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Abstract

In this article, we consider singularly perturbed differential equation containing delay parameter
on the convection and reaction terms. The considered problem exhibits boundary layer on the left or
right side of the domain, depending on the sign of the coefficient of convective term. The terms with
the delay treated using Taylor’s approximation. The resulting singularly perturbed boundary value
problem is solved using the technique of non-standard finite difference method. The stability of the
scheme is analyzed and investigated using maximum principle and solution bound. The formulated
scheme converges independent of the perturbation parameter with order of convergence O(N−1). The
theoretical finding is validated using numerical examples. The obtained result in this article is accurate
and parameter uniformly convergent.

1 Introduction

Different mathematical models in science and engineering (such as in control theory, epidemiology, laser
optics) take into account not only the present state of a physical system but also it includes the past history.
Time delays are natural components of the dynamic processes of biology, ecology, physiology, economics,
epidemiology and mechanics [5] and ‘to ignore them is to ignore reality’[2]. Some modelers ignore the lag
effect and use differential equation model as substitute for delay differential equation model. Kuang ([10],
pp. 11) comments on the dangers that researchers risk if they ignore lags (delays) which they think are
small.

Delay differential equations (DDEs) model problems where there is after effect affecting the variable of the
problem as compared to differential equations which model the problem to current conditions. DDEs is said
to be retarded type if the delay argument does not occur in the highest order derivative term, otherwise it is
known as neutral DDEs. A singularly perturbed delay differential equations is differential equations in which
its highest order derivative is multiplied by small perturbation parameter and having delay parameter(s) on
the terms different from the highest order derivative. Singularly perturbed DDEs arise in the mathematical
modeling of various physical phenomena, for example in micro scale heat transfer [17], fluid dynamics [7],
diffusion in polymers [12], reaction-diffusion equations [3], a lot of model in diseases or physiological processes
[13, 18] etc.

Notations: In this paper, N is denoted for the number of mesh intervals. The symbol C is denoted for
positive constant independent of ε and N . The norm ‖·‖ is used to denote maximum norm i.e. ‖f‖ =
maxx ‖f(x)‖.
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2 Description of the Problem

Singularly perturbed delay differential equations having delay in the convection and reaction terms of the
problem have the form

− εu′′(x) + a(x)u′(x− δ) + β(x)u(x) + ω(x)u(x− δ) = f(x), x ∈ Ω = (0, 1), (1)

with interval-boundary conditions

u(x) = φ(x), x ∈ ΩL = [−δ, 0], u(1) = ψ, (2)

where ε, 0 < ε � 1 is singular perturbation parameter and δ is delay parameter satisfying δ = o(ε).
The functions a(x), β(x), ω(x) and f(x) are assumed to be smooth, bounded and not a function of ε for
guaranteeing the existence of unique solution.

We assume β(x) + ω(x) ≥ ζ > 0,∀x ∈ Ω̄ to ensure problem in (1)–(2) exhibits regular boundary layer of
thickness O(ε) and the position of the boundary layer depends on the conditions: For a(x)− δω(x) < 0 left
boundary layer exist and for a(x)− δω(x) > 0 right boundary layer exist. In case a(x)− δω(x) changes sign
interior layer occurs. When δ = 0, the problem reduces to singularly perturbed BVPs, in which for small ε
it exhibits boundary layers. The layer is maintained for δ 6= 0 but sufficiently small [20].

It is well known that classical numerical methods are inefficient and the computed solution oscillates
or diverges as the perturbation parameter ε � h, where h is the discretization mesh size [4]. To avoid the
oscillations while using classical methods, an unacceptably large number of mesh points are required when ε is
very small. This is not practical and leads to rounding error. Therefore, to overcome this drawback associated
with classical numerical methods, we developed scheme using non-standard finite difference method, which
treat the problem without creating oscillations.

