Existence Of Multiple Solutions For A Kirchhoff Type Equation Involving Polyharmonic Operator With Exponential Growth*

Gaurav Dwivedi ${ }^{\dagger}$

Received 3 August 2020

Abstract

In this article, we establish the existence of three weak solutions for a nonlinear Kirchhoff type elliptic equation involving polyharmonic operator by using variational methods. We assume that the nonlinearity satisfies subcritical exponential growth condition. We use a critical point theorem by B. Ricceri to prove our result.

1 Introduction

In this paper, we establish the existence of solutions to the problem:

$$
\begin{array}{ll}
M\left(\int_{\Omega}\left|\nabla^{m} u\right|^{2} d x\right)(-\Delta)^{m} u=\lambda f(x, u)+\mu g(x, u) & \text { in } \Omega, \\
u=\nabla u=\ldots=\nabla^{m-1} u=0 & \text { on } \partial \Omega, \tag{1}
\end{array}
$$

where $\Omega \subseteq \mathbb{R}^{2 m}, m \geq 1$ is a smooth and bounded domain, $f, g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions having subcritical exponential growth, μ, λ are parameters. We assume that $M:[0, \infty) \rightarrow \mathbb{R}$ is a continuous, non-decreasing function satisfying the following hypothesis:
(M1) There exist $m_{0}>0, \alpha>1$ and $M(t) \geq m_{0} t^{\alpha-1}$ for all $t \in[0, \infty)$.
Moser-Trudinger inequality is an important tool for the study of second order elliptic equations with exponential nonlinearity. The classical Moser-Trudinger inequality [16, 18] reads as follows:

Theorem 1 Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded domain, $u \in W_{0}^{1, n}(\Omega), n \geq 2$ and

$$
\int_{\Omega}|\nabla u(x)|^{n} d x \leq 1
$$

Then there exists a constant C, which depends on n only such that

$$
\int_{\Omega} \exp \left(\alpha u^{p}\right) d x \leq C|\Omega|,
$$

where

$$
p=\frac{n}{n-1}, \alpha \leq \alpha_{n}=n \omega_{n}^{\frac{1}{n-1}}
$$

and ω_{n-1} is the $(n-1)$-dimensional surface area of the unit sphere.
The integral on the left actually is finite for any positive α, but if $\alpha>\alpha_{n}$ it can be made arbitrarily large by an appropriate choice of u.

[^0]Moser-Trudinger inequality was extended to higher order Sobolev spaces by D. R. Adams [1]. The Adams' inequality is as follows:

Theorem 2 Let Ω be a bounded and open subset of \mathbb{R}^{n}. If m is a positive integer less than n, then there exists a constant $C(n, m)$ such that for all $u \in C^{m}\left(\mathbb{R}^{n}\right)$ with support contained in Ω and $\left\|\nabla^{m} u\right\|_{p} \leq 1, p=\frac{n}{m}$, we have

$$
\begin{equation*}
\frac{1}{|\Omega|} \int_{\Omega} \exp \left(\beta|u(x)|^{\frac{n}{n-m}}\right) d x \leq C(n, m) \tag{2}
\end{equation*}
$$

for all $\beta \leq \beta(n, m)$ where

$$
\beta(n, m)= \begin{cases}\frac{n}{w_{n-1}}\left[\frac{\pi^{n / 2} 2^{m} \Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{n-m+1}{2}\right)}\right]^{p^{\prime}} & \text { when } m \text { is odd } \\ \frac{n}{w_{n-1}}\left[\frac{\pi^{n / 2} 2^{m} \Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{n-m}{2}\right)}\right]^{p^{\prime}} & \text { when } m \text { is even }\end{cases}
$$

and $p^{\prime}=\frac{p}{p-1}$. Furthermore, for any $\beta>\beta(n, m)$, the integral can be made as large as desired, where

$$
\nabla^{m} u= \begin{cases}\triangle^{\frac{m}{2}} u & \text { when } m \text { is even } \\ \nabla \triangle^{\frac{m-1}{2}} u & \text { when } m \text { is odd }\end{cases}
$$

In case of $n=2 m, \beta(2 m, m)=2^{2 m} \pi^{m} \Gamma(m+1)$ for all m. Throughout this paper, we denote the constant $C(2 m, m)$ by C_{0}.

