincidence Point Results

In this section, we prove some coincidence point results for a hybrid pair of mappings in metric spaces.
Definition 7 Let (X, d) be a metric space, C a closed subset of X, and let η be a Bianchini-Grandolfi gauge function on J. Let $T: C \rightarrow C L(X)$ be a multivalued mapping and $g: C \rightarrow X$ be a single valued mapping with $T(C) \subseteq g(C)$. Then (T, g) is called a hybrid pair of Suzuki-type (α, φ, ζ)-contraction, if there exist $\alpha: g(C) \times g(C) \rightarrow[0, \infty), \varphi \in \Phi$, and a simulation function ζ such that T is α-admissible w.r.t. g and

$$
\varphi(d(g x, T x \cap C), d(g x, g y))<0
$$

implies that

$$
\begin{equation*}
\zeta(\alpha(g x, g y) H(T x \cap C, T y \cap C), \eta(d(g x, g y))) \geq 0 \tag{3}
\end{equation*}
$$

for all $x \in C, g y \in T x \cap C$ with $g x \neq g y$ and $d(g x, g y) \in J$.
In particular, if

$$
\zeta(t, s)=s-\int_{0}^{t} \nu(r) d r \forall t, s \geq 0
$$

where $\nu: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a function such that $\int_{0}^{\epsilon} \nu(r) d r$ exists and $\int_{0}^{\epsilon} \nu(r) d r>\epsilon$ for all $\epsilon>0$, then (3) reduces to

$$
\int_{0}^{\alpha(g x, g y) H(T x \cap C, T y \cap C)} \nu(r) d r \leq \eta(d(g x, g y))
$$

for all $x \in C, g y \in T x \cap C$ with $g x \neq g y$ and $d(g x, g y) \in J$. In this case, (T, g) is called a hybrid pair of Suzuki-integral type (α, φ, ζ)-contraction.

Remark 1 In case $g=I$, the identity map on C, we call T is a multivalued Suzuki-type (α, φ, ζ)-contraction, instead of saying that (T, I) is a hybrid pair of Suzuki-type (α, φ, ζ)-contraction.

Definition 8 Let (X, d) be a metric space, C a nonempty subset of X and let $T: C \rightarrow C L(X), g: C \rightarrow X$ be two mappings. If $y=g x \in T x$ for some x in C, then x is called a coincidence point of T and g, and y is called a point of coincidence of T and g.

Theorem 2 Let (X, d) be a metric space, C a closed subset of X and let η be a Bianchini-Grandolfi gauge function on an interval J. Suppose that (T, g) is a hybrid pair of Suzuki-type (α, φ, ζ)-contraction and $g(C)$ is a complete subspace of (X, d). Also assume that there exists $x_{0} \in C$ with $d\left(g x_{0}, z\right) \in J$ for some $z \in T x_{0} \cap C$ and $\alpha\left(g x_{0}, z\right) \geq 1$. Then,
(a) there exist an orbit $\left\{g x_{0}, g x_{1}, \cdots\right\}$ of T at x_{0} in $g(C)$ and $u \in g(C)$ such that $\lim _{n \rightarrow \infty} g x_{n}=u=g t$, for some $t \in C$;
(b) u is a point of coincidence of g and T in $g(C)$ if the function $h(x)=d(g x, T x \cap C)$ is T-orbitally lower semicontinuous w.r.t. g at t.

Proof. Suppose there exists $x_{0} \in C$ such that $d\left(g x_{0}, z\right) \in J$ for some $z \in T x_{0} \cap C$ and $\alpha\left(g x_{0}, z\right) \geq 1$. Since $T(C) \subseteq g(C)$, there exists $x_{1} \in C$ such that $g x_{1}=z$. If $g x_{0}=g x_{1}$, then $g x_{0}$ is a point of coincidence of g and T. So, we assume that $g x_{0} \neq g x_{1}$. Now,

$$
\begin{aligned}
\varphi\left(d\left(g x_{0}, T x_{0} \cap C\right), d\left(g x_{0}, g x_{1}\right)\right) & \leq \frac{1}{2} d\left(g x_{0}, T x_{0} \cap C\right)-d\left(g x_{0}, g x_{1}\right) \\
& \leq \frac{1}{2} d\left(g x_{0}, g x_{1}\right)-d\left(g x_{0}, g x_{1}\right) \\
& <d\left(g x_{0}, g x_{1}\right)-d\left(g x_{0}, g x_{1}\right) \\
& =0
\end{aligned}
$$

