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Abstract

In this paper, we have proposed a new cubic transmuted Pareto (CTP ) distribution by using the
cubic Transmuted family of distributions introduced by Rahman et al. [1]. Derivation of statistical
properties along with the distribution of order statistics have been discussed for the CTP distribution.
Certain characterizations of the CTP distribution are presented. Maximum likelihood estimation of the
model parameters has been conducted alongside an extensive Monte Carlo simulation study to assess
the performance of the estimation procedure. Finally, two real-life applications have been considered to
investigate the applicability of the CTP distribution.

1 Introduction

Vilfredo Pareto (1848-1923) observed that 80% wealth in capitalist countries is handled by its 20% population.
He generalized this idea as a Pareto principle. On the basis of this principle, he introduced the Pareto
distribution as the distribution of wealth in a society. The density function of the Pareto distribution (for
more details see [2]) is given by

f(x) =
θkθ

xθ+1
, x ∈ [k,∞),

where k ∈ R+ and θ ∈ R+ are the scale and shape parameters respectively.

Merovci and Puka [3] have introduced transmuted Pareto (TP ) distribution to solve the problems of
financial mathematics by applying the quadratic transmutation approach given as

F (x) = (1 + λ)G(x)− λG2(x), λ ∈ [−1, 1]. (1)

The transmutation approach (1) handles the quadratic behavior in the data. Ansari and Eledum [4] have
developed a cubic transmuted Pareto (for short, CTPAE) distribution which turned out to be a member of
general transmuted family of distributions, introduced by Rahman et al [5], for λ2 = −λ1 = −λ. Specifically,
the CTPAE distribution is a special case of the CTP distribution introduced by Rahman et al. [6], for
λ2 = −λ1 = −λ.

Rahman et al. [1] have introduced another cubic transmuted family of distributions to capture complex
behavior of the data. The cdf of this family of distributions has the form

F (x) = (1 + λ1 + λ2)G(x)− (λ1 + 2λ2)G2(x) + λ2G
3(x), x ∈ R, (2)
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where λ1 ∈ [−1, 1] and λ2 ∈ [0, 1].

In this article, we have proposed another new CTP distribution by using cubic transmuted family given
in (2). The rest of the article is structured as follows: A new CTP distribution is proposed in Section 2.
Section 3 contains statistical properties of CTP distribution. The distribution of order statistics for CTP
distribution is given in Section 4. Section 5 presents some characterizations results. Parameter estimation
has been discussed in Section 6. In Section 7, extensive simulation study has been conducted to assess
the performance of estimation method alongside two real-life applications of the proposed distribution to
investigate its applicability. Finally, in Section 8, some concluding remarks are given.

2 Cubic Transmuted Pareto Distribution

We develop a new CTP distribution for capturing the complexity of data arising in finance and other areas
of life as follows.

The cdf of the Pareto distribution is

G(x) = 1−
(
k

x

)θ
, x ∈ [k,∞), (3)

where k ∈ R+ and θ ∈ R+.

Merovci and Puka [3], have developed TP distribution, by using the transmuted family given in (1),
which has the cdf

F (x) =

[
1−

(
k

x

)θ][
1 + λ

(
k

x

)θ]
, (4)

where k ∈ R+, θ ∈ R+ and λ ∈ [−1, 1].

The new CTP distribution is proposed by using the cdf of Pareto distribution, from (3), in the cubic
transmuted family given in (2). The cdf of proposed CTP distribution is

F (x) =

[
1−

(
k

x

)θ][
1 +

{
λ1 + λ2

(
k

x

)θ}(
k

x

)θ]
, x ∈ [k,∞), (5)

where k ∈ R+, θ ∈ R+, λ1 ∈ [−1, 1] and λ2 ∈ [0, 1].

The pdf corresponding to (5) is

f(x) =
θkθ

xθ+1

[
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
]
, x ∈ [k,∞). (6)

Some special cases of the proposed CTP distribution are listed below.

1. The cdf of CTP distribution given in (5), reduces to the cdf of TP distribution given in (4), for λ2 = 0.

2. For λ1 = λ2 = 0, the cdf of CTP distribution given in (5) turns out to be the cdf of base Pareto
distribution given in (3).

Some possible shapes for the pdf and cdf of the proposed CTP distribution are presented in Figure 1 for
selected values of the model parameters θ and λ2, setting k = 1.5 and λ1 = −1.

