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Abstract

Fractional one-dimensional Schrödinger equation is considered within fractional position-dependent
mass formalism. Fractional Coulomb type interaction is taken for the study. The entire work is composed
of Katugampola fractional derivative. Point canonical transformation (PCT) is used as an analytical
tool. The energy spectrum of the bound states and their eigenfunctions are written explicitly for different
position-dependent mass profiles. Finally, we furnish a few wave function variations for different fractional
parameter values and two separate mass profiles.

1 Introduction

Recently, one-dimensional Schrödinger equation with position-dependent mass has taken a lot of interest
among the researchers. There are many physical systems such as semiconductor [1], heterostructures [2],
the material of non-uniform chemical compositions [3], superlattice [4] where Schrödinger equation with
position-dependent mass plays a vital role to describe the physics behind the system. A few important and
notable works on this subject are listed in the references [5–9]. Along with this development, we also see a
doughty trend to study quantum mechanics within the framework of fractional calculus [10–18]. Fractional
Schrödinger equation is one of the most promising areas of applied mathematical physics which defines the
quantum phenomenon from a different angle. This new and beautiful subject is discovered by N. Laskin
[19–20]. According to Laskin, fractional quantum mechanics is the result of Feynman path integral with
lévy like quantum paths. Since then, fractional quantum mechanics started its journey and at present, many
researchers are actively working in this field. The volume of the research article is growing exponentially as
the concept of fractional Schrödinger equation helps to study the system with memory effects i.e. quantum
states do not depend solely on time and position but also previous states. The non-local character of the
fractional derivative gives fractional derivative an inbuilt tool to incorporate the memory effect.

Now the subject of the fractional derivative is not unique for everyone.There are a number of different
definitions of fractional derivative [21–24]. Different types of mathematical operations like product rule,
chain rule, the fractional derivative of a constant are always not similar and also some of these do not follow
the standard integer-order derivative rules as well. In 2014, Khalil et al. [25] introduced a new definition
of fractional derivative which was analogous to the standard derivative of integer order. Katugampola [26]
generalized the definition further and we are going to use it in this paper (see section-2). So from here to
the rest of the paper, the term ‘fractional derivative’ will stand for Katugampola fractional derivative.

Motivated by these developments, in this paper we are going to study one dimensional fractional Schröding-
er equation with position-dependent mass and as far as our knowledge this has not been done yet. As an
analytical tool point canonical transformation (PCT) has been used [27–29]. The idea of PCT applies to
shape invariant potentials within a specific class. In this approach, first, we need a solution to a reference
potential problem then using mapping it is easy to find the solution to other potential problems within the
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688 Point Canonical Transformation

same class. In other words, the reference problem is just like a seed for generating new solutions within the
same class of other shape invariant potentials. In this study, we have taken fractional Coulomb potential
as a reference problem for fractional Schrödinger equation. The solution of the time-independent fractional
Schrödinger equation for fractional Coulomb potential is not well known. So we will solve our reference prob-
lem first and then using the mapping technique of PCT we will try to solve the one-dimensional fractional
Schrödinger equation with the position-dependent mass problem.

To make the paper self-contained, this paper is organized as follows. The next section comes with the brief
of Katugampola fractional derivative. In section 3 the general development of formalism will be presented.
Section 4 comes with the solution to the reference problem. Section 5 is for application where we will use
the results of the reference problem to study the actual problem i.e. one-dimensional fractional Schrödinger
equation with the position-dependent mass problem via mapping technique of PCT scheme. Discussion is
placed in section 6, where numerical results of the energy spectrum and a few graphical studies of wave
functions will be presented. Finally, the conclusion of the present work takes place in section 7.

2 The Katugampola Derivative

The Katugampola derivative [30] is a limit based formalism. Here the Katugampola formalulation of frac-
tional calculus and specifically the operator, Dα, defined as







Dα[f(t)] = limε→0
f(teεt−α

)−f(t)
ε

, t > 0,

Dα[f(0)] = limε→0+ Dα[f(t)],
(1)

where α(0 < α < 1) is called fractional parameter and t > 0. The following results forDα are well established

Dα[c1f + c2g] = c1D
α[f ] + c2D

α[g], (linearity)

Dα[fg] = fDα[g] + gDα[f ], (product rule)

Dα[f(g)] =
df

dg
Dα[g], (chain rule)

Dα[f ] = t1−αf
′

, where f
′

=
df

dt
.