On the review paper by Kadelajoo and Gupta [8] one can find a number of papers dealing with the nu-
merical solution of singularly perturbed BVPs, singularly perturbed problems having delay on the convection
or reaction term only. Singularly perturbed differential equations having delay on both the convection and
reaction terms are not studied well. To review the numerical schemes developed for solving such problem so
far; Kumar and Kadalbajoo in [11] considered a singularly perturbed problem having delays on the convec-
tion and reaction terms. The authors used Taylor series approximation for the delay terms and converted
the problem into equivalent BVPs. The authors computed the numerical solution using B-spline collocation
method on Shishkin mesh. In [1, 6] the authors used Taylor’s series approximation for the delay terms
and apply fifth and sixth order finite difference approximation for the derivative terms and develop finite
difference scheme.

In this paper, we developed uniformly convergent numerical scheme (or robust) using non-standard finite
difference method for solving singularly perturbed delay differential equations. In addition, we developed
the parameter uniform convergence analysis of the scheme.

When the delay parameter is smaller than the perturbation parameter, treating the delay terms using
Taylor’s series approximation is acceptable [16]. So, we approximate u′(x− δ) and u(x− δ) as{

u′(x− δ) ≈ u′(x)− δu′′2),

u(x− δ) ≈ u(x)− δu′(x) + δ2

2 u
′′3).

(3)

Substituting the approximations in (3) into (1) results to

Lu(x) = −cε(x)u′′(x) + p(x)u′(x) + d(x)u(x) = f(x), x ∈ (0, 1), (4)

with the boundary conditions
u(0) = φ(0), u(1) = ψ, (5)

where cε(x) = ε+ δa(x)− δ2

2 ω, p(x) = a(x)− δω(x) and d(x) = β(x) + ω(x).
Since δ = o(ε) which implies that O(δ2) → 0. For small ε the problems in (4)–(5) is asymptotically

equivalent to (1)–(2). Now, we assume 0 < cε(x) ≤ ε+ δM1− δ2M2 = cε where a(x) ≥M1 and ω(x) ≥ 2M2
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for M1 and M2 are constants. We consider first the case p(x) ≥ p∗ > 0, which implies the existence of right
boundary, the other case p(x) ≤ p∗ < 0, implies to left boundary layer and can be treated similarly.

Setting cε = 0 in (4)–(5), we obtain

p(x)u′0(x) + d(x)u0(x) = f(x), ∀x ∈ Ω,

u0(0) =φ(0).
(6)

It is called reduced problem. For small values of cε the solution u(x) of the problem in (4)–(5) is very close
to the solution u0(x) of (6).

2.1 Properties of the Continuous Solution

Lemma 1 Let z be a sufficiently smooth function defined on Ω which satisfies z(x) ≥ 0, x ∈ {0, 1}. Then
Lz(x) > 0, ∀x ∈ Ω implies that z(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Let x∗ be such that z(x∗) = min(x)∈Ω̄ z(x) and suppose that z(x∗) < 0. It is clear that x∗ /∈ {0, 1}.
Since z(x∗) = min(x)∈Ω̄ z(x) from extrema values in calculus we have z′(x∗) = 0 and z′′(x∗) ≥ 0 and implies
that Lz(x∗) < 0 which is contradiction to the assumption that made above Lz(x∗) > 0, ∀x ∈ Ω. Therefore
z(x) ≥ 0, ∀x ∈ Ω̄.

Lemma 2 Let u(x) be the solution of the problem in (4)–(5). Then we obtain the bound

|u(x)| ≤ ‖f‖
ζ

+ max{|φ| , |ψ|},

for d(x) ≥ ζ > 0, where ζ is lower bound of d(x).

Proof. Defining barrier functions ϑ±(x, t) as ϑ±(x, t) = ‖f‖
ζ + max{|φ| , |ψ|} ± u(x) and applying the

maximum principle, we obtain the required bound. At the boundary points,

ϑ±(0) =
‖f‖
ζ

+ max{|φ| , |ψ|} ± u(0) ≥ 0,

ϑ±(1) =
‖f‖
ζ

+ max {|φ| , |ψ|} ± u(1) ≥ 0.

