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Abstract

In this article, we establish the existence of three weak solutions for a nonlinear Kirchhoff type elliptic
equation involving polyharmonic operator by using variational methods. We assume that the nonlinearity
satisfies subcritical exponential growth condition. We use a critical point theorem by B. Ricceri to prove
our result.

1 Introduction

In this paper, we establish the existence of solutions to the problem:

M
(∫

Ω
|∇mu|2dx

)
(−∆)mu = λf(x, u) + µg(x, u) in Ω,

u = ∇u = . . . = ∇m−1u = 0 on ∂Ω,
(1)

where Ω ⊆ R2m, m ≥ 1 is a smooth and bounded domain, f, g : Ω × R → R are Carathéodory functions
having subcritical exponential growth, µ, λ are parameters. We assume thatM : [0,∞)→ R is a continuous,
non-decreasing function satisfying the following hypothesis:

(M1) There exist m0 > 0, α > 1 and M(t) ≥ m0t
α−1 for all t ∈ [0,∞).

Moser-Trudinger inequality is an important tool for the study of second order elliptic equations with
exponential nonlinearity. The classical Moser-Trudinger inequality [16, 18] reads as follows:

Theorem 1 Let Ω ⊆ Rn be a bounded domain, u ∈W 1,n
0 (Ω), n ≥ 2 and∫

Ω

|∇u(x)|ndx ≤ 1.

Then there exists a constant C, which depends on n only such that∫
Ω

exp(αup)dx ≤ C|Ω|,

where
p =

n

n− 1
, α ≤ αn = nω

1
n−1
n ,

and ωn−1 is the (n− 1)-dimensional surface area of the unit sphere.
The integral on the left actually is finite for any positive α, but if α > αn it can be made arbitrarily large

by an appropriate choice of u.
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578 Multiple Solutions for a Kirchhoff Type Equation

Moser-Trudinger inequality was extended to higher order Sobolev spaces by D. R. Adams [1]. The Adams’
inequality is as follows:

Theorem 2 Let Ω be a bounded and open subset of Rn. If m is a positive integer less than n, then there
exists a constant C(n,m) such that for all u ∈ Cm(Rn) with support contained in Ω and ‖∇mu‖p ≤ 1, p = n

m ,
we have

1

|Ω|

∫
Ω

exp(β|u(x)| n
n−m )dx ≤ C(n,m) (2)

for all β ≤ β(n,m) where

β(n,m) =


n

wn−1

[
πn/22mΓ(m+1

2 )

Γ(n−m+1
2 )

]p′
when m is odd,

n
wn−1

[
πn/22mΓ(m2 )

Γ(n−m2 )

]p′
when m is even

and p′ = p
p−1 . Furthermore, for any β > β(n,m), the integral can be made as large as desired, where

∇mu =

{
4m

2 u when m is even,

∇4m−1
2 u when m is odd.

In case of n = 2m, β(2m,m) = 22mπmΓ(m+1) for all m. Throughout this paper, we denote the constant
C(2m,m) by C0.
For some applications of the Adams’inequality to polyharmonic equations with exponential nonlinearities,

we refer to [11, 4]. N. Lam and G. Lu [12] established the existence of a nontrivial solution to the following
polyharmonic problem:

(−∆)mu = f(x, u) in Ω,

u = ∇u = . . . = ∇m−1u = 0 on ∂Ω,

They assume that f satisfies subcritical and critical growth condition and employed mountain pass theorem
to establish their result. S. Goyal and K. Sreenadh [8] used Nehari manifold and fibering maps to obtain
existence of multiple solutions to the problem:

∆m
n
m
u = λh(x)|u|q−1u+ u|u|pe|u|β in Ω,

u = ∇u = . . . = ∇m−1u = 0 on ∂Ω,

where Ω ⊆ Rn, n ≥ 2m, 0 < q < n
m − 1 < p+ 1 and β ∈ (1, n

n−m ].
Problem (1) is related to the higher order analogue of Kirchoff equation [10],

ρ
∂2u

∂t2
−
(
ρ0

h
+

E

2L

∫
Ω

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0.

Mishra et al. [15] used mountain pass theorem to establish the existence of a nontrivial solution to the
following Kirchhoff type problem:

−M
(
|∇mu| nm

)
∆m

n
m
u = f(x,u)

|x|α in Ω,

u = ∇u = . . . = ∇m−1u = 0 on ∂Ω.