The last rule can be used to construct a number of important results of Katugampola derivatives. The most
used are

Dα[ect] = ct1−αect , (2)

Dα[e
tα

α ] = e
tα

α , (3)

Dβ [Dα[y]] = t2−α−βy
′′

+ (1 − α)t1−α−βy
′

. (4)

The equation number (4) can be written as

Dβ [Dα[y]] = Dβ+αy + (1 − α)t1−α−βy′ ,

under the condition 0 < α, β ≤ 1 such that 1 < α + β ≤ 2. It is clear when α is very close to 1.0 one can
write Dβ [Dα[y]] ≈ Dβ+αy or similarly D2α ≡ DαDα.

The solution of fractional order differential equation with Katugampola derivative is useful in this paper.
A few such results are

• The fractional differential equation Dα[y] + λy = 0 has solution y = C1e
− λtα

α .

• The fractional differential equation Dβ [Dα[y]] = 0 has solution y = C1
tα

α
+ C2. The solution is

independent from β. If β = α, then the solution is again the same i.e. y = C1
tα

α
+ C2.
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• Under the condition β = α the fractional differential equation Dβ [Dα[y]] = Λ has solutions y =
Λ

2α2 t
2α + C1

1
α
tα +C2.

• Under the condition β = α the fractional differential equation Dβ [Dα[y]] = −Λy has solutions y =

C1 cos[
√

Λ
α
tα] + C2 sin[

√
Λ

α
tα].

The last of the bullet items is a special case. If β 6= α then the solution of the corresponding fractional
differential equation is difficult. Furthermore, inserting α = 1 it is easy to achieve conventional known
solutions. We think this is enough for our work. If readers need more they can go through references.

3 Action of PCT-General Formalism of the Study

The one dimensional fractional Schrödinger equation with position dependent mass may be expressed as (in
natural units ~ = c = 1)

D2αφ(x) +m(x)Dα

{

1

m(x)

}

Dαφ(x) + 2m(x)[E − V (x)]φ(x) = 0, (5)

where E, φ(x), V (x) are energy eigenvalue, wave function and potential function. The position dependent
mass is expressed by m(x).

Let us take the known problem of fractional Schrödinger equation such as
[

d2α

dz2α
− 2 {U(z) − ξn}

]

ψ(z) = 0. (6)

Here the potential U(z), solution ψ(z) and n-th state energy eigenvalue ξn are known completely. Now as
the scheme of PCT, we will map the known solution ψ(z) with unknown solution φ(x). To aim that let us
take

ψ(z) = G(x)φ(x), z = P (x), (7)

where G(x) is some unknown function too. Taking the transformation into equation (6) we have

D2αφ(x) + ADαφ(x) + Bφ(x) = 0, (8)

where

A =

(

2DαG(x)

G(x)
+
Dα[P

′

(x)]−1

[P ′(x)]−1

)

, (9)

B =

(

D2αG(x)

G(x)
+
DαG(x)Dα[P

′

(x)]−1

G(x)[P
′

(x)]−1
− 2[P

′

(x)]2 {U(P (x)) − ξn}
)

, (10)

where P
′

(x) = dP
dx

.

Proof. Keeping in mind of the transformation (7) we write

Dαψ(z) =
dα

dzα
ψ(z) =

dα

dzα
[G(x)φ(x)]

=

(

dx

dz

)

dα

dxα
[G(x)φ(x)]

= [P
′

(x)]−1[G(x)Dαφ(x) + φ(x)DαG(x).

So here we have the operator dα

dzα = [P ′(x)]−1 dα

dxα . Applying it twice on ψ(z) the following is easy to derive

d2α

dz2α
ψ(z) = g1 + g2 ,
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where

g1 = [P
′

(x)]−2DαG(x)Dαφ(x) + [P
′

(x)]−1G(x)Dα[P
′

(x)]−1Dαφ(x)

+G(x)[P
′

(x)]−2D2αφ(x),

g2 = [P
′

(x)]−1Dα[P
′

(x)]−1φ(x)DαG(x) + [P
′

(x)]−2Dαφ(x)DαG(x)

+[P
′

(x)]−2φ(x)D2αG(x).