On the differential operator

L̄ϑ±(x) = −cεϑ′′±(x) + p(x)ϑ′±(x) + d(x)ϑ±(x)

= −cε(0± u′′(x)) + p(x) (0± u′(x)) + d(x)

(
‖Lu‖
ζ

+ max{|φ| , |ψ|} ± u(x)

)
= d(x)

(
‖Lu‖
ζ

+ max{|φ| , |ψ|}
)
± f(x)

≥ 0, since d(x) ≥ ζ > 0,

which implies L̄ϑ±(x) ≥ 0. Hence, by maximum principle we obtain, ϑ±(x) ≥ 0, ∀x ∈ Ω̄.

Lemma 3 The bound on the derivative of the solution u(x) of the problem in (4)–(5) is given by∣∣∣u(i)(x)
∣∣∣ ≤ C (1 + c−iε exp

(
−p
∗x

cε

))
, x ∈ Ω̄, 0 ≤ i ≤ 4, for left boundary layer,

∣∣∣u(i)(x)
∣∣∣ ≤ C (1 + c−iε exp

(
−p
∗(1− x)

cε

))
, x ∈ Ω̄, 0 ≤ i ≤ 4, for right boundary layer.

Proof. See in [9], [15].
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3 Numerical Scheme Formulation

The construction of non-standard finite difference method (NSFDM), depends on the knowledge of the
corresponding exact finite difference method.

3.1 Exact Finite Difference

We consider separately for left and right boundary layer problems and develop individual schemes for each.
First let us consider the right boundary layer problem.

1. Right boundary layer problems

For the problem of the form in (4)–(5), in order to construct exact finite difference scheme we follow the
procedures used in [14]. Consider the constant coefficient sub-equations from (4)–(5) as

− cεu′′∗u′(x) + ζu(x) = 0, (7)

− cεu′′∗u′(x) = 0, (8)

where p(x) ≥ p∗ and d(x) ≥ ζ. Thus the equation in (7) has two independent solutions namely exp(λ1x)
and exp(λ2x) where

λ1,2 =
−p∗ ±

√
(p∗)2 + 4cεζ

−2cε
.

Discretizing the domain Ω̄ = [0, 1] as

ΩN =

{
xi = x0 + ih, i = 1, 2, ..., N, x0 = 0, xN = 1, h =

1

N

}
,

where N is the number of mesh intervals. We denote Ui as the approximate solution of u(x) at mesh point
xi. The target is to calculate a difference equation which has the same general solution as the differential
equation in (8) has at the mesh point xi is given by Ui = A1 exp(λ1xi) +A2 exp(λ2xi). Using the theory of
difference equations for second order linear difference equations in [14], we obtain∣∣∣∣∣∣

Ui−1 exp (λ1xi−1) exp (λ2xi−1)
Ui exp (λ1xi) exp (λ2xi)
Ui+1 exp (λ1xi+1) exp (λ2xi+1)

∣∣∣∣∣∣ = 0.

Substituting the values of λ1 and λ2 gives

exp

(
p∗h

2cε

)
Ui−1 − 2 cosh

(
h
√

(p∗)2 + 4cεζ

2cε

)
Ui + exp

(
−p
∗h

2cε

)
Ui+1 = 0 (9)

which is an exact difference scheme for (8). For ε→ 0, we use the approximation
h
√

(p∗)2+4cεζ

2cε
≈ p∗h

2cε
in (9).

Multiplying both sides by exp
(
p∗h
2cε

)
, simplifying we obtain

Ui−1 − 2Ui + Ui+1 =

(
exp

(
p∗h

cε

)
− 1

)
(Ui − Ui−1) . (10)

Rearranging gives

−cε
Ui−1 − 2Ui + Ui+1

hcε
p∗

(
exp(p

∗h
cε

)− 1
) + p∗

Ui − Ui−1

h
= 0.
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The required denominator function for second derivative discretization becomes γR = hcε
p∗

(
exp

(
hp∗

cε

)
− 1
)

.