Since $d\left(g x_{0}, g x_{1}\right) \in J$, we obtain from (3) that

$$
\begin{aligned}
0 & \leq \zeta\left(\alpha\left(g x_{0}, g x_{1}\right) H\left(T x_{0} \cap C, T x_{1} \cap C\right), \eta\left(d\left(g x_{0}, g x_{1}\right)\right)\right) \\
& <\eta\left(d\left(g x_{0}, g x_{1}\right)\right)-\alpha\left(g x_{0}, g x_{1}\right) H\left(T x_{0} \cap C, T x_{1} \cap C\right) .
\end{aligned}
$$

This gives that

$$
\alpha\left(g x_{0}, g x_{1}\right) H\left(T x_{0} \cap C, T x_{1} \cap C\right)<\eta\left(d\left(g x_{0}, g x_{1}\right)\right)
$$

We can choose an $\epsilon_{1}>0$ such that

$$
\alpha\left(g x_{0}, g x_{1}\right) H\left(T x_{0} \cap C, T x_{1} \cap C\right)+\epsilon_{1} \leq \eta\left(d\left(g x_{0}, g x_{1}\right)\right)
$$

Therefore,

$$
\begin{align*}
d\left(g x_{1}, T x_{1} \cap C\right)+\epsilon_{1} & \leq H\left(T x_{0} \cap C, T x_{1} \cap C\right)+\epsilon_{1} \\
& \leq \alpha\left(g x_{0}, g x_{1}\right) H\left(T x_{0} \cap C, T x_{1} \cap C\right)+\epsilon_{1} \\
& \leq \eta\left(d\left(g x_{0}, g x_{1}\right)\right) \tag{4}
\end{align*}
$$

By using Lemma 1 , there exists $g x_{2} \in T x_{1} \cap C$ for some $x_{2} \in C$ such that

$$
\begin{equation*}
d\left(g x_{1}, g x_{2}\right) \leq d\left(g x_{1}, T x_{1} \cap C\right)+\epsilon_{1} \tag{5}
\end{equation*}
$$

Using conditions (4) and (5), we get

$$
\begin{equation*}
d\left(g x_{1}, g x_{2}\right) \leq \eta\left(d\left(g x_{0}, g x_{1}\right)\right) . \tag{6}
\end{equation*}
$$

Suppose that $d\left(g x_{1}, g x_{2}\right) \neq 0$, otherwise $g x_{1}$ is a point of coincidence of g and T in $g(C)$. By $\left(\eta_{2}\right)$ and (6), we get

$$
d\left(g x_{1}, g x_{2}\right) \leq \eta\left(d\left(g x_{0}, g x_{1}\right)\right)<d\left(g x_{0}, g x_{1}\right)
$$

which implies that $d\left(g x_{1}, g x_{2}\right) \in J$. Since T is α-admissible w.r.t. g and $\alpha\left(g x_{0}, g x_{1}\right) \geq 1$, we have $\alpha\left(g x_{1}, g x_{2}\right) \geq 1$.

Again, we have

$$
\begin{aligned}
\varphi\left(d\left(g x_{1}, T x_{1} \cap C\right), d\left(g x_{1}, g x_{2}\right)\right) & \leq \frac{1}{2} d\left(g x_{1}, T x_{1} \cap C\right)-d\left(g x_{1}, g x_{2}\right) \\
& \leq \frac{1}{2} d\left(g x_{1}, g x_{2}\right)-d\left(g x_{1}, g x_{2}\right) \\
& <d\left(g x_{1}, g x_{2}\right)-d\left(g x_{1}, g x_{2}\right) \\
& =0
\end{aligned}
$$

Since $d\left(g x_{1}, g x_{2}\right) \in J$, we obtain from (3) that

$$
\begin{aligned}
0 & \leq \zeta\left(\alpha\left(g x_{1}, g x_{2}\right) H\left(T x_{1} \cap C, T x_{2} \cap C\right), \eta\left(d\left(g x_{1}, g x_{2}\right)\right)\right) \\
& <\eta\left(d\left(g x_{1}, g x_{2}\right)\right)-\alpha\left(g x_{1}, g x_{2}\right) H\left(T x_{1} \cap C, T x_{2} \cap C\right)
\end{aligned}
$$

This gives that

$$
\alpha\left(g x_{1}, g x_{2}\right) H\left(T x_{1} \cap C, T x_{2} \cap C\right)<\eta\left(d\left(g x_{1}, g x_{2}\right)\right) .
$$