Now arranging further

d2α

dz2α
ψ(z) = G(x)[P

′

(x)]−2D2αφ(x) + g3D
αφ(x) + g4φ(x),

where

g3 = 2DαG(x)[P
′

(x)]−2 +G(x)[P
′

(x)]−1Dα[P
′

(x)]−1,

g4 = [P
′

(x)]−1Dα[P
′

(x)]−1DαG(x) + [P
′

(x)]−2D2αG(x).

Hence inserting in the equation (6) we get equations (8) to (10). Now mapping equation (5) and equation
(8) we have

m(x)Dα

{

1

m(x)

}

= A, (11)

2m(x)[E − V (x)] = B. (12)

First we have to solve equation (11). Using equation (9), the equation (11) can be written as

2DαG(x)

G(x)
= m(x)Dα

{

1

m(x)

}

− Dα[P
′

(x)]−1

[P ′(x)]−1
= −λ, (13)

where λ is a common constant to satisfy the identity. It is easy to split equation (13) and we have

DαG(x) +
λ

2
G(x) = 0, (14)

Dα

{

1

m(x)

}

+ γ

{

1

m(x)

}

= 0, (15)

Dα[P
′

(x)]−1 + (γ − λ)[P
′

(x)]−1 = 0, (16)

where γ is another constant such that γ > λ. Using Section 2 the solutions of (14, 15, 16) may be written as

G(x) ∼ e−
λ
2α

xα

, (17)

1

m(x)
∼ e−

γ
α

xα

, (18)

[P
′

(x)]−1 ∼ e−
γ−λ

α
xα

. (19)

Manipulating equations (17, 18, 19) it is easy to achieve

G(x) =

√

P
′(x)

m(x)
. (20)
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According to equation (20), with a given m(x) and a choice of transformation function P (x) will determine
G(x). The new G(x) will deduce the energy spectrum and potential function V (x) for the target problem.
Now using equation (10) and (12) we have

E − V (x) =
1

2m(x)
Q(m(x), m′(x), x)− [P

′

(x)]2

m(x)
[U(P (x)) − ξn] , (21)

where

Q(m(x), m′(x), x) =

[

D2αG(x)

G(x)
+
DαG(x)Dα[P ′(x)]−1

G(x)[P ′(x)]−1

]

. (22)

The last term of equation (21) is crucial here. Proper manipulation of the last term will provide a additive
constant in the equation. This constant term will be identified with energy eigenvalue. To that process the
following integral

h(x) =
1

µ

∫

√

m(x)dx, (23)

is helpful. The term µ is a scaling parameter. It is possible to find a few choices such that the last term of
equation (21) will provide an additive constant.

3.1 Choice-I

[P
′

(x)]2 = m(x) and hence P (x) = µh(x). (24)

The choice makes

G(x) = [m(x)]−
1
4 . (25)

Inserting G(x) and [P
′

(x)] in equation (22) we have

QI(m(x), m′(x), x) = −1

4

[

x1−2α(1 − α)
m′(x)

m(x)
+ x2−2α

{

m′′(x)

m(x)
− 7

4

(

m′(x)

m(x)

)2
}]

. (26)

and equation (21) takes the simple form

V (x) − E = U(µh(x)) − ξn − 1

2m(x)
QI(m(x), m′(x), x). (27)

So from identity of left and right hand side of the equation (27) the target problem has following energy
spectrum and effective potential for n-th state

En = ξn, (28)

V (x) = U(µh(x)) +
1

8m(x)

[

x1−2α(1 − α)
m′(x)

m(x)
+ x2−2α

{

m′′(x)

m(x)
− 7

4

(

m′(x)

m(x)

)2
}]

(29)

and the wave function for n-th state immediately emerges from equation (7) as

φn(x) = [m(x)]
1
4ψn(µh(x)), (30)

where equations (24) and (25) have been used.
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3.2 Choice-II

The second possibility is

[P
′

(x)]2U(P (x)) = ±m(x)

σ2
and hence P (x) = W−1

(

µh(x)

σ

)

, (31)

where W (P (x)) =
∫
√

±U(P (x))dP (x) and the selection of ± depends on the sign of U(P (x)). For the time
being we are taking + sign only. This now makes

G(x) = [σ2m(x)U(P (x))]−
1
4 . (32)

As before inserting G(x) and P ′(x) = 1
σ

√

m(x)
U(P(x)) into equation (22) we reach

QII(m(x), m′(x), x) = −1

4
x2−2α

[

{

m′′(x)

m(x)
− 7

4

(

m′(x)

m(x)