For some applications of the Adams' inequality to polyharmonic equations with exponential nonlinearities, we refer to [11, 4]. N. Lam and G. Lu [12] established the existence of a nontrivial solution to the following polyharmonic problem:

$$
\begin{array}{ll}
(-\Delta)^{m} u=f(x, u) & \text { in } \Omega \\
u=\nabla u=\ldots=\nabla^{m-1} u=0 & \text { on } \partial \Omega
\end{array}
$$

They assume that f satisfies subcritical and critical growth condition and employed mountain pass theorem to establish their result. S. Goyal and K. Sreenadh [8] used Nehari manifold and fibering maps to obtain existence of multiple solutions to the problem:

$$
\begin{array}{ll}
\Delta_{\frac{n}{m}}^{m} u=\lambda h(x)|u|^{q-1} u+u|u|^{p} e^{|u|^{\beta}} & \text { in } \Omega \\
u=\nabla u=\ldots=\nabla^{m-1} u=0 & \text { on } \partial \Omega
\end{array}
$$

where $\Omega \subseteq \mathbb{R}^{n}, n \geq 2 m, 0<q<\frac{n}{m}-1<p+1$ and $\beta \in\left(1, \frac{n}{n-m}\right]$.
Problem (1) is related to the higher order analogue of Kirchoff equation [10],

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{\rho_{0}}{h}+\frac{E}{2 L} \int_{\Omega}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Mishra et al. [15] used mountain pass theorem to establish the existence of a nontrivial solution to the following Kirchhoff type problem:

$$
\begin{array}{ll}
-M\left(\left|\nabla^{m} u\right|^{\frac{n}{m}}\right) \Delta_{\frac{n}{m}}^{m} u=\frac{f(x, u)}{|x|^{\alpha}} & \text { in } \Omega \\
u=\nabla u=\ldots=\nabla^{m-1} u=0 & \text { on } \partial \Omega
\end{array}
$$

They assumed that f grows like $e^{\frac{n}{n-m}}$ and $0<\alpha<n \geq 2 m$. Mishra et al. [15] also established the existence result for the following Kirchhoff type problem:

$$
\begin{array}{ll}
-M\left(\left\lvert\, \nabla^{m} u \frac{n}{m}\right.\right) \Delta_{\frac{n}{m}}^{m} u=\lambda h(x)|u|^{q-1} u+u|u|^{p} e^{|u|^{\beta}} & \text { in } \Omega \\
u=\nabla u=\ldots=\nabla^{m-1} u=0 & \text { on } \partial \Omega
\end{array}
$$

We also refer to $[3,7,9,20]$ and references cited therein for some more existence results for higher order Kirchoff type equations.

Several authors have used Ricceri's critical point theorem [17] to establish the existence and multiplicity results for elliptic boundary value problems. For instance, see $[2,5,6,13,14]$ and references therein. In this article, we use Ricceri's critical point theorem [17] to prove the existence of three weak solutions to (1). The main result of the paper is as follows;

Theorem 3 Let $f \in \mathcal{F}$ be such that
(F1) $\sup _{u \in H_{0}^{m}(\Omega)} \int_{\Omega} F(x, u) d x>0 ;$
(F2) $\lim \sup _{t \rightarrow 0} \frac{F(x, t)}{|t|^{2 \alpha}} \leq 0 ;$
(F3) $\lim \sup _{|t| \rightarrow \infty} \frac{F(x, t)}{|t|^{2 \alpha}} \leq 0$.
Set

$$
a=\frac{1}{2} \inf \left\{\frac{\hat{M}\left(\|u\|^{2}\right)}{\int_{\Omega} F(x, u) d x}: u \in H_{0}^{m}(\Omega), \int_{\Omega} F(x, u) d x>0\right\}
$$

Then for each compact interval $K \subseteq(a,+\infty)$, there exists a number $\eta>0$ with the following property: for every $\lambda \in K$ and $g \in \mathcal{F}$ there exists $\mu^{*}>0$ such that for each $\mu \in\left[0, \mu^{*}\right]$, (1) has at least three weak solutions having norms less than η.

