Existence Of Multiple Solutions For A Kirchhoff Type Equation Involving Polyharmonic Operator With Exponential Growth^{*}

Gaurav Dwivedi[†]

Received 3 August 2020

Abstract

In this article, we establish the existence of three weak solutions for a nonlinear Kirchhoff type elliptic equation involving polyharmonic operator by using variational methods. We assume that the nonlinearity satisfies subcritical exponential growth condition. We use a critical point theorem by B. Ricceri to prove our result.

1 Introduction

In this paper, we establish the existence of solutions to the problem:

$$M\left(\int_{\Omega} |\nabla^m u|^2 dx\right) (-\Delta)^m u = \lambda f(x, u) + \mu g(x, u) \quad \text{in } \Omega,$$

$$u = \nabla u = \dots = \nabla^{m-1} u = 0 \qquad \qquad \text{on } \partial\Omega,$$

(1)

where $\Omega \subseteq \mathbb{R}^{2m}$, $m \geq 1$ is a smooth and bounded domain, $f, g: \Omega \times \mathbb{R} \to \mathbb{R}$ are Carathéodory functions having subcritical exponential growth, μ, λ are parameters. We assume that $M: [0, \infty) \to \mathbb{R}$ is a continuous, non-decreasing function satisfying the following hypothesis:

(M1) There exist $m_0 > 0$, $\alpha > 1$ and $M(t) \ge m_0 t^{\alpha - 1}$ for all $t \in [0, \infty)$.

Moser-Trudinger inequality is an important tool for the study of second order elliptic equations with exponential nonlinearity. The classical Moser-Trudinger inequality [16, 18] reads as follows:

Theorem 1 Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain, $u \in W_0^{1,n}(\Omega)$, $n \ge 2$ and

$$\int_{\Omega} |\nabla u(x)|^n dx \le 1.$$

Then there exists a constant C, which depends on n only such that

$$\int_{\Omega} \exp(\alpha u^p) dx \le C |\Omega|,$$

where

$$p = \frac{n}{n-1}, \ \alpha \le \alpha_n = n\omega_n^{\frac{1}{n-1}},$$

and ω_{n-1} is the (n-1)-dimensional surface area of the unit sphere.

The integral on the left actually is finite for any positive α , but if $\alpha > \alpha_n$ it can be made arbitrarily large by an appropriate choice of u.

^{*}Mathematics Subject Classifications:35J30, 35J35, 35J61, 35J9.

[†]Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Jhunjhunu, Rajasthan, India

Moser-Trudinger inequality was extended to higher order Sobolev spaces by D. R. Adams [1]. The Adams' inequality is as follows:

Theorem 2 Let Ω be a bounded and open subset of \mathbb{R}^n . If m is a positive integer less than n, then there exists a constant C(n,m) such that for all $u \in C^m(\mathbb{R}^n)$ with support contained in Ω and $\|\nabla^m u\|_p \leq 1, p = \frac{n}{m}$, we have

$$\frac{1}{|\Omega|} \int_{\Omega} \exp(\beta |u(x)|^{\frac{n}{n-m}}) dx \le C(n,m)$$
(2)

for all $\beta \leq \beta(n,m)$ where

$$\beta(n,m) = \begin{cases} \frac{n}{w_{n-1}} \left[\frac{\pi^{n/2} 2^m \Gamma(\frac{m+1}{2})}{\Gamma(\frac{n-m+1}{2})} \right]^{p'} & \text{when } m \text{ is odd,} \\ \frac{n}{w_{n-1}} \left[\frac{\pi^{n/2} 2^m \Gamma(\frac{m}{2})}{\Gamma(\frac{n-m}{2})} \right]^{p'} & \text{when } m \text{ is even} \end{cases}$$

and $p' = \frac{p}{p-1}$. Furthermore, for any $\beta > \beta(n,m)$, the integral can be made as large as desired, where

$$\nabla^{m} u = \begin{cases} \Delta^{\frac{m}{2}} u & \text{when } m \text{ is even,} \\ \nabla \Delta^{\frac{m-1}{2}} u & \text{when } m \text{ is odd.} \end{cases}$$

In case of n = 2m, $\beta(2m, m) = 2^{2m} \pi^m \Gamma(m+1)$ for all m. Throughout this paper, we denote the constant C(2m,m) by C_0 .