3 Statistical Properties

In this section, we will present some statistical properties; such as moments, moment generating functions,
characteristic function, quantile function, generating random sample, reliability function and Shannon en-
tropy; of the proposed CTP distribution. These properties are given in the following subsections.
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Figure 1: Density and distribution functions plots for the proposed CTP distribution

3.1 Moments

The moments are useful in studying behaviour of any probability distribution. The expression of rth moment
for CTP distribution is given in the following theorem.

Theorem 1 Suppose the random variable X follows the CTP distribution. Then the rth moment of X is
then given as

µ′r = E(Xr) =
θkr [(r − 3θ) (2θ − λ1r − r)− λ2r(r − θ)]

(r − 3θ)(r − 2θ)(r − θ)
, θ > r. (7)

The mean and variance, respectively, are

E(X) =
θk [(1− 3θ) (2θ − λ1 − 1)− λ2(1− θ)]

(1− 3θ)(1− 2θ)(1− θ)
, θ > 1,

and

σ2 = V (X) = θk2

[
(2− 3θ) (2θ − 2λ1 − 2)− 2λ2(2− θ)

(2− 3θ)(2− 2θ)(2− θ)

− θ {(1− 3θ) (2θ − λ1 − 1)− λ2(1− θ)}2

{(1− 3θ)(1− 2θ)(1− θ)}2

]
, θ > 2.

Proof. The rth moment of a random variable is

µ′r = E(Xr) =

∫ ∞
−∞

xrf(x)dx.
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Table 1: Mean chart of the CTP distribution

λ1 = −1 λ1 = −0.5 λ1 = 0 λ1 = 0.5 λ1 = 1

θ = 5
λ2 = 0
λ2 = 0.5
λ2 = 1

1.389
1.369
1.349

1.319
1.300
1.280

1.250
1.230
1.210

1.181
1.161
1.141

1.111
1.091
1.071

k = 1 θ = 10
λ2 = 0
λ2 = 0.5
λ2 = 1

1.170
1.161
1.151

1.140
1.131
1.122

1.111
1.102
1.093

1.082
1.073
1.064

1.053
1.044
1.034

θ = 15
λ2 = 0
λ2 = 0.5
λ2 = 1

1.108
1.102
1.097

1.090
1.084
1.078

1.071
1.066
1.060

1.053
1.047
1.041

1.034
1.029
1.023

θ = 5
λ2 = 0
λ2 = 0.5
λ2 = 1

6.944
6.845
6.746

6.597
6.498
6.399

6.250
6.151
6.052

5.903
5.804
5.704

5.556
5.456
5.357

k = 5 θ = 10
λ2 = 0
λ2 = 0.5
λ2 = 1

5.848
5.803
5.757

5.702
5.656
5.611

5.556
5.510
5.465

5.409
5.364
5.319

5.263
5.218
5.172

θ = 15
λ2 = 0
λ2 = 0.5
λ2 = 1

5.542
5.512
5.483

5.450
5.420
5.391

5.357
5.328
5.298

5.265
5.235
5.206

5.172
5.143
5.114

θ = 5
λ2 = 0
λ2 = 0.5
λ2 = 1

13.889
13.690
13.492

13.194
12.996
12.798

12.500
12.302
12.103

11.806
11.607
11.409

11.111
10.913
10.714

k = 10 θ = 10
λ2 = 0
λ2 = 0.5
λ2 = 1

11.696
11.605
11.514

11.404
11.313
11.222

11.111
11.020
10.930

10.819
10.728
10.637

10.526
10.436
10.345

θ = 15
λ2 = 0
λ2 = 0.5
λ2 = 1

11.084
11.025
10.966

10.899
10.840
10.781

10.714
10.656
10.597

10.530
10.471
10.412

10.345
10.286
10.227

Using the density function of CTP distribution, from (6), and on simplification we have

µ′r =

∫ ∞
k

xr
θkθ

xθ+1

[
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
]

dx

= θkθ(1− λ1)

{
− k

r−θ

r − θ

}
+ θk2θ2(λ1 − λ2)

{
− k

r−2θ

r − 2θ

}
+θk3θ3λ2

{
− k

r−3θ

r − 3θ

}
= θkr

[
λ1 − 1

r − θ
− 2(λ1 − λ2)

r − 2θ
− 3λ2

r − 3θ

]
=

θkr

(r − 3θ)(r − 2θ)(r − θ)
[

(λ1 − 1) (r − 2θ)(r − 3θ)