We choose an $\epsilon_{2}>0$ such that

$$
\alpha\left(g x_{1}, g x_{2}\right) H\left(T x_{1} \cap C, T x_{2} \cap C\right)+\epsilon_{2} \leq \eta\left(d\left(g x_{1}, g x_{2}\right)\right)
$$

Thus,

$$
\begin{align*}
d\left(g x_{2}, T x_{2} \cap C\right)+\epsilon_{2} & \leq H\left(T x_{1} \cap C, T x_{2} \cap C\right)+\epsilon_{2} \\
& \leq \alpha\left(g x_{1}, g x_{2}\right) H\left(T x_{1} \cap C, T x_{2} \cap C\right)+\epsilon_{2} \\
& \leq \eta\left(d\left(g x_{1}, g x_{2}\right)\right) \tag{7}
\end{align*}
$$

By Lemma 1, there exists $g x_{3} \in T x_{2} \cap C$ for some $x_{3} \in C$ such that

$$
\begin{equation*}
d\left(g x_{2}, g x_{3}\right) \leq d\left(g x_{2}, T x_{2} \cap C\right)+\epsilon_{2} . \tag{8}
\end{equation*}
$$

From conditions (7) and (8), we get

$$
\begin{equation*}
d\left(g x_{2}, g x_{3}\right) \leq \eta\left(d\left(g x_{1}, g x_{2}\right)\right) \leq \eta^{2}\left(d\left(g x_{0}, g x_{1}\right)\right) \tag{9}
\end{equation*}
$$

We assume that $d\left(g x_{2}, g x_{3}\right) \neq 0$, otherwise $g x_{2}$ is a point of coincidence of g and T in $g(C)$. From (9), it follows that $d\left(g x_{2}, g x_{3}\right)<d\left(g x_{1}, g x_{2}\right)$ and so $d\left(g x_{2}, g x_{3}\right) \in J$. Continuing in this way, we can construct a sequence $\left(g x_{n}\right)$ in $g(C)$ such that $g x_{n} \in T x_{n-1} \cap C \subseteq g(C), g x_{n-1} \neq g x_{n}$ with $\alpha\left(g x_{n-1}, g x_{n}\right) \geq$ $1, d\left(g x_{n-1}, g x_{n}\right) \in J$ and

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \leq \eta^{n}\left(d\left(g x_{0}, g x_{1}\right)\right), \forall n \in \mathbb{N} \tag{10}
\end{equation*}
$$

For $m, n \in \mathbb{N}$ with $m>n$, we have

$$
\begin{aligned}
d\left(g x_{n}, g x_{m}\right) & \leq d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+\cdots+d\left(g x_{m-1}, g x_{m}\right) \\
& \leq \eta^{n}\left(d\left(g x_{0}, g x_{1}\right)\right)+\eta^{n+1}\left(d\left(g x_{0}, g x_{1}\right)\right)+\cdots+\eta^{m-1}\left(d\left(g x_{0}, g x_{1}\right)\right) \\
& =\sum_{i=n}^{m-1} \eta^{i}\left(d\left(g x_{0}, g x_{1}\right)\right)
\end{aligned}
$$

Since $\sum_{i=0}^{\infty} \eta^{i}(t)<\infty$ for each $t \in J$, it follows that

$$
\lim _{n, m \rightarrow \infty} d\left(g x_{n}, g x_{m}\right)=0
$$

This proves that $\left(g x_{n}\right)$ is a Cauchy sequence in $g(C)$. Since $g(C)$ is complete, there exists $u \in g(C)$ such that $g x_{n} \rightarrow u=g t$ for some $t \in C$. This proves part (a) of the theorem.

As $g x_{n+1} \in T x_{n} \cap C$, we have

$$
\begin{aligned}
\varphi\left(d\left(g x_{n}, T x_{n} \cap C\right), d\left(g x_{n}, g x_{n+1}\right)\right) & \leq \frac{1}{2} d\left(g x_{n}, T x_{n} \cap C\right)-d\left(g x_{n}, g x_{n+1}\right) \\
& \leq \frac{1}{2} d\left(g x_{n}, g x_{n+1}\right)-d\left(g x_{n}, g x_{n+1}\right) \\
& <0
\end{aligned}
$$

Therefore, from (3) we get

$$
\begin{aligned}
0 & \leq \zeta\left(\alpha\left(g x_{n}, g x_{n+1}\right) H\left(T x_{n} \cap C, T x_{n+1} \cap C\right), \eta\left(d\left(g x_{n}, g x_{n+1}\right)\right)\right) \\
& <\eta\left(d\left(g x_{n}, g x_{n+1}\right)\right)-\alpha\left(g x_{n}, g x_{n+1}\right) H\left(T x_{n} \cap C, T x_{n+1} \cap C\right)
\end{aligned}
$$