Adopting γR for the variable coefficient problem we write as

γRi =
hcε
p(xi)

(
exp

(
hp(xi)

cε

)
− 1

)
. (11)

Using the denominator function γRi into the scheme in (4), the difference scheme becomes

LhRUi = −cε
Ui+1 − 2Ui + Ui−1

γRi
+ p(xi)

Ui − Ui−1

h
+ d(xi)Ui = f(xi), i = 1, 2, ..., N − 1 (12)

with the boundary conditions
U0 = φ(0), UN = ψ(1). (13)

2. Left boundary layer problems

In this case −p(x) ≤ −p∗ < 0 in (4)–(5), we consider the constant coefficient sub-equations from (4)–(5)
as

− cεu′′∗u′(x) + ζu(x) = 0, (14)

− cεu′′∗u′(x) = 0, (15)

where d(x) ≥ ζ. Thus, the equation in (14) has two independent solutions namely exp(λ1x) and exp(λ2x)
where

λ1,2 =
p∗ ∓

√
(p∗)2 + 4cεζ

−2cε
.

We descretize the domain Ω = [0, 1], as ΩN = {xi}Ni=0 with x0 = 0, xN = 1, h = 1
N } where N is mesh

interval. We denote the approximate solution of u(x) at mesh point xi by Ui. Our objective is to calculate a
difference equation which has the same general solution as the differential equation in (15) has at the mesh
point xi given by Ui = A1 exp(λ1xi) + A2 exp(λ2xi). Using the theory of difference equations in [14] for
second order linear difference equations, we have∣∣∣∣∣∣

Ui−1 exp (λ1xi−1) exp (λ2xi−1)
Ui exp (λ1xi) exp (λ2xi)
Ui+1 exp (λ1xi+1) exp (λ2xi+1)

∣∣∣∣∣∣ = 0

Substituting the values of λ1 and λ2 we obtain

exp

(
−p
∗h

2cε

)
Ui−1 − 2 cosh

(
h
√

(p∗)2 + 4cεζ

2cε

)
Ui + exp

(
p∗h

2cε

)
Ui+1 = 0

is an exact difference scheme for (15). For ε→ 0, we use the approximation
h
√

(p∗)2+4cεζ

2cε
≈ p∗h

2cε
. After doing

the arithmetic adjustment, we obtain

−cε
Ui−1 − 2Ui + Ui+1

hcε
p∗

(
1− exp(p

∗h
cε

)
) − p∗Ui+1 − Ui

h
= 0.

The denominator function becomes γL = hcε
p∗

(
1− exp

(
hp∗

cε

))
. Adopting it for the variable coefficient

problem, we write as

γLi =
hcε
p(xi)

(
1− exp

(
hp(xi)

cε

))
. (16)

The required finite difference schemes becomes

LhLUi = −cε
Ui+1 − 2Ui + Ui−1

γLi
− p(xi)

Ui+1 − Ui
h

+ d(xi)Ui = f(xi), i = 1, 2, ..., N − 1 (17)

with the boundary conditions U0 = φ(0), UN = ψ(1).



M. M. Woldaregay and G. F. Duressa 627

3.2 Uniform Convergence Analysis

In this section, we need to show the discrete scheme in (12) or in (17) satisfies the discrete maximum principle,
uniform stability estimates and parameter uniform convergence. Here, we prove for right boundary layer
problem only and similarly shown for the left boundary layer problem.

Lemma 4 The operator defined by the discrete scheme in (12) satisfies a discrete maximum principle. i.e.
Let Ui be any mesh function satisfying U0 ≥ 0, UN ≥ 0. Then LhRUi ≥ 0, ∀i = 1, 2, ..., N − 1 implies that
Ui ≥ 0, ∀i = 0, 1, ..., N.

Proof. Suppose there exists k ∈ {0, 1, ..., N} such that Uk = min0≤i≤N Ui. Suppose that Uk < 0 which
implies k 6= 0, N . Also we assume that Uk+1 − Uk > 0 and Uk − Uk−1 < 0. Now we have

LhRUk = −cε
Uk+1 − 2Uk + Uk−1

γRk
+ p(xk)

Uk − Uk−1

h
+ d(xk)Uk.

Using the assumptions made above, we obtain LhRUk < 0 for k = 1, 2, 3, ..., N − 1. Thus the supposition
Ui < 0, for i = 0, 1, ..., N is wrong. Hence, we obtain Ui ≥ 0, ∀i = 0, 1, ..., N .