−2 (λ1 − λ2) (r − θ)(r − 3θ)− 3λ2(r − θ)(r − 2θ)
]

=
θkr [λ2r(θ − r)− (r − 3θ) (−2θ + λ1r + r)]

(r − 3θ)(r − 2θ)(r − θ)

=
θkr [(r − 3θ) (2θ − λ1r − r)− λ2r(r − θ)]

(r − 3θ)(r − 2θ)(r − θ)
. (8)
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The mean can be readily obtained from (8) by using r = 1. The variance is obtained by using

V (X) = E(X2)− {E(X)}2 ,

where E(Xr) for i = 1, 2 can be obtained from (8). The higher moments of CTP can also be obtained from
(8).

Table 1 presents values of the mean of CTP distribution for various combination of model parameters.

3.2 Moment Generating Function

Moment generating function (MGF ) is a useful function to obtain moments of a random variable. The
MGF of CTP is given in the following theorem.

Theorem 2 Suppose random variable X follows the CTP distribution. Then the MGF is

MX(t) =

∞∑
r=0

tr

r!

θkr [(r − 3θ) (2θ − λ1r − r)− λ2r(r − θ)]
(r − 3θ)(r − 2θ)(r − θ)

, θ > r, (9)

where t ∈ R.

Proof. The MGF is defined as

MX(t) = E[etx] =

∫ ∞
k

etxf(x)dx.

Using series expansion of etx (see [8]), the moment generating function can be written as

Mx(t) =

∫ ∞
k

∞∑
r=0

tr

r!
xrf(x)dt =

∞∑
r=0

tr

r!
E(Xr). (10)

Now, using (7) in (10), we obtain (9).

3.3 Characteristic Function

The characteristic function of a real valued random variable completely defines its density function. The
characteristic function of CTP distribution is given in the following theorem.

Theorem 3 Suppose random variable X follows the CTP distribution. Then the characteristic function of
X, φX(t), is given by

φX(t) =

∞∑
r=0

(it)r

r!

θkr [(r − 3θ) (2θ − λ1r − r)− λ2r(r − θ)]
(r − 3θ)(r − 2θ)(r − θ)

, θ > r,

where i =
√
−1 is the imaginary unit and t ∈ R.

Proof. The proof is simple and hence omitted.

3.4 Quantile Function

The quantile function is obtained by inversely solving the cdf for x. Now, solving (5) for x the quantile
function, xq, of CTP is (see for example [6, 7])

xq = ke−
1
θ ln(y), (11)
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Figure 2: Reliability and hazard functions plots for the proposed CTP distribution

where

y = − b
3a −

21/3ξ1

3a
(
ξ2+
√

4ξ31+ξ22

)1/3 +

(
ξ2+
√

4ξ31+ξ22

)1/3

3(21/3)a
,

ξ1 = −b2 + 3ac ≥ 0, ξ2 = −2b3 + 9abc− 27a2d,
a = −λ2, b = λ2 − λ1, c = λ1 − 1 and d = 1− q.

 (12)

The lower quartile, median and upper quartile can be obtained by setting q = 0.25, 0.50 and 0.75 in (11),

respectively.

3.5 Simulating the Random Sample

The random sample from CTP distribution can be easily generated by using its quantile function. Specifically
a random observation from the CTP is

X = ke−
1
θ ln(Y ), (13)

where Y is given in (12). Now using d = 1 − u, where u is a uniform random number, we can obtain a
random observation from the CTP distribution.

One can easily obtain random data from the proposed CTP distribution by applying (13) and using
various combination of the model parameters k, θ, λ1 and λ2.

3.6 Reliability Analysis

The reliability function is expressed as R(t) = 1− F (t) and, for CTP distribution it is

R(t) = 1−

[
1−

(
k

t

)θ][
1 +

{
λ1 + λ2

(
k

t

)θ}(
k

t

)θ]
, t ∈ R+.

The hazard rate function is

h(t) =

θkθ

tθ+1

[
1− λ1 + 2 (λ1 − λ2)

(
k
t

)θ
+ 3λ2

(
k
t

)2θ]
1−

[
1−

(
k
t

)θ] [
1 +

{
λ1 + λ2

(
k
t

)θ}(k
t

)θ] , t ∈ R+.
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Figure 2 describes some possible shapes for the reliability and hazard rate functions of the proposed
CTP distribution for different combinations of the model parameters θ and λ2 setting k = 1.5 and λ1 = −1
respectively.