This gives that

$$
\begin{equation*}
\alpha\left(g x_{n}, g x_{n+1}\right) H\left(T x_{n} \cap C, T x_{n+1} \cap C\right)<\eta\left(d\left(g x_{n}, g x_{n+1}\right)\right) \tag{11}
\end{equation*}
$$

Since $g x_{n+1} \in T x_{n} \cap C$, using (10) and (11), we get

$$
\begin{aligned}
d\left(g x_{n+1}, T x_{n+1} \cap C\right) & \leq \alpha\left(g x_{n}, g x_{n+1}\right) H\left(T x_{n} \cap C, T x_{n+1} \cap C\right) \\
& <\eta\left(d\left(g x_{n}, g x_{n+1}\right)\right) \\
& \leq \eta^{n+1}\left(d\left(g x_{0}, g x_{1}\right)\right) .
\end{aligned}
$$

Passing to the limit as $n \rightarrow \infty$, we obtain

$$
\lim _{n \rightarrow \infty} d\left(g x_{n+1}, T x_{n+1} \cap C\right)=0
$$

Since $h(x)=d(g x, T x \cap C)$ is T-orbitally lower semicontinuous w.r.t. g at t, we have

$$
d(g t, T t \cap C)=h(t) \leq \liminf _{n} h\left(x_{n+1}\right)=\liminf _{n} d\left(g x_{n+1}, T x_{n+1} \cap C\right)=0
$$

This gives that $d(g t, T t \cap C)=0$. As $T t \cap C$ is closed, it follows that $u=g t \in T t$ and hence u is a point of coincidence of g and T in $g(C)$.

Corollary 1 Let (X, d) be a metric space, C a closed subset of X and let η be a Bianchini-Grandolfigauge function on an interval J. Suppose that (T, g) is a hybrid pair of Suzuki-integral type (α, φ, ζ)-contraction and $g(C)$ is a complete subspace of (X, d). Also assume that there exists $x_{0} \in C$ with $d\left(g x_{0}, z\right) \in J$ for some $z \in T x_{0} \cap C$ and $\alpha\left(g x_{0}, z\right) \geq 1$. Then,
(a) there exist an orbit $\left\{g x_{0}, g x_{1}, \cdots\right\}$ of T at x_{0} in $g(C)$ and $u \in g(C)$ such that $\lim _{n \rightarrow \infty} g x_{n}=u=g t$, for some $t \in C$;
(b) u is a point of coincidence of g and T in $g(C)$ if the function $h(x)=d(g x, T x \cap C)$ is T-orbitally lower semicontinuous w.r.t. g at t.

Proof. The proof can be obtained from Theorem 2 by taking

$$
\zeta(t, s)=s-\int_{0}^{t} \nu(r) d r \forall t, s \geq 0
$$

where $\nu: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a function such that $\int_{0}^{\epsilon} \nu(r) d r$ exists and $\int_{0}^{\epsilon} \nu(r) d r>\epsilon$ for all $\epsilon>0$.

Corollary 2 Let (X, d) be a metric space, C a closed subset of X, and let η be a Bianchini-Grandolfi gauge function on J. Let $T: C \rightarrow C L(X)$ be a multivalued mapping and $g: C \rightarrow X$ be a single valued mapping with $T(C) \subseteq g(C)$ and $g(C)$ a complete subspace of (X, d). Suppose there exists $\alpha: g(C) \times g(C) \rightarrow[0, \infty)$ such that T is α-admissible w.r.t. g and

$$
\begin{equation*}
\alpha(g x, g y) H(T x \cap C, T y \cap C) \leq \psi(\eta(d(g x, g y))) \tag{12}
\end{equation*}
$$

for all $x \in C, g y \in T x \cap C$ with $g x \neq g y$ and $d(g x, g y) \in J$, where $\psi:[0, \infty) \rightarrow[0, \infty)$ is an upper semicontinuous function such that $\psi(t)<t$ for all $t>0$ and $\psi(0)=0$. Also assume that there exists $x_{0} \in C$ with $d\left(g x_{0}, z\right) \in J$ for some $z \in T x_{0} \cap C$ and $\alpha\left(g x_{0}, z\right) \geq 1$. Then,
(a) there exist an orbit $\left\{g x_{0}, g x_{1}, \cdots\right\}$ of T at x_{0} in $g(C)$ and $u \in g(C)$ such that $\lim _{n \rightarrow \infty} g x_{n}=u=g t$, for some $t \in C$;
(b) u is a point of coincidence of g and T in $g(C)$ if the function $h(x)=d(g x, T x \cap C)$ is T-orbitally lower semicontinuous w.r.t. g at t.