They assumed that f grows like e
n

n−m and 0 < α < n ≥ 2m. Mishra et al. [15] also established the existence
result for the following Kirchhoff type problem:

−M
(
|∇mu| nm

)
∆m

n
m
u = λh(x)|u|q−1u+ u|u|pe|u|β in Ω,

u = ∇u = . . . = ∇m−1u = 0 on ∂Ω.
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We also refer to [3, 7, 9, 20] and references cited therein for some more existence results for higher order
Kirchoff type equations.
Several authors have used Ricceri’s critical point theorem [17] to establish the existence and multiplicity

results for elliptic boundary value problems. For instance, see [2, 5, 6, 13, 14] and references therein. In this
article, we use Ricceri’s critical point theorem [17] to prove the existence of three weak solutions to (1). The
main result of the paper is as follows;

Theorem 3 Let f ∈ F be such that

(F1) supu∈Hm0 (Ω)

∫
Ω
F (x, u)dx > 0;

(F2) lim supt→0
F (x,t)
|t|2α ≤ 0;

(F3) lim sup|t|→∞
F (x,t)
|t|2α ≤ 0.

Set

a =
1

2
inf

{
M̂(‖u‖2)∫

Ω
F (x, u)dx

: u ∈ Hm
0 (Ω),

∫
Ω

F (x, u)dx > 0

}
.

Then for each compact interval K ⊆ (a,+∞), there exists a number η > 0 with the following property: for
every λ ∈ K and g ∈ F there exists µ∗ > 0 such that for each µ ∈ [0, µ∗], (1) has at least three weak solutions
having norms less than η.

The plan of the paper is as follows: In Section 2, we state some definitions and preliminary results which
would be used to prove the main theorem. In Section 3, we prove Theorem 3.

2 Preliminaries

In this section, we describe some notations, state some definitions and preliminary results. We say that a
function f : Ω× R→ R has subcritical exponential growth if

lim
|u|→∞

|f(x, u)|
exp(αu2)

= 0, ∀α > 0 and a.e. in Ω. (3)

The growth is called critical if there exists α∗ > 0 such that

lim
|u|→∞

|f(x, u)|
exp(αu2)

= 0 for all α > α∗ and a.e. in Ω,

lim
|u|→∞

|f(x, u)|
exp(αu2)

=∞ for all α < α∗ and a.e. in Ω.

Definition 1 We denote by F a class of functions f : Ω × R → R each of which satisfies the following
properties:

1. f is Carathéodory function.

2. f has subcritical exponential growth, i.e., (3) is satisfied.

3. For every B > 0, sup|t|≤B |f(x, t)| ∈ L∞(Ω).

Definition 2 Suppose X is a Banach space. We denote by LX the class of functionals L : X → R with the
property: If un ⇀ u weakly in X and lim infn→∞ L(un) ≤ L(u), then {un} has a convergent subsequence
converging to u.
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Next, we recall the statement of Ricerri critical point theorem [17]:

Theorem 4 Let X be a separable and reflexive real Banach space. Suppose Φ, I : X → R are C1 functionals
satisfying the following conditions:

1. Φ is coercive, sequentially weakly lower semicontinuous and is of class LX .

2. Φ is bounded on each bounded subset of X.

3. Φ′ admits a continuous inverse on X∗.

4. Φ has a strict local minimum at u0 with Φ(u0) = I(u0) = 0.

5. I ′ is compact.

6. max
{

lim sup‖u‖→∞
I(u)
Φ(u) , lim supu→u0

I(u)
Φ(u)

}
≤ 0 and supu∈X min{Φ(u), I(u)} > 0.

Set

a := inf

{
Φ(u)

I(u)
: u ∈ X, min{Φ(u), I(u)} > 0

}
.

Then for each compact interval K ⊆ (a,+∞), there exists a number η > 0 with the following property: for
every λ ∈ Kand every C1 functional J : X → R with compact derivative, there exists µ∗ > 0 such that for
each µ ∈ [0, µ∗],

Φ′(u) = λI ′(u) + µJ ′(u)

has at least three solutions having norm less than η.

Throughout this paper, we consider the Sobolev space Hm
0 (Ω) equipped with the norm

‖u‖ =

(∫
Ω

|∇mu|2dx
) 1

2

.

By Sobolev embedding theorem, Hm
0 (Ω) is continuously embedded into Lq(Ω) for every q ≥ 1. Let Sq be the

optimal constant of this embedding, then we have

‖u‖q ≤ Sq ‖u‖ ,

where ‖·‖q is the standard norm in Lq space. Next, we define weak solution of (1).