3.7 Shannon Entropy

Shannon [9] has defined the entropy H to measure the uncertainty of a random variable X and for the CTP
distribution it is given as

H = −E[log{f(x)}]

= −E

[
log

{
θkθ

xθ+1

(
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
)}]

= −(I1 + I2), (14)

where

I1 = E

[
log

{
θkθ

xθ+1

}]
,

and

I2 = E

[
log

{
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
}]

.

On further simplification and using the terms I1 and I2 in (14), Shannon entropy H can be expressed as

H = −
3(θ + 1)λ1 + (θ + 1)λ2 + 6θ log

(
θkθ
)
− 6(θ + 1)(θ log(k) + 1)

6θ

−
∫ ∞
k

θkθ

xθ+1

[
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
]

× log

[
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
]
dx,

and can be obtained numerically.

4 Order Statistics

The pdf of the rth order statistic for the CTP distribution is

fXr:n(x) =
n!

(r − 1)!(n− r)!

×

[
θkθ

xθ+1

{
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
}]

×

[{
1−

(
k

x

)θ}{
1 +

(
λ1 + λ2

(
k

x

)θ)(
k

x

)θ}]r−1

×

[
1−

{
1−

(
k

x

)θ}{
1 +

(
λ1 + λ2

(
k

x

)θ)(
k

x

)θ}]n−r
, (15)
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where r = 1, 2, · · · , n. The pdf of the smallest order statistics for CTP distribution is easily obtained by
using r = 1 and is

fX1:n
(x) =

nθkθ

xθ+1

{
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
}

×

[
1−

{
1−

(
k

x

)θ}{
1 +

(
λ1 + λ2

(
k

x

)θ)(
k

x

)θ}]n−1

.

Further, using r = n, the pdf of the largest order statistic Xn:n, is given by

fXn:n
(x) =

nθkθ

xθ+1

{
1− λ1 + 2 (λ1 − λ2)

(
k

x

)θ
+ 3λ2

(
k

x

)2θ
}

×

[{
1−

(
k

x

)θ}{
1 +

(
λ1 + λ2

(
k

x

)θ)(
k

x

)θ}]n−1

.

The density function of rth order statistics for Pareto distribution is readily obtained from (15) for λ1 =
λ2 = 0, and is

gXr:n(x) =
n!

(r − 1)!(n− r)!
nθkθ

xθ+1

[
1−

(
k

x

)θ]r−1 [(
k

x

)θ]n−r
, r = 1, 2, · · · , n.

The kth order moment of Xr:n for the CTP distribution is obtained by using

E(Xk
r:n) =

∫ ∞
k

xkr · fXr:n(x) · dx,

where fXr:n(x) is given in (15).

5 Characterization Results

This section is devoted to the characterizations of the CTP distribution in different directions: (i) based on
the ratio of two truncated moments; (ii) in terms of the hazard function; (iii) in terms of the reverse hazard
function and (iv) based on the conditional expectation of certain function of the random variable. Note that
(i) can be employed also when the cdf does not have a closed form. We present our characterizations (i) -
(iv) in four subsections.

5.1 Characterizations Based on Two Truncated Moments

This subsection deals with the characterizations of the CTP distribution based on the ratio of two truncated
moments. Our first characterization employs a theorem due to Glänzel [13], see Theorem 4 of Appendix A.
The result, however, holds also when the interval H is not closed, since the condition of the Theorem is on
the interior of H.

Proposition 1 Let X : Ω→ (k,∞) be a continuous random variable and let q1 (x) =
[
1− λ1 + 2 (λ1 − λ2)

×
(
k
x

)θ
+ 3λ2

(
k
x

)2θ ]
and q2 (x) = x−1q1 (x) for x > k. The random variable X has pdf (6) if and only if the

function η defined in Theorem 4 is of the form

η (x) =
θ

θ + 1
x−1, x > k.
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Proof. Suppose the random variable X has pdf (6). Then

(1− F (x))E [q1 (X) | X ≥ x] =

(
k

x

)θ
, x > k,

and

(1− F (x))E [q2 (X) | X ≥ x] =
θ

θ + 1
x−1

(
k

x

)θ
, x > k.

Further,

η (x) q1 (x)− q2 (x) = − 1

θ + 1
x−1q1 (x) < 0 , for x > k.

Conversely, if η is of the above form, then

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
= θx−1, x > k,

and consequently
s (x) = log

{
xθ
}
, x > k.