For some applications of the Adams' inequality to polyharmonic equations with exponential nonlinearities, we refer to [11, 4]. N. Lam and G. Lu [12] established the existence of a nontrivial solution to the following polyharmonic problem:

$$\begin{aligned} (-\Delta)^m u &= f(x, u) & \text{in } \Omega, \\ u &= \nabla u = \ldots = \nabla^{m-1} u = 0 & \text{on } \partial \Omega, \end{aligned}$$

They assume that f satisfies subcritical and critical growth condition and employed mountain pass theorem to establish their result. S. Goyal and K. Sreenadh [8] used Nehari manifold and fibering maps to obtain existence of multiple solutions to the problem:

$$\Delta_{\frac{n}{m}}^{m} u = \lambda h(x) |u|^{q-1} u + u |u|^{p} e^{|u|^{\rho}} \quad \text{in } \Omega,$$
$$u = \nabla u = \ldots = \nabla^{m-1} u = 0 \qquad \text{on } \partial\Omega$$

where $\Omega \subseteq \mathbb{R}^n$, $n \ge 2m$, $0 < q < \frac{n}{m} - 1 < p + 1$ and $\beta \in (1, \frac{n}{n-m}]$. Problem (1) is related to the higher order analogue of Kirchoff equation [10],

$$\rho \frac{\partial^2 u}{\partial t^2} - \left(\frac{\rho_0}{h} + \frac{E}{2L} \int_{\Omega} \left|\frac{\partial u}{\partial x}\right|^2 dx\right) \frac{\partial^2 u}{\partial x^2} = 0.$$

Mishra et al. [15] used mountain pass theorem to establish the existence of a nontrivial solution to the following Kirchhoff type problem:

$$-M\left(|\nabla^m u|^{\frac{n}{m}}\right)\Delta^m_{\frac{n}{m}}u = \frac{f(x,u)}{|x|^{\alpha}} \quad \text{in } \Omega,$$
$$u = \nabla u = \dots = \nabla^{m-1}u = 0 \quad \text{on } \partial\Omega.$$

They assumed that f grows like $e^{\frac{n}{n-m}}$ and $0 < \alpha < n \ge 2m$. Mishra et al. [15] also established the existence result for the following Kirchhoff type problem:

$$-M\left(|\nabla^m u|^{\frac{n}{m}}\right)\Delta^m_{\frac{m}{m}}u = \lambda h(x)|u|^{q-1}u + u|u|^p e^{|u|^{\beta}} \quad \text{in } \Omega,$$
$$u = \nabla u = \ldots = \nabla^{m-1}u = 0 \qquad \qquad \text{on } \partial\Omega.$$

G. Dwivedi

We also refer to [3, 7, 9, 20] and references cited therein for some more existence results for higher order Kirchoff type equations.

Several authors have used Ricceri's critical point theorem [17] to establish the existence and multiplicity results for elliptic boundary value problems. For instance, see [2, 5, 6, 13, 14] and references therein. In this article, we use Ricceri's critical point theorem [17] to prove the existence of three weak solutions to (1). The main result of the paper is as follows;

Theorem 3 Let $f \in \mathcal{F}$ be such that

- (F1) $\sup_{u \in H^m_0(\Omega)} \int_{\Omega} F(x, u) dx > 0;$
- (F2) $\limsup_{t\to 0} \frac{F(x,t)}{|t|^{2\alpha}} \leq 0;$
- (F3) $\limsup_{|t|\to\infty} \frac{F(x,t)}{|t|^{2\alpha}} \le 0.$

Set

$$a = \frac{1}{2} \inf \left\{ \frac{\hat{M}(\|u\|^2)}{\int_{\Omega} F(x, u) dx} : u \in H_0^m(\Omega), \ \int_{\Omega} F(x, u) dx > 0 \right\}$$

Then for each compact interval $K \subseteq (a, +\infty)$, there exists a number $\eta > 0$ with the following property: for every $\lambda \in K$ and $g \in \mathcal{F}$ there exists $\mu^* > 0$ such that for each $\mu \in [0, \mu^*]$, (1) has at least three weak solutions having norms less than η .