Proof. Taking $\varphi\left(r_{1}, r_{2}\right)=\frac{1}{2} r_{1}-r_{2}$, for $r_{1}, r_{2} \in \mathbb{R}^{+}$, we obtain that for all $x \in C, g y \in T x$ with $g x \neq g y$,

$$
\begin{aligned}
\varphi(d(g x, T x), d(g x, g y)) & =\frac{1}{2} d(g x, T x)-d(g x, g y) \\
& \leq \frac{1}{2} d(g x, g y)-d(g x, g y) \\
& =-\frac{1}{2} d(g x, g y) \\
& <0
\end{aligned}
$$

By considering $\zeta(t, s)=\psi(s)-t, \forall t, s \geq 0$, it follows from condition (12) that

$$
\zeta(\alpha(g x, g y) H(T x \cap C, T y \cap C), \eta(d(g x, g y))) \geq 0
$$

for all $x \in C, g y \in T x \cap C$ with $g x \neq g y$ and $d(g x, g y) \in J$. Consequently, (T, g) becomes a hybrid pair of Suzuki-type (α, φ, ζ)-contraction. Thus all the hypotheses of Theorem 2 are fulfilled and the conclusion of the corollary can be obtained by applying Theorem 2.

Corollary 3 Let (X, d) be a complete metric space, C a closed subset of X and let η be a BianchiniGrandolfi gauge function on an interval J. Suppose that $T: C \rightarrow C L(X)$ is a multivalued Suzuki-type (α, φ, ζ)-contraction. Also assume that there exists $x_{0} \in C$ with $d\left(x_{0}, z\right) \in J$ for some $z \in T x_{0} \cap C$ and $\alpha\left(x_{0}, z\right) \geq 1$. Then,
(a) there exist an orbit $\left\{x_{0}, x_{1}, \cdots\right\}$ of T at x_{0} in C and $u \in C$ such that $\lim _{n \rightarrow \infty} x_{n}=u$;
(b) u is a fixed point of T if the function $h(x)=d(x, T x \cap C)$ is T-orbitally lower semicontinuous at u.

Proof. The proof follows from Theorem 2 by taking $g=I$, the identity map on C.

Remark 2 Several special cases of Theorem 2 can be obtained by particular choices of η, φ and ζ.

Now we present an example to examine the validity of our main result. It should be noticed that a generalized version of Nadler's Theorem can not assure the existence of a point of coincidence in the following example.

Example 2 Let $X=[0, \infty)$ with usual metric $d(x, y)=|x-y|$ for all $x, y \in X$. Let $C=[0,1]$ and $T: C \rightarrow C L(X)$ be defined by $T x=[1, x+1], \forall x \in C$ and $g: C \rightarrow X$ by $g x=x+1$ for all $x \in C$. Obviously, $T(C)=g(C)=[1,2]$ and $g(C)$ is a complete subspace of the metric space (X, d).

For $x=0, y=1$, we have $g x=1, g y=2, T x=\{1\}, T y=[1,2]$. Therefore,

$$
H(T x, T y)=1=d(g x, g y)>r d(g x, g y)
$$

for any $r \in(0,1)$ and hence condition (2) of Theorem 1 does not hold true. So, Theorem 1 can not assure the existence of a point of coincidence of g and T.

Let $J=[0, \infty), \eta$ a Bianchini-Grandolfi gauge function on J and let $\alpha: g(C) \times g(C) \rightarrow[0, \infty)$ be defined by $\alpha(x, y)=1$ for all $x, y \in[1,2]$. Obviously, T is α-admissible w.r.t. g. Moreover, $x_{0}=0 \in C$ such that $d\left(g x_{0}, z\right) \in J$ for $z=1 \in T x_{0} \cap C$ and $\alpha\left(g x_{0}, z\right)=1$.

Let $\zeta(t, s)=\psi(s)-t, \forall t, s \geq 0$, where $\psi:[0, \infty) \rightarrow[0, \infty)$ is an upper semicontinuous function such that $\psi(t)<t$ for all $t>0$ and $\psi(0)=0$. Take $\varphi\left(r_{1}, r_{2}\right)=\frac{1}{2} r_{1}-r_{2}$, for $r_{1}, r_{2} \in \mathbb{R}^{+}$.