Definition 3 We say that u ∈ Hm
0 (Ω) is a weak solution to (1) if

M

(∫
Ω

|∇mu|2dx
)∫

Ω

∇mu∇mvdx− λ
∫

Ω

f(x, u)vdx− µ
∫

Ω

g(x, u)vdx = 0

for every v ∈ Hm
0 (Ω).

For a given f ∈ F , define F (x, t) =
∫ t

0
f(x, s)ds. We also define the functionals γ,Φ, I : Hm

0 (Ω)→ R by

γ(u) =

∫
Ω

|∇mu|2dx,

Φ(u) =
1

2
M̂(γ(u)), where M̂(t) =

∫ t

0

M(s)ds,

and

I(u) =

∫
Ω

F (x, u)dx.
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It is easy to see that Φ and I are of the class C1 and

〈I ′(u), v〉 =

∫
Ω

f(x, u)vdx,

〈Φ′(u), v〉 = M

(∫
Ω

|∇mu|2dx
)∫

Ω

∇mu∇mvdx.

for all u, v ∈ Hm
0 (Ω).

3 Proof of Theorem 3

To prove Theorem 3, we first prove some lemmas.

Lemma 1 If f ∈ F , then the functional H : Hm
0 (Ω) → R defined by H(u) =

∫
Ω
F (x, u(x))dx, where

F (x, t) =
∫ t

0
f(x, s)ds is C1 and H ′ : Hm

0 (Ω) → (Hm
0 (Ω))∗ is compact. Here (Hm

0 (Ω))∗ is the dual of
Hm

0 (Ω).

Proof. Since f satisfies subcritical growth condition (3), we have

|f(x, t)| ≤ C exp(κt2).

Then for every u ∈ Hm
0 (Ω), and almost every x ∈ Ω,

|F (x, u)| ≤ C|u| exp(κu2).

By Adams inequality and Holder’s inequality, H is well defined on Hm
0 (Ω). Next, we show that H is Gateaux

differentiable with derivative

〈H ′(u), v〉 =

∫
Ω

f(x, u)vdx, ∀u, v ∈ Hm
0 (Ω). (4)

For u, v ∈ Hm
0 (Ω) and t ∈ (0, 1), we have

H(u+ tv)−H(u)

t
=

∫
Ω

F (x, u+ tv)− F (x, u)

t
dx =

∫
Ω

f(x, u+ tτ(x)v(x))v(x)dx,

where τ is a measurable function taking values in [0, 1]. This gives

lim
t→0

H(u+ tv)−H(u)

t
=

∫
Ω

f(x, u)vdx.

This proves (4). Next, we show that if {un} is a bounded sequence in Hm
0 (Ω), then

sup
n

∫
Ω

|f(x, un)|qdx <∞ for all q > 0.

Since {un} is bounded, there exists L > 0 such that ‖un‖ ≤ L, ∀n ≥ 1. Since f satisfies (3),

f(x, un) ≤ C exp(κ|u|2)

for some constant C > 0. ∫
Ω

|f(x, u)|qdx ≤
∫

Ω

Cq exp(κq|un|2)dx

= Cq
∫

Ω

exp

(
κq ‖un‖2

(
|un|
‖un‖

)2
)
dx

≤ Cq
∫

Ω

exp

(
κqL2

(
|un|
‖un‖

)2
)
dx.
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By Theorem 2 if 0 < κ < β(2m,m)
qL2 , then

sup
n

∫
Ω

|f(x, un)|qdx <∞.

Now, suppose {un} is a bounded sequence in Hm
0 (Ω), then there exists u ∈ Hm

0 (Ω) such that, upto a
subsequence, un → u a.e. in Ω.We show that, for every q > 0, f(·, un(·))→ f(·, u(·)) in Lq(Ω). Indeed, since
f(·, un(·))→ f(·, u(·)) a.e. in Ω, for a fixed p > 1 there exists a constant C1 > 0 such that∫

Ω

|f(x, un(x))|pqdx ≤ C1.

Let ε > 0 be arbitrary and Ω′ ⊂ Ω be a measurable subset. By Hölder’s inequality∫
Ω′
|f(x, un)|qdx ≤ |Ω|

1
p′

(∫
Ω

|f(x, un)|pqdx
) 1
p

≤ C
1
p

1 |Ω|
1
p′ < ε

provided |Ω| is small. Here 1
p + 1

p′ = 1. By Vitali convergence theorem, f(·, un(·))→ f(·, u(·)) in Lq(Ω).