The plan of the paper is as follows: In Section 2, we state some definitions and preliminary results which would be used to prove the main theorem. In Section 3, we prove Theorem 3.

2 Preliminaries

In this section, we describe some notations, state some definitions and preliminary results. We say that a function $f: \Omega \times \mathbb{R} \to \mathbb{R}$ has subcritical exponential growth if

$$\lim_{u \to \infty} \frac{|f(x,u)|}{\exp(\alpha u^2)} = 0, \ \forall \alpha > 0 \text{ and a.e. in } \Omega.$$
(3)

The growth is called critical if there exists $\alpha^* > 0$ such that

$$\lim_{|u|\to\infty} \frac{|f(x,u)|}{\exp(\alpha u^2)} = 0 \text{ for all } \alpha > \alpha^* \text{ and a.e. in } \Omega,$$
$$\lim_{|u|\to\infty} \frac{|f(x,u)|}{\exp(\alpha u^2)} = \infty \text{ for all } \alpha < \alpha^* \text{ and a.e. in } \Omega.$$

Definition 1 We denote by \mathcal{F} a class of functions $f : \Omega \times \mathbb{R} \to \mathbb{R}$ each of which satisfies the following properties:

- 1. f is Carathéodory function.
- 2. f has subcritical exponential growth, i.e., (3) is satisfied.
- 3. For every B > 0, $\sup_{|t| \le B} |f(x,t)| \in L^{\infty}(\Omega)$.

Definition 2 Suppose X is a Banach space. We denote by \mathcal{L}_X the class of functionals $L: X \to \mathbb{R}$ with the property: If $u_n \rightharpoonup u$ weakly in X and $\liminf_{n\to\infty} L(u_n) \leq L(u)$, then $\{u_n\}$ has a convergent subsequence converging to u.

Next, we recall the statement of Ricerri critical point theorem [17]:

Theorem 4 Let X be a separable and reflexive real Banach space. Suppose $\Phi, I : X \to \mathbb{R}$ are C^1 functionals satisfying the following conditions:

- 1. Φ is coercive, sequentially weakly lower semicontinuous and is of class \mathcal{L}_X .
- 2. Φ is bounded on each bounded subset of X.
- 3. Φ' admits a continuous inverse on X^* .
- 4. Φ has a strict local minimum at u_0 with $\Phi(u_0) = I(u_0) = 0$.
- 5. I' is compact.
- $6. \max\left\{\limsup_{\|u\|\to\infty} \frac{I(u)}{\Phi(u)}, \limsup_{u\to u_0} \frac{I(u)}{\Phi(u)}\right\} \le 0 \text{ and } \sup_{u\in X} \min\{\Phi(u), I(u)\} > 0.$

Set

$$a := \inf \left\{ \frac{\Phi(u)}{I(u)} : u \in X, \min\{\Phi(u), I(u)\} > 0 \right\}.$$

Then for each compact interval $K \subseteq (a, +\infty)$, there exists a number $\eta > 0$ with the following property: for every $\lambda \in K$ and every C^1 functional $J : X \to \mathbb{R}$ with compact derivative, there exists $\mu^* > 0$ such that for each $\mu \in [0, \mu^*]$,

$$\Phi'(u) = \lambda I'(u) + \mu J'(u)$$

has at least three solutions having norm less than η .

Throughout this paper, we consider the Sobolev space $H_0^m(\Omega)$ equipped with the norm

$$\|u\| = \left(\int_{\Omega} |\nabla^m u|^2 dx\right)^{\frac{1}{2}}$$

By Sobolev embedding theorem, $H_0^m(\Omega)$ is continuously embedded into $L^q(\Omega)$ for every $q \ge 1$. Let S_q be the optimal constant of this embedding, then we have

$$\left\|u\right\|_{q} \leq S_{q} \left\|u\right\|_{q}$$

where $\|\cdot\|_q$ is the standard norm in L^q space. Next, we define weak solution of (1).