)2
}

− m(x)

4σ2U(P (x))

{

U∗∗(P (x))

U(P (x))
− 5

4

(

U∗(P (x))

U(P (x))

)2
}

]

+Q0, (33)

where

U∗(P (x)) =
dU(P (x))

dP (x)
, (34)

U∗∗(P (x)) =
d2U(P (x))

d[P (x)]2
, (35)

Q0 = −x
1−2α

4
(1 − α)

[

m′(x)

m(x)
+

1

σ
U∗(P (x)) {U(P (x))}− 3

2 {m(x)} 1
2

]

. (36)

Now equation (21) provides

V (x) −E =
1

σ2
− ξn

σ2U(P (x))
− 1

2m(x)
QII(m(x), m′(x), x). (37)

So the target problem has following energy spectrum, effective potential and wave function for n-th state

En = − 1

σ2
,

V (x) = − ξn

σ2U(P (x))
− 1

2m(x)
QII(m(x), m′(x), x),

φn(x) = [σ2m(x)U(P (x))]
1
4ψn(P (x)).

4 Reference Potential-Fractional Coulomb Type

According to the PCT scheme, a known problem or reference problem is very important as said while
introducing equation (6). In this paper, we have chosen fractional Schrödinger equation problem with
fractional Coulomb interaction. It is hard to find enough research on this topic, so in this section, we will
solve the one-dimensional fractional Schrödinger equation with fractional Coulomb potential in short. Let
us take the fractional Coulomb potential for equation (6) as

U(z) =
k

zα
,
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where k acts like a constant. It maybe positive or negative depending on the interaction, whether it is
repulsive or attractive. Now the equation (6) converts into

[

D2α − k

zα
+ 2ξn

]

ψ(z) = 0. (38)

The asymptotic solution (z → ∞) demands

[

D2α + 2ξn

]

ψ(z) = 0. (39)

It can be shown that the solution of equation (39) may be written in the following form

ψ(z) = C01e
b
α

zα

+C02e
− b

α
zα

, (40)

where C01,02 are constants and b =
√−2ξn.

4.1 Derivation of (40)

It is easy to proof that e±
b
α

zα

is the eigenfunction of Katugampola derivative operator Dα.

Dα[e±
b
α

zα

] = z1−α d

dz
e±

b
α

zα

= z1−αe±
b
α

zα

(
b

α
)αzα−1 = ±be± b

α
zα

.

We will show that ψ(z) = C01e
b
α

zα

+ C02e
− b

α
zα

will generate the fractional Differential equation similar to
equation (39).

D2αψ(z) = DαDαψ(z) ,

= DαDα[C01e
b
α

zα

+ C02e
− b

α
zα

] ,

= Dαb[C01e
b
α

zα −C02e
− b

α
zα

] ,

= b2[C01e
b
α

zα

+ C02e
− b

α
zα

] ,

= b2ψ(z).

So we can say C01e
b
α

zα

+C02e
− b

α
zα

is a solution of [D2α − b2]ψ(z) = 0. Now comparing with equation (39),
it is straight forward to write the parameter b =

√−2ξn.
The first part of the solution does not go with physical situation because it blows up the solution at

infinity. So to get a finite solution the obvious choice is the second part. Now we can assume the complete
solution of equation (38) as

ψ(z) = C02f(z)e
− b

α
zα

. (41)

Substituting (41) into equation (38) following fractional differential equation emerges

zαD2αf(z) − 2bzαDαf(z) − 2kf(z) = 0. (42)

The solution of (42) has been done with the help of power series method. The wave function and energy
eigenvalue are

ψn(z) =

∞
∑

n=1

zαne−
b
α

zα

, (43)

ξn = − k2

2α2n2
, [n 6= 0]. (44)



694 Point Canonical Transformation

4.2 Solution of (42)

Using Dα[f ] = t1−αf
′

and equation (4), the equation (38) can be written as

z2−αf
′′

(z) + [(1− α)z1−α − 2bz]f
′

(z) − 2kf(z) = 0,

where f ′′(z) = d2f
dz2 and f ′(z) = df

dz
. Let us use power series method to solve this. Introducing the solution

as

f(z) =
∞
∑

l=0

clz
αl+j ,

and inserting f ′′(z) and f ′(z)

∞
∑

l=0

cl(αl+ j)(αl+ j − α)zα(l−1)+j +

∞
∑

l=0

cl[−2b(αl+ j) − 2k]zαl+j = 0.