Now, according to Theorem 4, X has density (6) .

Corollary 1 Let X : Ω→ (k,∞) be a continuous random variable and let q1 (x) be as in Proposition 1. The
random variable X has pdf (6) if and only if there exist functions q2 and η defined in Theorem 4 satisfying
the following differential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
= θx−1, x > k.

Corollary 2 The general solution of the differential equation in Corollary 1 is

η (x) = xθ
[
−
∫
θx−(θ+1) (q1 (x))

−1
q2 (x) dx+D

]
,

where D is a constant. We like to point out that one set of functions satisfying the above differential equation
is given in Proposition 1 with D = 0. Clearly, there are other triplets (q1, q2, η) which satisfy conditions of
Theorem 4.

5.2 Characterization in Terms of Hazard Function

The hazard function, hF , of a twice differentiable distribution function, F , satisfies the following first order
differential equation

f ′(x)

f (x)
=
h′F (x)

hF (x)
− hF (x).

It should be mentioned that for many univariate continuous distributions, the above equation is the only
differential equation available in terms of the hazard function. In this subsection we present non-trivial
characterizations of CTP distribution, for λ = 1, λ2 = 0, in terms of the hazard function.

Proposition 2 Let X : Ω→ (0, k) be a continuous random variable. The random variable X has pdf (6) if
and only if its hazard function hF (x) satisfies the following differential equation

h′F (x) + x−1hF (x) = 0, x > k.

Proof. Is straightforward and hence omitted.
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5.3 Characterization in Terms of the Reverse Hazard Function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined as

rF (x) =
f (x)

F (x)
, x ∈ support of F.

In this subsection we present a characterization of CTP distribution, for λ = −1, λ2 = 0, in terms of the
reverse hazard function.

Proposition 3 Let X : Ω→ (0, k) be a continuous random variable. The random variable X has pdf (6) if
and only if its reverse hazard function rF (x) satisfies the following differential equation

r′F (x) + (θ + 1)x−1rF (x) = −2θ2k2θx−2(θ+1)

[
1−

(
k

x

)θ]−2

, x > k.

Proof. Is straightforward and hence omitted.

5.4 Characterization Based on the Conditional Expectation of Certain Function
of the Random Variable

In this subsection we employ a single function ψ (or ψ1) of X and characterize the distribution of X in
terms of the truncated moment of ψ (X) (or ψ1 (X)). The following propositions have already appeared in
Hamedani’s previous work [14], so we will just state them here which can be used to characterize some of
the CTP distribution for the special cases: λ = 1, λ2 = 0 and λ = −1, λ2 = 0, respectively.

Proposition 4 Let X : Ω→ (e, f) be a continuous random variable with cdf F . Let ψ (x) be a differentiable
function on (e, f) with limx→e+ ψ (x) = 1. Then for δ 6= 1,

E [ψ (X) | X ≥ x] = δψ (x) , x ∈ (e, f) ,

if and only if

ψ (x) = (1− F (x))
1
δ−1

, x ∈ (e, f) .

Proposition 5 Let X : Ω→ (e, f) be a continuous random variable with cdf F . Let ψ1 (x) be a differentiable
function on (e, f) with limx→f− ψ1 (x) = 1. Then for δ1 6= 1,

E [ψ1 (X) | X ≤ x] = δ1ψ1 (x) , x ∈ (e, f) ,

implies

ψ1 (x) = (F (x))
1
δ1
−1
, x ∈ (e, f) .

Remarks (A) For (e, f) = (k,∞) , λ = 1, λ2 = 0, ψ (x) = k
x (or ψ (x) =

(
k
x

)2
) and δ = 2θ

2θ+1 (or δ = θ
θ+1 )

, Proposition 4 provides a characterization of CTP distribution. (B) For (e, f) = (k,∞) , λ = −1, λ2 = 0,

ψ1 (x) = 1−
(
k
x

)θ
and δ1 = 2

3 , Proposition 5 provides a characterization of CTP distribution.