Using the results in Lemma, we next prove the discrete scheme in (12) satisfies the uniform stability
bound given in the next lemma.

Lemma 5 The solution Ui of the discrete scheme in (12) satisfy the following bound.

|Ui| ≤
max |fi|

ζ
+ max{|φ| , |ψ|}.

Proof. Let p = max|fi|
ζ +max{|φ| , |ψ|} and define the barrier functions ϑ±i as ϑ±i = p±Ui. At the boundary

points, we obtain

ϑ±0 = p± U0 =
max |fi|

ζ
+ max{|φ| , |ψ|} ± φ ≥ 0,

ϑ±N = p± UN =
max |fi|

ζ
+ max{|φ| , |ψ|} ± ψ ≥ 0.

For the operator on the discretized domain xi, 0 < i < N , we obtain

L̄hRϑ
±
i = −cε

(
p± Ui+1 − 2(p± Ui) + p± Ui−1

γRi

)
+ p(xi)

(
p± Ui − p± Ui−1

h

)
+ d(xi)(p± Ui)

= d(xi)p± LhRUi

= d(xi)

(
max |fi|

ζ
+ max{φ, ψ}

)
± f(xi)

≥ 0, since d(xi) ≥ ζ.

Using the discrete maximum principle in Lemma 4, we obtain ϑ±i ≥ 0, ∀xi ∈ Ω̄N . Hence the required bound
is obtained.

Let us define the first and second derivative finite differences operators as

D+z(xi) =
z(xi+1)− z(xi)

h
, D−z(xi) =

z(xi)− z(xi−1)

h
, and D+D−z(xi) =

D+z(xi)−D−z(xi)
h

, (18)

respectively.
Next, let us analyze the parameter uniform convergence. We proved above the discrete operator LhR

satisfy the maximum principle and uniform stability estimate.



M. M. Woldaregay and G. F. Duressa 628

Theorem 6 Let the coefficients functions p(x), d(x) and the function f(x) in (4) be sufficiently smooth so
that u(x) ∈ C4[0, 1]. Then the discrete solution Ui of the scheme in (12) satisfies

∣∣LhR (u(xi)− Ui)
∣∣ ≤ Ch(1 + sup

x∈(0,1)

exp (−p∗(1− x)/cε)

c3ε

)
.

Proof. Considering the local truncation error asLhR(u(xi)− Ui
)

=
Lhu(xi)− LhRUi


≤ C

− cε(u′′(xi)− D+D−h2

γRi
u(xi)

)
+ pi

(
u′(xi)−D−u(xi)

)
≤ Ccε

u′′(xi)−D+D−u(xi)
+ Ccε

( h2

γRi
− 1
)
D+D−u(xi)

+ Ch
u′′(xi)

≤ Ccεh
2
u(4)(xi)

+ Ch
u′′(xi).

We used the estimate cε
 h2

γR
i
− 1
 ≤ Ch in above expression is depending on the behavior of denominator

function used in non-standard FDM. To make it clear let us define ρ = pih/cε, ρ ∈ (0,∞). Then using the
expression for γRi , we obtain

cε
 h2

γRi
− 1
 = pih

 1

exp(ρ)− 1
− 1

ρ

 =: pihQ(ρ), (19)

where Q(ρ) = exp(ρ)−1−ρ
ρ(exp(ρ)−1) . Next, let us set a bound for Q(ρ) . Using the limit we obtain

lim
ρ→0

Q(ρ) =
1

2
, lim
ρ→∞

Q(ρ) = 0. (20)

Therefore, Q(ρ) ≤ C2, ρ ∈ (0,∞). Hence, from (19) and (20) the estimate cε| h
2

γR
i
− 1| ≤ Ch.