The plan of the paper is as follows: In Section 2, we state some definitions and preliminary results which would be used to prove the main theorem. In Section 3, we prove Theorem 3.

2 Preliminaries

In this section, we describe some notations, state some definitions and preliminary results. We say that a function $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ has subcritical exponential growth if

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \frac{|f(x, u)|}{\exp \left(\alpha u^{2}\right)}=0, \forall \alpha>0 \text { and a.e. in } \Omega \tag{3}
\end{equation*}
$$

The growth is called critical if there exists $\alpha^{*}>0$ such that

$$
\begin{aligned}
& \lim _{|u| \rightarrow \infty} \frac{|f(x, u)|}{\exp \left(\alpha u^{2}\right)}=0 \text { for all } \alpha>\alpha^{*} \text { and a.e. in } \Omega \\
& \lim _{|u| \rightarrow \infty} \frac{|f(x, u)|}{\exp \left(\alpha u^{2}\right)}=\infty \text { for all } \alpha<\alpha^{*} \text { and a.e. in } \Omega
\end{aligned}
$$

Definition 1 We denote by \mathcal{F} a class of functions $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ each of which satisfies the following properties:

1. f is Carathéodory function.
2. f has subcritical exponential growth, i.e., (3) is satisfied.
3. For every $B>0, \sup _{|t| \leq B}|f(x, t)| \in L^{\infty}(\Omega)$.

Definition 2 Suppose X is a Banach space. We denote by \mathcal{L}_{X} the class of functionals $L: X \rightarrow \mathbb{R}$ with the property: If $u_{n} \rightharpoonup u$ weakly in X and $\liminf _{n \rightarrow \infty} L\left(u_{n}\right) \leq L(u)$, then $\left\{u_{n}\right\}$ has a convergent subsequence converging to u.

Next, we recall the statement of Ricerri critical point theorem [17]:
Theorem 4 Let X be a separable and reflexive real Banach space. Suppose $\Phi, I: X \rightarrow \mathbb{R}$ are C^{1} functionals satisfying the following conditions:

1. Φ is coercive, sequentially weakly lower semicontinuous and is of class \mathcal{L}_{X}.
2. Φ is bounded on each bounded subset of X.
3. Φ^{\prime} admits a continuous inverse on X^{*}.
4. Φ has a strict local minimum at u_{0} with $\Phi\left(u_{0}\right)=I\left(u_{0}\right)=0$.
5. I^{\prime} is compact.
6. $\max \left\{\limsup _{\|u\| \rightarrow \infty} \frac{I(u)}{\Phi(u)}, \lim \sup _{u \rightarrow u_{0}} \frac{I(u)}{\Phi(u)}\right\} \leq 0$ and $\sup _{u \in X} \min \{\Phi(u), I(u)\}>0$.

Set

$$
a:=\inf \left\{\frac{\Phi(u)}{I(u)}: u \in X, \min \{\Phi(u), I(u)\}>0\right\}
$$

Then for each compact interval $K \subseteq(a,+\infty)$, there exists a number $\eta>0$ with the following property: for every $\lambda \in K$ and every C^{1} functional $J: X \rightarrow \mathbb{R}$ with compact derivative, there exists $\mu^{*}>0$ such that for each $\mu \in\left[0, \mu^{*}\right]$,

$$
\Phi^{\prime}(u)=\lambda I^{\prime}(u)+\mu J^{\prime}(u)
$$

has at least three solutions having norm less than η.
Throughout this paper, we consider the Sobolev space $H_{0}^{m}(\Omega)$ equipped with the norm

$$
\|u\|=\left(\int_{\Omega}\left|\nabla^{m} u\right|^{2} d x\right)^{\frac{1}{2}}
$$