6 Parameter Estimation and Inference

The most popular method of estimating the parameters is the maximum likelihood estimation (MLE). In
this section, we have discussed the maximum likelihood estimation of parameters for CTP distribution. For
this, we first see that the likelihood function for the CTP distribution is

L =
θnknθ∏n
i=1 x

θ+1
i

n∏
i=1

[
1− λ1 + 2 (λ1 − λ2)

(
k

xi

)θ
+ 3λ2

(
k

xi

)2θ
]
.
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The log-likelihood function is

l = n · ln(θ) + nθ · ln(k)− (θ + 1)

n∑
i=1

ln(xi)

+

n∑
i=1

ln

[
1− λ1 + 2 (λ1 − λ2)

(
k

xi

)θ
+ 3λ2

(
k

xi

)2θ
]
. (16)

Since, x ∈ [k,∞), so the MLE of k is first-order statistic x(1). The parameters θ, λ1 and λ2 are determined
by maximizing (16). The derivatives of (16) with respect to the unknown model parameters are

δl

δθ
=
n

θ
+ n log(k)−

n∑
i=i

log (xi)

+
n∑
i=1

2 (λ1 − λ2)
(
k
xi

)θ
log
(
k
xi

)
+ 6λ2

(
k
xi

)2θ

log
(
k
xi

)
2 (λ1 − λ2)

(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

,

δl

δλ1
=

n∑
i=1

2
(
k
xi

)θ
− 1

2 (λ1 − λ2)
(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

and

δl

δλ2
=

n∑
i=1

3
(
k
xi

)2θ

− 2
(
k
xi

)θ
2 (λ1 − λ2)

(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

.

Further, setting δl
δθ = 0, δl

δλ1
= 0 and δl

δλ2
= 0, and solving the resulting nonlinear system of equations

simultaneously gives the MLE, Θ̂ =
(
θ̂, λ̂1, λ̂2

)′
of Θ = (θ, λ1, λ2)

′
. Also as n → ∞, the asymptotic

distribution of the MLE′s
(
θ̂, λ̂1, λ̂2

)
is given as, see for example [10, 11, 12],

 θ̂

λ̂1

λ̂2

 ∼ N
 θ

λ1

λ2

 ,

 V̂11 V̂12 V̂13

V̂21 V̂22 V̂23

V̂31 V̂32 V̂33

 ,
where V̂ij = Vij |Θ=Θ̂. The asymptotic variance-covariance matrix V , for the estimates θ̂, λ̂1 and λ̂2 is
obtained by inverting Hessian matrix; see Appendix B. An approximate 100(1 − α)% two sided confidence
intervals for θ, λ1 and λ2 are, respectively, given as

θ̂ ± Zα/2
√
V̂11, λ̂1 ± Zα/2

√
V̂22 and λ̂2 ± Zα/2

√
V̂33,

where Zα is the αth percentile of the standard normal distribution.

7 Numerical Studies

In this section, a Monte Carlo simulation study is carried out to assess the performance of the estimation
procedure. We have also fitted the proposed CTP on two real data sets for comparison purpose.
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7.1 Simulation Study

The Monte Carlo simulation study has been conducted by drawing random samples of sizes 50, 100, 200, 500
and 1000 from the proposed CTP distribution for k = 1, θ = 3.5, λ1 = 0.5 and λ2 = 0.7. Assuming k = x(1),
the maximum likelihood estimates of the model parameters θ, λ1 and λ2 was obtained. We repeated the
whole procedure for 10000 times and have computed the average value of estimates alongside their mean
square errors (MSE′s). Table 2 presents the results of this simulation study. The results show that the
estimated values of the model parameters are very close to their true values. From the table, we have also
observed that the estimated MSE′s consistently decreases by increasing the sample sizes, hence establishing
consistency of the estimation procedure.

Table 2: Average estimates of model parameters and corresponding MSE′s

Sample Estimate MSE

Size k θ λ1 λ2 k θ λ1 λ2

50 1.003 4.044 0.358 0.772 1.52× 10−5 3.264 0.273 0.963
100 1.001 3.844 0.381 0.794 2.63× 10−6 1.763 0.159 0.462
200 1.001 3.697 0.425 0.776 1.45× 10−6 0.691 0.075 0.152
500 1.000 3.591 0.458 0.751 8.83× 10−8 0.242 0.027 0.052
1000 1.000 3.538 0.482 0.721 1.50× 10−8 0.119 0.013 0.023

7.2 ICU Data Set

We use the ICU data set to show the flexibility and applicability of the proposed CTP distribution. The
data set has recently been used by Khan et al. [15], which assess intensive care unit (ICU) patients agitation-
sedation (A-S) status. The values are 9, 3, 27, 8, 4, 3, 4, 3, 23, 3, 3, 4, 28, 18, 19, 6, 3, 26, 3, 12, 6, 9, 43, 4,
4, 3, 5, 12, 4, 36, 6, 8, 6, 5, 3, 3 and 33. Table 3 describes the summary statistics for the data set.