So, the truncation error bound becomesLhR(u(xi)− Ui
) ≤ Ccεh2

u(4)(xi)
+ Ch

u′′(xi). (21)

Using the boundedness of the derivatives of the solution in Lemma 3 into (21), we obtainLhR(u(xi)− Ui
)

≤ Ccεh
2
1 + c−4

ε exp
(−p∗(1− xi)

cε

)+ Ch
1 + c−2

ε exp
(−p∗(1− xi)

cε

)
≤ Ch2

cε + c−3
ε exp

(−p∗(1− xi)
cε

)+ Ch
1 + c−2

ε exp
(−p∗(1− xi)

cε

)
≤ Ch

(
1 + sup

xi∈(0,1)

c−3
ε exp

(−p∗(1− xi)
cε

))
, since c3ε ≤ c2ε.

Lemma 7 For cε → 0 and for given fixed mesh number N , we obtain

lim
cε→0

max
j

exp
(
− p∗xj

cε

)
cmε

= 0, lim
cε→0

max
j

exp
(
− p∗(1−xj)

cε

)
cmε

= 0, m = 1, 2, 3, ... (22)

where xi = ih, h = 1/N, ∀i = 1, 2, ..., N − 1.
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Proof. See in [19].

Theorem 8 Under the hypothesis of boundedness of discrete solution, the solution of the discrete schemes
in (12) satisfy the following parameter uniform bound.

sup
0<cε�1

‖u(xi)− Ui‖ΩN ≤ CN−1. (23)

Proof. The parameter uniform convergence of the discrete scheme, follows from the results of Theorem 6,
Lemma 7 and using the discrete maximum principle in Lemma 4.

4 Numerical Examples and Results

Table 1: Maximum absolute error of Example 9 using the proposed scheme for δ = 0.3ε.
ε ↓ N= 32 64 128 256 512 1024
10−3 1.2360e-02 6.2211e-03 3.1207e-03 1.5628e-03 7.8204e-04 3.9118e-04
10−4 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
10−5 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
10−6 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
10−7 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
10−8 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
10−9 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
10−10 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04

EN 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
rN 0.9904 0.9953 0.9977 0.9988 0.9994 -

Table 2: Maximum absolute error of Example 9 for different delay values for ε = 10−5.
δ ↓ N= 32 64 128 256 512 1024
0.2ε 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
0.4ε 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
0.6ε 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04
0.8ε 1.2360e-02 6.2211e-03 3.1206e-03 1.5628e-03 7.8203e-04 3.9117e-04

Table 3: Maximum absolute error of Example 10, proposed scheme and result in [11] for δ = 0.3ε.
ε ↓ N= 32 64

Proposed Scheme
2−8 1.0769e-03 5.5383e-04
2−12 1.0771e-03 5.5397e-04
2−16 1.0771e-03 5.5398e-04
2−20 1.0771e-03 5.5398e-04
2−24 1.0771e-03 5.5398e-04
2−28 1.0771e-03 5.5398e-04
2−32 1.0771e-03 5.5398e-04

N= 32 64
Result in [11]

3.7010e-02 1.2611e-02
3.6669e-02 1.2541e-02
3.6701e-02 1.2463e-02
3.6709e-02 1.2478e-02
3.6710e-02 1.2479e-02
3.6710e-02 1.2479e-02
3.6710e-02 1.2479e-02

We consider numerical examples to elaborate the theoretical analysis made in above sections. Here we
consider and solved three examples having boundary layer behaviour.
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Table 4: Maximum absolute error of Example 10 for different values of delay for ε = 10−5.
δ ↓ N= 32 64 128 256 512 1024
0.2ε 1.0771e-03 5.5398e-04 2.8088e-04 1.4140e-04 7.0944e-05 3.5532e-05
0.4ε 1.0771e-03 5.5398e-04 2.8088e-04 1.4140e-04 7.0944e-05 3.5532e-05
0.6ε 1.0771e-03 5.5398e-04 2.8088e-04 1.4140e-04 7.0944e-05 3.5532e-05
0.8ε 1.0771e-03 5.5398e-04 2.8088e-04 1.4140e-04 7.0944e-05 3.5532e-05

Table 5: Maximum absolute error of Example 11 using the proposed scheme for δ = 0.3ε.
ε ↓ N= 32 64 128 256 512 1024
10−3 1.5245e-04 7.7883e-05 9.9188e-06 1.9785e-05 9.8676e-06 4.9660e-06
10−4 1.5235e-04 7.7835e-05 3.9336e-05 1.9773e-05 9.9128e-06 4.9630e-06
10−5 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
10−6 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
10−7 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
10−8 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
10−9 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
10−10 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06

EN 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
rN 0.9689 0.9846 0.9923 0.9962 0.9981 -

Example 9 Consider the problem

εu′′(x) + (1 + x)u′(x− δ) + sin(2x)u(x− δ)− exp(−x)u(x) = sin(2x) + 3 exp(−x)

with interval boundary conditions u(x) = −1, −δ ≤ x < 0 and u(1) = 1.