Now, we show that H ′ : Hm
0 (Ω)→ (Hm

0 (Ω))∗ is continuous and compact. Let un → u in Hm
0 (Ω). Then,

{un} is bounded and un → u a.e. in Ω. For some v ∈ Hm
0 (Ω) with ‖v‖ ≤ 1, we have

|〈H ′(un)−H ′(u), v〉| ≤
(∫

Ω

|f(x, un)− f(x, u)|2dx
) 1

2
(∫

Ω

|v|2dx
) 1

2

≤ C ‖v‖
(∫

Ω

|f(x, un)− f(x, u)|2dx
) 1

2

→ 0 as n→∞.

Thus H ′ is continuous. Similarly, we can show that H ′ is compact.

Lemma 2 1. The functional Φ is sequentially weak lower semicontinuous.

2. Φ belongs to the class LX .

Proof. (i). Let {un} be a sequence in Hm
0 (Ω) such that un ⇀ u weakly in Hm

0 (Ω). Then∫
Ω

|∇mu|2dx ≤ lim inf
n→∞

∫
Ω

|∇un|2dx. (5)

Since the function t 7→ M̂(t) is continuous and non-decreasing,

lim inf
n→∞

Φ(un) =
1

2
lim inf
n→∞

M̂

(∫
Ω

|∇mun|2dx
)

=
1

2
M̂

(
lim inf
n→∞

∫
Ω

|∇mun|2dx
)

≥ 1

2
M̂

(∫
Ω

|∇mu|2dx
)

= Φ(u).

Thus Φ is sequentially weak lower semicontinuous.
(ii). It is easy to see that γ(u) ∈ LX . Since M̂ is continuous and non-decreasing, we deduce that Φ ∈LX .

Proof of Theorem 3. By Lemma 1, I is well defined and continuously Gateaux differentiable function
with compact derivative 〈I ′(u), v〉 =

∫
Ω
f(x, u)vdx, ∀u, v ∈ Hm

0 (Ω). By Lemma 2, Φ is sequentially weakly
lower semicontinuous functional which belongs to the class LX . Next, we show that Φ is coercive.

Φ(u) =
1

2
M̂
(
‖u‖2

)
≥ 1

2
‖u‖2α .
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Thus Φ is coercive. It is easy to see that u0 = 0 is only global minimum of Φ and Φ(0) = 0 = I(0). Moreover,
if ‖u‖ ≤ r then Φ(u) ≤ 1

2M̂(rn) and hence Φ is bounded on each bounded subset of Hm
0 (Ω).

Next, we show that the operator Φ′ : Hm
0 (Ω) → (Hm

0 (Ω))∗ is invertible on Hm
0 (Ω). In view of Minty-

Browder theorem [19, Theorem 26 A], it is enough to show that Φ is strictly convex, hemicontinuous and
coercive. Let u, v ∈ Hm

0 (Ω) with u 6= v and t ∈ [0, 1]. Since the operator γ′ : Hm
0 (Ω)→ (Hm

0 (Ω))∗ given by

〈γ′(u), v〉 =

∫
Ω

∇mu∇mvdx

is strictly monotone, γ is strictly convex, see [19, Proposition 25.10]. Furthermore, as M is non-decreasing,
the function M̂ is convex in [0,+∞). Thus

M̂(γ(tu+ (1− t)v) < M̂(tγ(u) + (1− t)γ(v)) ≤ tM̂(γ(u)) + (1− t)M̂(γ(v)).

This shows that Φ′ is strictly monotone. For any u ∈ Hm
0 (Ω), by (M1), we see that

〈Φ′(u), u〉
‖u‖ =

M(γ(u)) ‖u‖2

‖u‖ ≥ m0 ‖u‖2α−1
.

Thus Φ′ is coercive. By using standard arguments, we can conclude that Φ′ is hemicontinuous. By Theorem
[19, Theorem 26-A] there exists Φ′−1 : (Hm

0 (Ω))∗ → Hm
0 (Ω) and Φ′−1 is bounded. Now, we show that

Φ′−1 is continuous. Let {vn} ⊆ (Hm
0 (Ω))∗ be a sequence converging to v ∈ (Hm

0 (Ω))∗, un = Φ′−1(vn) and
u = Φ′−1(v). Then {un} is bounded in Hm

0 (Ω) and upto a subsequence un ⇀ u0 weakly in Hm
0 (Ω). Since

vn → v, it is easy to see that

lim
n→∞

〈Φ′(un), un − u0〉 = lim
n→∞

〈vn, un − u0〉 = 0

which implies

lim
n→∞

M

(∫
Ω

|∇mun|2dx
)∫

Ω

∇mun∇m(un − u0)dx = 0. (6)

Since {un} is bounded in Hm
0 (Ω), we have∫

Ω

|∇mun|2dx→ b ≥ 0 as n→∞.