The indicial equation (coefficient of lowest power z i.e. zj−α) corresponds to l = 0 and provides c0j(j−α) = 0.
Taking c0 6= 0 we have j = 0, α. The choice of j = α makes the coefficient (c1) of next higher power z

i.e. zj a zero. So we restrict ourselves to the first choice for j = 0, c1 6= 0. The recurrence relation comes
out as

cl+1 = cl
2bαl+ 2k

l(l + 1)α2
.

Now for physical cases the series must terminate for l = n. Here n is integer and in quantum cases it is
regarded as principle quantum number.

[cl+1]l=n = 0 =⇒ b = − k

αn
.

Using b =
√−2ξ we have the wave function (43) and energy eigenvalue (44).

5 Application on the Actual Problem

In this section, we will use the results of Section 4 to find out the actual problem that was addressed in
Section 3.

5.1 In Case of Choice-I

Here z = P (x) = µh(x). Therefore, U(µh(x)) = k̃
[h(x)]α

, where k̃ = k
µα . So under the fractional Coulomb

type interaction, the one dimensional fractional Schrödinger equation with position dependent mass provides
the following energy spectrum, reference potential and wave function for n-th state

En = − k̃
2µ2α

2α2n2
,

V (x) =
k̃

[h(x)]α
+

1

8m(x)

[

x1−2α(1 − α)
m′(x)

m(x)
+ x2−2αm

′′(x)

m(x)
− 7

4
x2−2α

(

m′(x)

m(x)

)2]

,

φn(x) = [m(x)]
1
4

∞
∑

n=1

cn[µh(x)]αne−
b
α

[µh(x)]α ,

where we have used equations (28, 29) and equation (30).
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5.1.1 Mass Profile: m(x) = 1
(1+δx)2 , where δ is a real constant

This mass profile has been studied in reference [31]. Here h(x) = 1
µδ
ln(1 + δx). Now for this mass profile we

have

En = − k̃
2µ2α

2α2n2
,

V (x) =
k̃µαδα

[ln(1 + δx)]α
− 1

8
[x1−2α(1 − α)2δ(1 + δx) + δ2x2−2α],

φn(x) =
1√

1 + δx

∞
∑

n=1

cn[
1

δ
ln(1 + δx)]αne−

b
α

[ 1
δ

ln(1+δx)]α .

5.1.2 Mass Profile: m(x) = m0x
2δ, where δ and m0 are real constants

In this case the energy eigenvalue remains same but the reference potential and wave function are

V (x) =
k̃

[θx1+δ]α
− 1

8m0x2α+2δ
(3δ2 + 2αδ),

φn(x) = m
1
4

0 x
δ
2

∞
∑

n=1

cn[µθx1+δ ]αne−
b
α

[µθx1+δ ]α

where θ =
√

m0

µ(1+δ) and h(x) = θx1+δ .

5.2 In Case of Choice-II

In this case U(P (x)) = k
[P(x)]α , the integration

∫
√

U(P (x))dP (x) delivers the function

W (P (x)) =
µh(x)

σ
=

[

2
√
k

2 − α

]

[P (x)]
2−α

2 ,

and hence P (x) =

[

2−α

2
√

k

µh(x)
σ

]
2

2−α

. Here the potential may be expressed as

V (x) = − ξn

σ2

[P (x)]α

k
− 1

2m(x)
QII(m(x), m′(x), x)

= − ξn

σ
4

2−α k

[

2 − α

2
√
k
µh(x)

]
2α

2−α

− 1

2m(x)
QII(m(x), m′(x), x).

The target potential term contains the principle quantum number n and according to quantum mechanics
it is not acceptable. So we impose a condition on the scaling parameter σ such that

σ
4

2−α ∝ −ξn or σ
4

2−α = −N ξn

where N is a simple constant. This provides the energy eigenvalue of the target problem as

En = − 1

σ2
= −

(

αn

k

√

2

N

)2−α

,

and the wave function

φn(x) = [σ2m(x)U(P (x))]
1
4ψn(P (x)),
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where P (x) should be used as

P (x) =

[

2 − α

2
√
k

µh(x)

σ

]
2

2−α

.

Here the modified target potential takes the form

V (x) =
1

Nk

[

2 − α

2
√
k
µh(x)

]
2α

2−α

− 1

2m(x)
QII(m(x), m′(x), x).