Definition 3 We say that $u \in H_0^m(\Omega)$ is a weak solution to (1) if

$$M\left(\int_{\Omega} |\nabla^{m} u|^{2} dx\right) \int_{\Omega} \nabla^{m} u \nabla^{m} v dx - \lambda \int_{\Omega} f(x, u) v dx - \mu \int_{\Omega} g(x, u) v dx = 0$$

for every $v \in H_0^m(\Omega)$.

For a given $f \in \mathcal{F}$, define $F(x,t) = \int_0^t f(x,s) ds$. We also define the functionals $\gamma, \Phi, I : H_0^m(\Omega) \to \mathbb{R}$ by

$$\begin{split} \gamma(u) &= \int_{\Omega} |\nabla^m u|^2 dx, \\ \Phi(u) &= \frac{1}{2} \hat{M}(\gamma(u)), \text{ where } \hat{M}(t) = \int_0^t M(s) ds, \\ I(u) &= \int_{\Omega} F(x, u) dx. \end{split}$$

and

It is easy to see that Φ and I are of the class C^1 and

$$\langle I'(u), v \rangle = \int_{\Omega} f(x, u) v dx,$$

$$\langle \Phi'(u), v \rangle = M\left(\int_{\Omega} |\nabla^m u|^2 dx\right) \int_{\Omega} \nabla^m u \nabla^m v dx.$$

for all $u, v \in H_0^m(\Omega)$.

3 Proof of Theorem 3

To prove Theorem 3, we first prove some lemmas.

Lemma 1 If $f \in \mathcal{F}$, then the functional $H : H_0^m(\Omega) \to \mathbb{R}$ defined by $H(u) = \int_{\Omega} F(x, u(x)) dx$, where $F(x,t) = \int_0^t f(x,s) ds$ is C^1 and $H' : H_0^m(\Omega) \to (H_0^m(\Omega))^*$ is compact. Here $(H_0^m(\Omega))^*$ is the dual of $H_0^m(\Omega)$.

Proof. Since f satisfies subcritical growth condition (3), we have

$$|f(x,t)| \le C \exp(\kappa t^2)$$

Then for every $u \in H_0^m(\Omega)$, and almost every $x \in \Omega$,

$$|F(x,u)| \le C|u| \exp(\kappa u^2)$$

By Adams inequality and Holder's inequality, H is well defined on $H_0^m(\Omega)$. Next, we show that H is Gateaux differentiable with derivative

$$\langle H'(u), v \rangle = \int_{\Omega} f(x, u) v dx, \quad \forall u, v \in H_0^m(\Omega).$$
(4)

For $u, v \in H_0^m(\Omega)$ and $t \in (0, 1)$, we have

$$\frac{H(u+tv)-H(u)}{t} = \int_{\Omega} \frac{F(x,u+tv)-F(x,u)}{t} dx = \int_{\Omega} f(x,u+t\tau(x)v(x))v(x)dx,$$

where τ is a measurable function taking values in [0, 1]. This gives

$$\lim_{t \to 0} \frac{H(u+tv) - H(u)}{t} = \int_{\Omega} f(x, u) v dx.$$

This proves (4). Next, we show that if $\{u_n\}$ is a bounded sequence in $H_0^m(\Omega)$, then

$$\sup_{n} \int_{\Omega} |f(x, u_n)|^q dx < \infty \text{ for all } q > 0$$

Since $\{u_n\}$ is bounded, there exists L > 0 such that $||u_n|| \le L$, $\forall n \ge 1$. Since f satisfies (3),

$$f(x, u_n) \le C \exp(\kappa |u|^2)$$

for some constant C > 0.

$$\begin{split} \int_{\Omega} |f(x,u)|^q dx &\leq \int_{\Omega} C^q \exp(\kappa q ||u_n|^2) dx \\ &= C^q \int_{\Omega} \exp\left(\kappa q ||u_n||^2 \left(\frac{|u_n|}{||u_n||}\right)^2\right) dx \\ &\leq C^q \int_{\Omega} \exp\left(\kappa q L^2 \left(\frac{|u_n|}{||u_n||}\right)^2\right) dx. \end{split}$$