If b = 0, then {un} converges to u0 = 0 in Hm
0 (Ω) and the proof is complete. If b > 0,

M

(∫
Ω

|∇mun|2dx
)
→M(b) as n→∞.

By (M1),

M

(∫
Ω

|∇mun|2dx
)
≥ C > 0. (7)

From (6) and (7),

lim
n→∞

∫
Ω

∇mun∇m(un − u0)dx = 0. (8)

Since un ⇀ u0 weakly in Hm
0 (Ω),

lim
n→∞

∫
Ω

∇mu0∇m(un − u0)dx = 0. (9)

From (8) and (9), un → u0 in Hm
0 (Ω). Since Φ′ is continuous and injective, un → u in Hm

0 (Ω) and hence
Φ′−1 is continuous. In the following, we prove that

lim sup
u→0

I(u)

Φ(u)
≤ 0. (10)
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By the hypothesis (H2), for every ε > 0, there exists δ1 > 0 such that for all x ∈ Ω and |t| ≤ η1,

F (x, t) ≤ ε|t|2α. (11)

Since f ∈ F , for a fixed α > 0 and q > 2α there exists C > 0 such that for every x ∈ Ω and |t| ≥ δ1,

F (x, t) ≤ C|t|q exp(αt2). (12)

On combining (11) and (12), we obtain

F (x, t) ≤ ε|t|2α + C|t|q exp(αt2). (13)

On using (13), (2) and Hölder’s inequality

I(u) =

∫
Ω

F (x, u)dx

≤
∫

Ω

(
ε|u|2α + C|u|q exp(α|u|2)

)
dx

≤ ε
∫

Ω

|u|2αdx+ C

(∫
Ω

exp

(
pα ‖u‖2

(
|u|2

‖u‖2

))) 1
p (∫

Ω

|u|p
′q

) 1
p′

≤ εS2α
2α ‖u‖

2α
+ C(Sp′q)

qC
1
p

0 ‖u‖
q

≤ 2εα

m0
S2α

2αΦ(u) + C(Sp′q)
qC

1
p

0

(
2α

m0
Φ(u)

) q
2α

.

Then
I(u)

Φ(u)
≤ 2εα

m0
S2α

2α + C(Sp′q)
qC

1
p

0

(
2α

m0

) q
2α

Φ(u)
q−2α
2α ,

where C0 = C(2m,m) is defined in (2). Since q > 2α and Φ(u)→ 0 as u→ 0, we see that

lim
‖u‖→0

I(u)

Φ(u)
≤ 0.

Next, we show that

lim sup
‖u‖→∞

I(u)

Φ(u)
≤ 0. (14)

By the assumptions (F3), for every ε > 0 there exists δ2 > 0 such that

F (x, t) ≤ ε|t|2α for every x ∈ Ω and |t| > δ2. (15)

Since f ∈ F , there exists K > 0 such that for every x ∈ Ω,

sup
|t|≤δ2

|f(x, t)| ≤ K. (16)

On combining (15) and (16), we get

F (x, t) ≤ Kδ2 + ε|t|2α for every x ∈ Ω and t ∈ R.

Thus

I(u) ≤ Kδ2|Ω|+ ε

∫
Ω

|u|2αdx.
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Since Hm
0 (Ω) ↪→ L2α(Ω),

I(u)

Φ(u)
≤ 2α

m0 ‖u‖2α
(Kδ2|Ω|+ ε

∫
Ω

|u|2αdx) ≤ 2αKδ2|Ω|
m0 ‖u‖2α

+
2αεS2α

2α

m0
.

This proves (14). From (10) and (14), we obtain

max

{
lim sup
‖u‖→∞

I(u)

Φ(u)
, lim sup

u→0

I(u)

Φ(u)

}
≤ 0.

Thus all the conditions of Theorem 4 are satisfied. Moreover, the functional Λ(u) =
∫

Ω
G(x, u)dx, where

G(x, t) =
∫

Ω
g(x, s)dx, is continuously Gateaux differentiable in Hm

0 (Ω). It is easy to see that Λ has compact
derivative given by

〈Λ′(u), v〉 =

∫
Ω

g(x, u)vdx.

By Theorem 4 there exists η > 0 such that for every λ ∈ K there exists µ∗ > 0 such that for each µ ∈ [0, µ∗],
the functional Φ− λI − µΛ has at least three critical points whose norm is less than η. Hence, (1) has three
weak solutions. This completes the proof.
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