5.2.1 Mass Profile: m(x) = 1
(1+δx)2 , where δ is a real constant

In this situation h(x) = 1
µδ
ln(1 + δx),

P (x) =

[

2 − α

2
√
kσδ

ln(1 + δx)

]
2

2−α

.

Using U(P (x)) = k
[P(x)]α it is not hard to derive

En = − 1

σ2
= −

(

αn

k

√

2

N

)2−α

, (46)

V (x) =
1

Nk

[

2 − α

2δ
√
k

ln(1 + δx)

]
2α

2−α

− 1

2
(1 + δx)2QII(m(x), m′(x), x), (47)

φn(x) =

[

σ2

(1 + δx)2
U(P (x))

]
1

4

ψn(P (x)). (48)

To express the equation (47) explicitly, we need to manipulate equations (33), (34)–(36) using the present
form of P (x) as well as m(x), m′(x), m′′(x).

5.2.2 Mass Profile: m(x) = m0x
2δ, where δ and m0 are real constants

As we did this mass profile earlier and hence we have h(x) = θx1+δ where θ =
√

m0

µ(1+δ) . Now

P (x) = [
2− α

2
√
k

µθx1+δ

σ
]

2

2−α .

These help us to get

En = − 1

σ2
= −

(

αn

k

√

2

N

)2−α

,

V (x) =
1

Nk

[

2 − α

2
√
k
µθx1+δ

]
2α

2−α

− 1

2m0
x−2δQII(m(x), m′(x), x),

φn(x) =

[

σ2m0x
2δU(P (x))

]
1
4

ψn(P (x)).

The calculation of QII(m(x), m′(x), x) should be done accordingly as previous.
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6 Result and Discussion

Mathematically choice-II is much complicated. So in this section, we shall furnish numerical data of the
energy spectrum and variation of wave functions for the choice-I case only with the mass profile m(x) =

1
(1+δx)2 and m(x) = m0x

2δ. These two mass profiles provide the same energy eigenvalues that mean these

two cases are iso-spectral. The energy spectrum for these two mass profiles is given in Table 1. We also
provide the wave functions for n = 1, 2 states both for mass profile 5.1.1 and 5.1.2. Figures 1 and 2 show the
variations of wave functions for n = 1, 2 state with different fractional parameter α and the mass profile 5.1.1.
The same two states are shown in Figures 3 and 4 for the mass profile 5.1.2. The result of the wave functions
for these two mass profiles is opposite to each other. In the case of a singular type of mass profile, i.e. 5.1.1,
the fractional Schrödinger equation with position-dependent mass indicates for lower α the probability of
finding the particle in a specified region becomes lesser than the higher α cases. On the other hand, the
situation is opposite to the mass profile 5.1.2. Figures 5 and 6 are for target potential for different α and
they are just similar to the Coulomb interaction with only a slight shift.

Table 1: Energy spectrum for the mass profile 5.1.1 and 5.1.2 (µ = 1, k =
√

27.2)

State α ξn = En (eV)

0.80 -21.2500
0.85 -18.8235

1 0.90 -16.7901
0.95 -15.0693
1.00 -13.60

0.80 -5.3125
0.85 -4.7059

2 0.90 -4.1975
0.95 -3.7673
1.00 -3.40
0.80 -2.3611
0.85 -2.0915

3 0.90 -1.8656
0.95 -1.6744
1.00 -1.5111
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Figure 1: n = 1 state eigenfunctions for α = 0.80, 0.85, 0.90, 0.95, 1.00. The other parameter values are used
c1 = 1, δ = 2, k =
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27.2.
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Figure 2: n = 2 state eigenfunctions for α = 0.80, 0.85, 0.90, 0.95, 1.00. The other parameter values are used
c1 = c2 = 1, δ = 2, k =
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27.2.
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Figure 3: n = 1 state eigenfunctions for α = 0.80, 0.85, 0.90, 0.95, 1.00. The other parameter values are used
c1 = m0 = 1 = µ = δ = 1, k =
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27.2.
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Figure 4: n = 2 state eigenfunctions for α = 0.80, 0.85, 0.90, 0.95, 1.00. The other parameter values are used
c1 = c2 = 1 = m0 = 1 = δ = 1, k =

√
27.2.
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Figure 5: Target potential function (5.1.1) profile for µ = 1, k =
√

27.2.
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7 Conclusion

In this paper, we have studied the fractional Schrödinger equation with position-dependent mass. The
Katugampola fractional derivative has been taken to define the fractional Schrödinger equation with position-
dependent mass. As an example two mass profiles have been considered viz m(x) = 1

(1+δx)2 and m(x) =

m0x
2δ. Point canonical transformation technique has been used as an analytical tool to solve the projected

equation. The results are the same if the fractional parameter α is set to unity. The energy spectrum and
a few wave functions (n = 1, 2 states) are discussed for the two selected mass profiles. We need further
investigation to extract the hidden physical facts behind the problem.