By Theorem 2 if $0 < \kappa < \frac{\beta(2m,m)}{qL^2}$, then

$$\sup_{n} \int_{\Omega} |f(x, u_n)|^q dx < \infty.$$

Now, suppose $\{u_n\}$ is a bounded sequence in $H_0^m(\Omega)$, then there exists $u \in H_0^m(\Omega)$ such that, up to a subsequence, $u_n \to u$ a.e. in Ω . We show that, for every q > 0, $f(\cdot, u_n(\cdot)) \to f(\cdot, u(\cdot))$ in $L^q(\Omega)$. Indeed, since $f(\cdot, u_n(\cdot)) \to f(\cdot, u(\cdot))$ a.e. in Ω , for a fixed p > 1 there exists a constant $C_1 > 0$ such that

$$\int_{\Omega} |f(x, u_n(x))|^{pq} dx \le C_1$$

Let $\epsilon > 0$ be arbitrary and $\Omega' \subset \Omega$ be a measurable subset. By Hölder's inequality

$$\int_{\Omega'} |f(x, u_n)|^q dx \le |\Omega|^{\frac{1}{p'}} \left(\int_{\Omega} |f(x, u_n)|^{pq} dx \right)^{\frac{1}{p}} \le C_1^{\frac{1}{p}} |\Omega|^{\frac{1}{p'}} < \epsilon$$

provided $|\Omega|$ is small. Here $\frac{1}{p} + \frac{1}{p'} = 1$. By Vitali convergence theorem, $f(\cdot, u_n(\cdot)) \to f(\cdot, u(\cdot))$ in $L^q(\Omega)$. Now, we show that $H': H_0^m(\Omega) \to (H_0^m(\Omega))^*$ is continuous and compact. Let $u_n \to u$ in $H_0^m(\Omega)$. Then,

 $\{u_n\}$ is bounded and $u_n \to u$ a.e. in Ω . For some $v \in H_0^m(\Omega)$ with $||v|| \leq 1$, we have

$$\begin{aligned} |\langle H'(u_n) - H'(u), v\rangle| &\leq \left(\int_{\Omega} |f(x, u_n) - f(x, u)|^2 dx\right)^{\frac{1}{2}} \left(\int_{\Omega} |v|^2 dx\right)^{\frac{1}{2}} \\ &\leq C \left\|v\right\| \left(\int_{\Omega} |f(x, u_n) - f(x, u)|^2 dx\right)^{\frac{1}{2}} \\ &\to 0 \text{ as } n \to \infty. \end{aligned}$$

Thus H' is continuous. Similarly, we can show that H' is compact.

1. The functional Φ is sequentially weak lower semicontinuous. Lemma 2

2. Φ belongs to the class \mathcal{L}_X .

Proof. (i). Let $\{u_n\}$ be a sequence in $H_0^m(\Omega)$ such that $u_n \to u$ weakly in $H_0^m(\Omega)$. Then

$$\int_{\Omega} |\nabla^m u|^2 dx \le \liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|^2 dx.$$
(5)

Since the function $t \mapsto \hat{M}(t)$ is continuous and non-decreasing,

$$\begin{split} \liminf_{n \to \infty} \Phi(u_n) &= \frac{1}{2} \liminf_{n \to \infty} \hat{M} \left(\int_{\Omega} |\nabla^m u_n|^2 dx \right) \\ &= \frac{1}{2} \hat{M} \left(\liminf_{n \to \infty} \int_{\Omega} |\nabla^m u_n|^2 dx \right) \\ &\geq \frac{1}{2} \hat{M} \left(\int_{\Omega} |\nabla^m u|^2 dx \right) = \Phi(u). \end{split}$$

Thus Φ is sequentially weak lower semicontinuous.

(ii). It is easy to see that $\gamma(u) \in L_X$. Since M is continuous and non-decreasing, we deduce that $\Phi \in \mathcal{L}_X$.