Example 10 Consider the problem

−εu′′(x) + (1 + x)u′(x− δ)− exp(−2x)u(x− δ) + exp(−x) = 0

with interval boundary conditions u(x) = 1, −δ ≤ x < 0 and u(1) = −1.

Example 11 Consider the problem

εu′′(x) + (1 + x)u′(x− δ) + exp(−2x)u(x− δ)− 2 exp(−x)u(x) = 1

with interval boundary conditions u(x) = 1, −δ ≤ x < 0 and u(1) = 0.

Since the exact solution of these three problems are not known, the maximum absolute errors are esti-
mated by using the double mesh principle given in [19] and defined by

ENε = max
0≤i≤N

|UNi − U2N
i |,

where UNi stands for the numerical solution of the problem on N number of mesh points and U2N
i stands

for the numerical solution of the problem on 2N number of mesh points by including the mid-points xi+1/2

into the mesh. The ε-uniform error is defined as

EN = max
ε
|ENε |.

The rate of convergence of the scheme is obtained as

rNε =
log(ENε )− log(E2N

ε )

log(2)
,
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Table 6: Maximum absolute error of Example 11 for different values of delay for ε = 10−6.
δ ↓ N= 32 64 128 256 512 1024
0.2ε 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
0.4ε 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
0.6ε 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06
0.8ε 1.5234e-04 7.7830e-05 3.9333e-05 1.9772e-05 9.9122e-06 4.9627e-06

Figure 1: Effect of delay parameter on the solution of Example 10 for ε = 0.01.

and the ε-uniform rate of convergence of the scheme is given as

rN =
log(EN )− log(E2N )

log(2)
.

5 Discussion and Conclusion

In this paper, we consider three examples exhibiting boundary layer. Example 9 and 11 exhibit left boundary
layer and Example 10 exhibit right boundary layer. In the computed solutions we used the perturbation
parameter ε very small compared to the number of mesh points N . For each examples, we computed the
maximum absolute error, parameter uniform error and uniform rate of convergence. In each column of Tables
1, 3 and 5 one can observe that the maximum absolute error is independent of the perturbation parameter
ε, as ε goes small. This means that, as the perturbation parameter goes small, the maximum absolute error
of the scheme is bounded and it becomes uniformly convergent. On the last two rows of these tables the
parameter uniform error and the parameter uniform rate of convergence is given. The scheme gives first
order of convergence. In Table 3, we give the comparison of the obtained result with the result given in
paper [11]. As one can see, the obtained result is more accurate than the one in [11].

The results in Table 2, 4 and 6, gives the maximum absolute error of Example 9, 10 and 11 respectively
for different values of delay parameter by taking fixed value for ε. The result in this tables shows that
the developed scheme is also independent of the delay parameters(i.e. as the delay parameter varies the
maximum absolute error remains constant for each N).

For left boundary layer problems, one can observe from Figure 2 as the values of the delay parameters
increases the size of the boundary layer decreases. For the case of the right boundary layer problems as the
values of the delay parameter increases the size of the boundary layer increases as it is seen on Figure 1.
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Figure 2: Effect of delay parameter on the solution of Example 11 for ε = 0.01.

In this paper, parameter uniformly convergent(robust) numerical scheme is developed using non-standard
finite difference technique. The stability of the scheme is investigated using the maximum principle and by
constructing barrier function to show the bound on the solution. The detail convergence analysis is carried
out by considering the truncation error of the discretization. The results obtained by the proposed scheme
gives accurate and parameter uniform convergence with order of convergence one.
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