Table 3: Summary statistics for selected data sets

Min. Q1 Median Mean Q3 Max.

ICU Data Set 3.00 3.00 6.00 10.78 12.00 43.00
Leukemia Data Set 1.00 4.50 11.00 13.60 18.50 44.00

We have considered CTPAE distribution, TP distribution and baseline Pareto distribution for assessing
the performance of proposed CTP distribution. Table 4 describes the estimated MLE′s of the model
parameters with their standard errors. Figure 3 (top), shows the estimated pdf and cdf for the ICU data
set. The results of various selection criteria; like log-likelihood (LL), Akaike’s information criterion (AIC),
corrected Akaike’s information criterion (AICc) and Bayesian information criterion (BIC); are presented in
Table 5. We have investigated the results carefully and have observed that the proposed CTP distribution
perform better than other models used in this study.

7.3 Leukemia Data Set

The data set represents the remission times, in weeks, for 35 leukemia patients and is 1, 3, 3, 6, 7, 7, 10, 12,
14, 15, 18, 19, 22, 26, 29, 34, 40, 1, 1, 2, 2, 3, 4, 5, 8, 8, 9, 11, 12, 14, 16, 18, 21, 31 and 44, taken from
Lawless (p.346) [16]. Summary statistics for the data are given in Table 3.

The estimated values of the model parameters along with corresponding standard errors for CTPAE , TP ,
Pareto and proposed CTP distributions are presented in Table 6. Estimated pdf and cdf of the proposed



Rahman et al. 655

Table 4: MLE′s of the parameters and respective SE′s for selected models

Distribution Parameter Estimate SE

CTP

k
θ
λ1

λ2

x(1) = 3.000
1.342
-0.600
1.000

–
0.289
0.657
0.781

CTPAE

x0

α
λ

x(1) = 3.000
1.108
0.848

–
0.199
0.444

TP
k
θ
λ

x(1) = 3.000
1.041
0.211

–
0.261
0.346

Pareto
k
θ

x(1) = 3.000
1.147

–
0.189

Table 5: Selection criteria estimated for selected models

Distribution LL AIC AICc BIC

CTP -101.150 208.300 209.027 213.133
CTPAE -102.652 209.304 209.657 212.525
TP -104.622 213.244 213.597 216.466
Pareto -104.841 211.681 211.795 213.292

Table 6: MLE′s of the parameters and respective SE′s for selected models

Distribution Parameter Estimate SE

CTP

k
θ
λ1

λ2

x(1) = 1.000
0.670
-1.000
0.518

–
0.122
0.871
0.954

CTPAE

x0

α
λ

x(1) = 1.000
0.469
-0.578

–
0.070
0.231

TP
k
θ
λ

x(1) = 1.000
0.606
-0.696

–
0.087
0.171

Pareto
k
θ

x(1) = 1.000
0.460

–
0.078

Table 7: Selection criteria estimated for selected models

Distribution LL AIC AICc BIC

CTP -133.318 272.637 273.411 277.303
CTPAE -136.370 276.740 277.115 279.850
TP -134.937 273.874 274.249 276.985
Pareto -138.235 278.470 278.591 280.026
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Figure 3: Estimated pdf and cdf for the ICU data (top) and Leukemia data (bottom)

CTP distribution for the leukemia data set are presented in Figure 3 (bottom). The results for above
mentioned selection criteria like LL, AIC, AICc and BIC values are described in Table 7. We observed
from the results that the criterion’s provides conformation of better fit in favor of proposed CTP distribution.

8 Concluding Remarks

In this paper, we have proposed CTP distribution for capturing the complexity of the data. The expres-
sions for the moments, moment generating function, characteristic function, quantile function, random data
generation, reliability function, Shannon entropy for the proposed CTP have been obtained alongside the
distributions of order statistics. The model parameters have been estimated via MLE technique. The pro-
posed model has been fitted on two real data sets and is compared with different other models. We have
observed that our proposed CTP distribution fits the data well as compared with the other models used in
the study.
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Appendix A

Theorem 4 Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for some d < b
(a = −∞, b =∞ might as well be allowed) . Let X : Ω → H be a continuous random variable with the
distribution function F and let q1 and q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and F is twice continuously
differentiable and strictly monotone function on the set H. Finally, assume that the equation ηq1 = q2 has no
real solution in the interior of H. Then F is uniquely determined by the functions q1, q2 and η, particularly