Proof of Theorem 3. By Lemma 1, I is well defined and continuously Gateaux differentiable function with compact derivative $\langle I'(u), v \rangle = \int_{\Omega} f(x, u) v dx, \forall u, v \in H_0^m(\Omega)$. By Lemma 2, Φ is sequentially weakly lower semicontinuous functional which belongs to the class \mathcal{L}_X . Next, we show that Φ is coercive.

$$\Phi(u) = \frac{1}{2}\hat{M}\left(\|u\|^{2}\right) \ge \frac{1}{2}\|u\|^{2\alpha}.$$

G. Dwivedi

Thus Φ is coercive. It is easy to see that $u_0 = 0$ is only global minimum of Φ and $\Phi(0) = 0 = I(0)$. Moreover, if $||u|| \leq r$ then $\Phi(u) \leq \frac{1}{2}\hat{M}(r^n)$ and hence Φ is bounded on each bounded subset of $H_0^m(\Omega)$.

Next, we show that the operator $\Phi' : H_0^m(\Omega) \to (H_0^m(\Omega))^*$ is invertible on $H_0^m(\Omega)$. In view of Minty-Browder theorem [19, Theorem 26 A], it is enough to show that Φ is strictly convex, hemicontinuous and coercive. Let $u, v \in H_0^m(\Omega)$ with $u \neq v$ and $t \in [0, 1]$. Since the operator $\gamma' : H_0^m(\Omega) \to (H_0^m(\Omega))^*$ given by

$$\langle \gamma'(u), v \rangle = \int_{\Omega} \nabla^m u \nabla^m v dx$$

is strictly monotone, γ is strictly convex, see [19, Proposition 25.10]. Furthermore, as M is non-decreasing, the function \hat{M} is convex in $[0, +\infty)$. Thus

$$\hat{M}(\gamma(tu + (1-t)v) < \hat{M}(t\gamma(u) + (1-t)\gamma(v)) \le t\hat{M}(\gamma(u)) + (1-t)\hat{M}(\gamma(v)).$$

This shows that Φ' is strictly monotone. For any $u \in H_0^m(\Omega)$, by (M1), we see that

$$\frac{\langle \Phi'(u), u \rangle}{\|u\|} = \frac{M(\gamma(u)) \|u\|^2}{\|u\|} \ge m_0 \|u\|^{2\alpha - 1}.$$

Thus Φ' is coercive. By using standard arguments, we can conclude that Φ' is hemicontinuous. By Theorem [19, Theorem 26-A] there exists $\Phi'^{-1} : (H_0^m(\Omega))^* \to H_0^m(\Omega)$ and Φ'^{-1} is bounded. Now, we show that Φ'^{-1} is continuous. Let $\{v_n\} \subseteq (H_0^m(\Omega))^*$ be a sequence converging to $v \in (H_0^m(\Omega))^*$, $u_n = \Phi'^{-1}(v_n)$ and $u = \Phi'^{-1}(v)$. Then $\{u_n\}$ is bounded in $H_0^m(\Omega)$ and upto a subsequence $u_n \rightharpoonup u_0$ weakly in $H_0^m(\Omega)$. Since $v_n \to v$, it is easy to see that

$$\lim_{n \to \infty} \langle \Phi'(u_n), u_n - u_0 \rangle = \lim_{n \to \infty} \langle v_n, u_n - u_0 \rangle = 0$$

which implies

$$\lim_{n \to \infty} M\left(\int_{\Omega} |\nabla^m u_n|^2 dx\right) \int_{\Omega} \nabla^m u_n \nabla^m (u_n - u_0) dx = 0.$$
 (6)

Since $\{u_n\}$ is bounded in $H_0^m(\Omega)$, we have

$$\int_{\Omega} |\nabla^m u_n|^2 dx \to b \ge 0 \text{ as } n \to \infty.$$

If b = 0, then $\{u_n\}$ converges to $u_0 = 0$ in $H_0^m(\Omega)$ and the proof is complete. If b > 0,

$$M\left(\int_{\Omega} |\nabla^m u_n|^2 dx\right) \to M(b) \text{ as } n \to \infty.$$

By (M1),

$$M\left(\int_{\Omega} |\nabla^m u_n|^2 dx\right) \ge C > 0.$$
⁽⁷⁾

From (6) and (7),

$$\lim_{n \to \infty} \int_{\Omega} \nabla^m u_n \nabla^m (u_n - u_0) dx = 0.$$
(8)

Since $u_n \rightharpoonup u_0$ weakly in $H_0^m(\Omega)$,

$$\lim_{n \to \infty} \int_{\Omega} \nabla^m u_0 \nabla^m (u_n - u_0) dx = 0.$$
⁽⁹⁾