Acknowledgment. The authors would like to thank the referees for the constructive remarks which
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8 Appendix

Deduction of equation (26): In this scenario G(x) = [m(x)]−
1
4 and [P

′

(x)]−1 = [m(x)]−
1
2 .

The Katugampola fractional derivative provides

DαG(x) = x1−α d

dx
[m(x)]−

1
4 = −1

4
x1−αm− 5

4 (x)m′(x),

D2αG(x) = −1

4

[

m′(x)m− 5
4 (x)Dα(x1−α) + x1−αm− 5

4 (x)Dα(m′(x)) + x1−αm′(x)Dαm− 5
4 (x)

]

= −1

4

[

m′(x)m− 5
4 (x)(1 − α)x1−2α + x2−2αm− 5

4 (x)(m′′(x)) − 5

4
x2−2α(m′)2(x)m− 5

4 (x)

]

,

Dα[P
′

(x)]−1 = Dα[m(x)]−
1
2 = −1

2
x1−αm− 3

2 (x)m′(x),

DαG(x)Dα[P
′

(x)]−1 =
1

8
x2−2α(m′)2m− 11

4 ,

DαG(x)Dα[P
′

(x)]−1

G(x)[P
′

(x)]−1
=

1

8
x2−2α

(

m′(x)

m(x)

)2

.

Substituting all these in equation (22)

QI(m(x), m′(x), x) = −1

4

[

x1−2α(1 − α)
m′(x)

m(x)
+ x2−2αm

′′(x)

m(x)
− 7

4
x2−2α

(

m′(x)

m(x)

)2]

.

Proof of equation (33). Here G(x) = [σ2m(x)U(P (x))]−
1

4 and [P
′

(x)]−1 = σ {m(x)}− 1
2 {U(P (x))} 1

2 .

DαG(x) = x1−α d

dx
[σ2m(x)U(P (x))]−

1
4

=
1√
σ
x1−α

[

− 1

4
{m(x)}− 5

4 m′(x) {U(P (x))} − 1

4σ
{m(x)} 1

4 U∗(P (x)) {U(P (x))}−7
4

]

,

D2αG(x) = x1−α d

dx

{

1√
σ
x1−α

[

− 1

4
{m(x)}− 5

4 m′(x) {U(P (x))} − 1

4σ
{m(x)} 1

4 U∗(P (x)) {U(P (x))}− 7
4

]

}

= −x
1−α

4
√
σ

[f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8] ,

where

f1 = (1 − α) {m(x)}− 5
4 m′(x) {U(P (x))}− 1

4 x−α,

f2 = −5

4
x1−α {m′(x)}2 {U(P (x))}−1

4 {m(x)}−9
4 ,

f3 = x1−α {m(x)}− 5
4 m′′(x) {U(P (x))}− 1

4 ,

f4 = − 1

4σ
x1−α {U(P (x))}− 7

4 U∗(P (x))m′(x) {m(x)}− 3
4 ,

f5 =
1

σ
(1 − α)x−α {U(P (x))}− 7

4 U∗(P (x)) {m(x)} 1
4 ,

f6 = − 7

4σ2
x1−α {U(P (x))}− 13

4 (U∗(P (x)))2 {m(x)} 3
4 ,
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f7 =
1

σ2
x1−α {U(P (x))}− 9

4 U∗∗(P (x)) {m(x)} 3

4 ,

f8 =
1

4σ
x1−α {U(P (x))}− 7

4 U∗(P (x)) {m(x)}− 3
4 m′(x).

Dα[P (x)]−1 = −σ
2
x1−α {m(x)}−3

2 m′(x) {U(P (x))} 1
2 +

1

2
x1−αU

∗(P (x))

U(P (x))
.

Using all these into equation (22) we have the results (33) to (36).