We now show that (T, g) is a hybrid pair of Suzuki-type (α, φ, ζ)-contraction.
Case-I: For $x=1$, we have $T x=[1,2]$ and $T x \cap C=\{1\}$. We note that $g y=g 0=1 \in T x \cap C$ with $g x \neq g y$ and $T y \cap C=\{1\}$. Then, $H(T x \cap C, T y \cap C)=0$. Therefore,

$$
\alpha(g x, g y) H(T x \cap C, T y \cap C) \leq \psi(\eta(d(g x, g y)))
$$

Case-II: For $x=0$, we have $T x=\{1\}$ and $T x \cap C=\{1\}$. In this case, there exists no $g y(\neq g x) \in T x \cap C$.
Case-III: For $0<x<1$, we have $T x=[1, x+1]$ and $T x \cap C=\{1\}$. This case is also similar to Case-I.
Thus,

$$
\alpha(g x, g y) H(T x \cap C, T y \cap C) \leq \psi(\eta(d(g x, g y)))
$$

for all $x \in C, g y \in T x \cap C$ with $g x \neq g y$ and $d(g x, g y) \in J$. Since $\zeta(t, s)=\psi(s)-t$ for all $t, s \geq 0$, it follows that

$$
\zeta(\alpha(g x, g y) H(T x \cap C, T y \cap C), \eta(d(g x, g y))) \geq 0
$$

for all $x \in C, g y \in T x \cap C$ with $g x \neq g y$ and $d(g x, g y) \in J$. Consequently, (T, g) becomes a hybrid pair of Suzuki-type (α, φ, ζ)-contraction.

Therefore, all the hypotheses of Theorem 2 are fulfilled and we observe that there exist an orbit $\left\{g x_{0}, g x_{1}, \cdots\right\}$ of T at $x_{0}=0$ in $g(C)$, where $g x_{n}=1$, for $n=0,1,2,3, \cdots$ and $1 \in g(C)$ such that $\lim _{n \rightarrow \infty} g x_{n}=1=g 0$.

Furthermore, $h(x)=d(g x, T x \cap C)=d(g x,\{1\})=x$ is T-orbitally lower semicontinuous w.r.t. g at $x=0$. Now applying Theorem 2, we find that 1 is a point of coincidence of g and T in $g(C)$.

Acknowledgment. The authors are grateful to the referees for their valuable comments.

References

[1] H. A. Alolaiyan, M. Abbas and B. Ali, Fixed point results of Edelstein-Suzuki type multivalued mappings on b-metric spaces with applications, J. Nonlinear Sci. Appl., 10(2017), 1201-1214.
[2] A. Ali, H. Işik, H. Aydi, E. Ameer, J. R. Lee and M. Arshad, On multivalued Suzuki-type θ-contractions and related applications, Open Mathematics, 18(2020), 386-399.
[3] I. Beg and A. Azam, Fixed points of multivalued locally contractive mappings, Boll. Unione Matematica Italiana, 7(1990), 227-233.
[4] I. Beg and A. R. Butt, Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Appl., 71(2009), 3699-3704.
[5] B. Damjanovic, B. Samet and C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci. Ser. B Engl. Ed., 32(2012), 818-824.
[6] F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29(2015), 1189-1194.
[7] S. K. Mohanta and S. Patra, Coincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph, J. Linear. Topological. Algebra., 6(2017), 301-321.
[8] S. K. Mohanta and D. Biswas, coincidence point results for graph preserving hybrid pair of mappings, Int. J. Nonlinear Anal. Appl., 11(2020), 409-424.
[9] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30(1969), 475-488.
[10] P. D. Proinov, A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal., 67(2007), 2361-2369.
[11] H. Şahin, I. Altun and D. Türkoğlu, Fixed point results for mixed multivalued mappings of Feng-Liu type on M_{b}-metric spaces, Mathematical Methods in Engineering, Nonlinear Systems and Complexity, 23(2019), 67-80.
[12] M. Samreen, K. Waheed and Q. Kiran, Multivalued φ-contractions and fixed point theorems, Filomat, 32(2018), 1209-1220.
[13] J. Tiammee and S. Suantal, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl., 2014, 2014:70.
[14] F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math., 31(2015), 403-410.

[^0]: *Mathematics Subject Classifications: 54H25, 47H10.
 \dagger Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, India
 \ddagger Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, India