F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ q1
ηq1−q2 and C is the normalization constant,

such that
∫
H
dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated moments is stable in
the sense of weak convergence (see, Glänzel [17]), in particular, let us assume that there is a sequence {Xn}
of random variables with distribution functions {Fn} such that the functions q1n, q2n and ηn (n ∈ N) satisfy
the conditions of Theorem 4 and let q1n → q1, q2n → q2 for some continuously differentiable real functions
q1 and q2. Let, finally, X be a random variable with distribution F . Under the condition that q1n (X) and
q2n (X) are uniformly integrable and the family {Fn} is relatively compact, the sequence Xn converges to X
in distribution if and only if ηn converges to η, where

η (x) =
E [q2 (X) | X ≥ x]

E [q1 (X) |X ≥ x]
.

This stability theorem makes sure that the convergence of distribution functions is reflected by correspond-
ing convergence of the functions q1 , q2 and η, respectively. It guarantees, for instance, the ’convergence’ of
characterization of the Wald distribution to that of the Lévy-Smirnov distribution if α→∞.

A further consequence of the stability property of Theorem 4 is the application of this theorem to special
tasks in statistical practice such as the estimation of the parameters of discrete distributions. For such
purpose, the functions q1, q2 and, specially, η should be as simple as possible. Since the function triplet is
not uniquely determined it is often possible to choose η as a linear function. Therefore, it is worth analyzing
some special cases which helps to find new characterizations reflecting the relationship between individual
continuous univariate distributions and appropriate in other areas of statistics.

Appendix B

The Hessian matrix is given as

H =

 H11 H12 H13

H21 H22 H23

H31 H32 H33

 ,

where the variance-covariance matrix V is obtained by

V =

 V11 V12 V13

V21 V22 V23

V31 V32 V33

 =

 H11 H12 H13

H21 H22 H23

H31 H32 H33

−1

,
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with the elements of Hessian matrix are obtained as

H11 = − δ
2l

δθ2
=

n

θ2
−

n∑
i=1

[
2(λ1 − λ2)

(
k
xi

)θ
log2

(
k
xi

)
+ 12λ2

(
k
xi

)2θ

log2
(
k
xi

)
2(λ1 − λ2)

(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

−

{
2(λ1 − λ2)

(
k
xi

)θ
log
(
k
xi

)
+ 6λ2

(
k
xi

)2θ

log
(
k
xi

)}2

{
2(λ1 − λ2)

(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

}2

]
,

H12 = − δ2l

δθ · δλ1
= −

n∑
i=1

[
2
(
k
xi

)θ
log
(
k
xi

)
2(λ1 − λ2)

(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

−

{
2
(
k
xi

)θ
− 1

}{
2(λ1 − λ2)

(
k
xi

)θ
log
(
k
xi

)
+ 6λ2

(
k
xi

)2θ

log
(
k
xi

)}
{

2(λ1 − λ2)
(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

}2

]
,

H13 = − δ2l

δθ · δλ2
= −

n∑
i=1

[
6
(
k
xi

)2θ

log
(
k
xi

)
− 2

(
k
xi

)θ
log
(
k
xi

)
2(λ1 − λ2)

(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

−

{
3
(
k
xi

)2θ

− 2
(
k
xi

)θ}{
2(λ1 − λ2)

(
k
xi

)θ
log
(
k
xi

)
+ 6λ2

(
k
xi

)2θ

log
(
k
xi

)}
{

2(λ1 − λ2)
(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

}2

]
,

H22 = − δ
2l

δλ2
1

=

n∑
i=1

{
2
(
k
xi

)θ
− 1

}2

{
2(λ1 − λ2)

(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

}2 ,

H23 = − δ2l

δλ1 · δλ2
=

n∑
i=1

{
2
(
k
xi

)θ
− 1

}{
3
(
k
xi

)2θ

− 2
(
k
xi

)θ}
{

2(λ1 − λ2)
(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

}2 ,

and

H33 = − δ
2l

δλ2
2

=

n∑
i=1

{
3
(
k
xi

)2θ

− 2
(
k
xi

)θ}2

{
2(λ1 − λ2)

(
k
xi

)θ
+ 3λ2

(
k
xi

)2θ

− λ1 + 1

}2 .
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