From (8) and (9), $u_n \to u_0$ in $H_0^m(\Omega)$. Since Φ' is continuous and injective, $u_n \to u$ in $H_0^m(\Omega)$ and hence Φ'^{-1} is continuous. In the following, we prove that

$$\limsup_{u \to 0} \frac{I(u)}{\Phi(u)} \le 0.$$
⁽¹⁰⁾

By the hypothesis (H2), for every $\epsilon > 0$, there exists $\delta_1 > 0$ such that for all $x \in \Omega$ and $|t| \leq \eta_1$,

$$F(x,t) \le \epsilon |t|^{2\alpha}.$$
(11)

Since $f \in \mathcal{F}$, for a fixed $\alpha > 0$ and $q > 2\alpha$ there exists C > 0 such that for every $x \in \Omega$ and $|t| \ge \delta_1$,

$$F(x,t) \le C|t|^q \exp(\alpha t^2). \tag{12}$$

On combining (11) and (12), we obtain

$$F(x,t) \le \epsilon |t|^{2\alpha} + C|t|^q \exp(\alpha t^2).$$
(13)

On using (13), (2) and Hölder's inequality

$$\begin{split} I(u) &= \int_{\Omega} F(x, u) dx \\ &\leq \int_{\Omega} \left(\epsilon |u|^{2\alpha} + C |u|^q \exp(\alpha |u|^2) \right) dx \\ &\leq \epsilon \int_{\Omega} |u|^{2\alpha} dx + C \left(\int_{\Omega} \exp\left(p\alpha \left\| u \right\|^2 \left(\frac{|u|^2}{\|u\|^2} \right) \right) \right)^{\frac{1}{p}} \left(\int_{\Omega} |u|^{p'q} \right)^{\frac{1}{p'}} \\ &\leq \epsilon S_{2\alpha}^{2\alpha} \left\| u \right\|^{2\alpha} + C (S_{p'q})^q C_0^{\frac{1}{p}} \left\| u \right\|^q \\ &\leq \frac{2\epsilon\alpha}{m_0} S_{2\alpha}^{2\alpha} \Phi(u) + C (S_{p'q})^q C_0^{\frac{1}{p}} \left(\frac{2\alpha}{m_0} \Phi(u) \right)^{\frac{q}{2\alpha}}. \end{split}$$

Then

$$\frac{I(u)}{\Phi(u)} \le \frac{2\epsilon\alpha}{m_0} S_{2\alpha}^{2\alpha} + C(S_{p'q})^q C_0^{\frac{1}{p}} \left(\frac{2\alpha}{m_0}\right)^{\frac{q}{2\alpha}} \Phi(u)^{\frac{q-2\alpha}{2\alpha}},$$

where $C_0 = C(2m, m)$ is defined in (2). Since $q > 2\alpha$ and $\Phi(u) \to 0$ as $u \to 0$, we see that

$$\lim_{\|u\| \to 0} \frac{I(u)}{\Phi(u)} \le 0$$

Next, we show that

$$\limsup_{\|u\|\to\infty} \frac{I(u)}{\Phi(u)} \le 0.$$
(14)

By the assumptions (F3), for every $\epsilon > 0$ there exists $\delta_2 > 0$ such that

$$F(x,t) \le \epsilon |t|^{2\alpha}$$
 for every $x \in \Omega$ and $|t| > \delta_2$. (15)

Since $f \in \mathcal{F}$, there exists K > 0 such that for every $x \in \Omega$,

$$\sup_{|t| \le \delta_2} |f(x,t)| \le K.$$
(16)

On combining (15) and (16), we get

 $F(x,t) \leq K\delta_2 + \epsilon |t|^{2\alpha}$ for every $x \in \Omega$ and $t \in \mathbb{R}$.

Thus

$$I(u) \le K\delta_2 |\Omega| + \epsilon \int_{\Omega} |u|^{2\alpha} dx.$$

G. Dwivedi

Since $H_0^m(\Omega) \hookrightarrow L^{2\alpha}(\Omega)$,

$$\frac{I(u)}{\Phi(u)} \le \frac{2\alpha}{m_0 \left\|u\right\|^{2\alpha}} \left(K\delta_2 |\Omega| + \epsilon \int_{\Omega} |u|^{2\alpha} dx\right) \le \frac{2\alpha K\delta_2 |\Omega|}{m_0 \left\|u\right\|^{2\alpha}} + \frac{2\alpha \epsilon S_{2\alpha}^{2\alpha}}{m_0}$$

This proves (14). From (10) and (14), we obtain

$$\max\left\{\limsup_{\|u\|\to\infty}\frac{I(u)}{\Phi(u)},\,\limsup_{u\to0}\frac{I(u)}{\Phi(u)}\right\}\leq 0.$$

Thus all the conditions of Theorem 4 are satisfied. Moreover, the functional $\Lambda(u) = \int_{\Omega} G(x, u) dx$, where $G(x, t) = \int_{\Omega} g(x, s) dx$, is continuously Gateaux differentiable in $H_0^m(\Omega)$. It is easy to see that Λ has compact derivative given by

$$\langle \Lambda'(u), v \rangle = \int_{\Omega} g(x, u) v dx.$$

By Theorem 4 there exists $\eta > 0$ such that for every $\lambda \in K$ there exists $\mu^* > 0$ such that for each $\mu \in [0, \mu^*]$, the functional $\Phi - \lambda I - \mu \Lambda$ has at least three critical points whose norm is less than η . Hence, (1) has three weak solutions. This completes the proof.

Acknowledgment. The author is supported by Science and Engineering Research Board, India under the grant number MTR/2018/000233. I would like to thank the referee for his/her suggestions.

References

- D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 128(1988), 385–398.
- [2] N. T. Chung and H. Q. Toan, Multiple solutions for a class of p-Kirchhoff type equations via variational methods, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 109(2015), 247–256.
- [3] F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74(2011), 5962–5974.
- [4] J. M. do Ó and A. C. Macedo, Adams type inequality and application for a class of polyharmonic equations with critical growth, Adv. Nonlinear Stud., 15(2015), 867–888.
- [5] S. El Manouni and F. Faraci, Multiplicity results for some elliptic problems of n-Laplace type, Taiwanese J. Math., 16(2012), 901–911.
- [6] F. Faraci and G. Smyrlis, Three solutions for a class of higher dimensional singular problems, NoDEA Nonlinear Differential Equations Appl., 23(2016), 14 pp.
- [7] M. Ferrara, S. Khademloo and S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput., 234(2014), 316–325.
- [8] S. Goyal and K. Sreenadh, The Nehari manifold for a quasilinear polyharmonic equation with exponential nonlinearities and a sign-changing weight function, Adv. Nonlinear Anal., 4(2015), 177–200.
- [9] S. Heidarkhani, S. Khademloo and A. Solimaninia, Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem, Portugal. Math., 71(2014), 39–61.
- [10] G. Kirchhoff, Vorlesungen über mathematische physik: mechanik, BG Teubner, 1876.
- [11] O. Lakkis, Existence of solutions for a class of semilinear polyharmonic equations with critical exponential growth, Adv. Differential Equations, 4(1999), 877–906.

- [12] N. Lam and G. Lu, Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth, Discrete Contin. Dyn. Syst, 32(2012), 2187–2205.
- [13] C. Li and C.-L Tang, Three solutions for a Navier boundary value problem involving the p-biharmonic, Nonlinear Anal., 72(2010), 1339–1347.
- [14] L. Li and C.-L Tang, Existence of three solutions for (p,q)-biharmonic systems, Nonlinear Anal., 73(2010), 796–805.
- [15] P. K. Mishra, S. Goyal and K. Sreenadh, Polyharmonic Kirchhoff type equations with singular exponential nonlinearities, Commun. Pure Appl. Anal., 15(2016), 1689–1717.
- [16] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20(1971), 1077–1092.
- [17] B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71(2009), 4151–4157.
- [18] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17(1967), 473–483.
- [19] E. Zeidler, Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators, Springer Science & Business Media, 2013.
- [20] L. Zhao and N. Zhang, Existence of solutions for a higher order Kirchhoff type problem with exponential critical growth, Nonlinear Anal., 132(2016), 214–226.