By Sobolev embedding theorem, $H_{0}^{m}(\Omega)$ is continuously embedded into $L^{q}(\Omega)$ for every $q \geq 1$. Let S_{q} be the optimal constant of this embedding, then we have

$$
\|u\|_{q} \leq S_{q}\|u\|
$$

where $\|\cdot\|_{q}$ is the standard norm in L^{q} space. Next, we define weak solution of (1).
Definition 3 We say that $u \in H_{0}^{m}(\Omega)$ is a weak solution to (1) if

$$
M\left(\int_{\Omega}\left|\nabla^{m} u\right|^{2} d x\right) \int_{\Omega} \nabla^{m} u \nabla^{m} v d x-\lambda \int_{\Omega} f(x, u) v d x-\mu \int_{\Omega} g(x, u) v d x=0
$$

for every $v \in H_{0}^{m}(\Omega)$.
For a given $f \in \mathcal{F}$, define $F(x, t)=\int_{0}^{t} f(x, s) d s$. We also define the functionals $\gamma, \Phi, I: H_{0}^{m}(\Omega) \rightarrow \mathbb{R}$ by

$$
\begin{gathered}
\gamma(u)=\int_{\Omega}\left|\nabla^{m} u\right|^{2} d x \\
\Phi(u)=\frac{1}{2} \hat{M}(\gamma(u)), \text { where } \hat{M}(t)=\int_{0}^{t} M(s) d s
\end{gathered}
$$

and

$$
I(u)=\int_{\Omega} F(x, u) d x
$$

It is easy to see that Φ and I are of the class C^{1} and

$$
\begin{gathered}
\left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega} f(x, u) v d x \\
\left\langle\Phi^{\prime}(u), v\right\rangle=M\left(\int_{\Omega}\left|\nabla^{m} u\right|^{2} d x\right) \int_{\Omega} \nabla^{m} u \nabla^{m} v d x
\end{gathered}
$$

for all $u, v \in H_{0}^{m}(\Omega)$.

3 Proof of Theorem 3

To prove Theorem 3, we first prove some lemmas.
Lemma 1 If $f \in \mathcal{F}$, then the functional $H: H_{0}^{m}(\Omega) \rightarrow \mathbb{R}$ defined by $H(u)=\int_{\Omega} F(x, u(x)) d x$, where $F(x, t)=\int_{0}^{t} f(x, s) d s$ is C^{1} and $H^{\prime}: H_{0}^{m}(\Omega) \rightarrow\left(H_{0}^{m}(\Omega)\right)^{*}$ is compact. Here $\left(H_{0}^{m}(\Omega)\right)^{*}$ is the dual of $H_{0}^{m}(\Omega)$.
Proof. Since f satisfies subcritical growth condition (3), we have

$$
|f(x, t)| \leq C \exp \left(\kappa t^{2}\right)
$$

Then for every $u \in H_{0}^{m}(\Omega)$, and almost every $x \in \Omega$,

$$
|F(x, u)| \leq C|u| \exp \left(\kappa u^{2}\right)
$$

By Adams inequality and Holder's inequality, H is well defined on $H_{0}^{m}(\Omega)$. Next, we show that H is Gateaux differentiable with derivative

$$
\begin{equation*}
\left\langle H^{\prime}(u), v\right\rangle=\int_{\Omega} f(x, u) v d x, \quad \forall u, v \in H_{0}^{m}(\Omega) \tag{4}
\end{equation*}
$$

For $u, v \in H_{0}^{m}(\Omega)$ and $t \in(0,1)$, we have

$$
\frac{H(u+t v)-H(u)}{t}=\int_{\Omega} \frac{F(x, u+t v)-F(x, u)}{t} d x=\int_{\Omega} f(x, u+t \tau(x) v(x)) v(x) d x
$$

where τ is a measurable function taking values in $[0,1]$. This gives

$$
\lim _{t \rightarrow 0} \frac{H(u+t v)-H(u)}{t}=\int_{\Omega} f(x, u) v d x
$$

This proves (4). Next, we show that if $\left\{u_{n}\right\}$ is a bounded sequence in $H_{0}^{m}(\Omega)$, then

$$
\sup _{n} \int_{\Omega}\left|f\left(x, u_{n}\right)\right|^{q} d x<\infty \text { for all } q>0
$$

Since $\left\{u_{n}\right\}$ is bounded, there exists $L>0$ such that $\left\|u_{n}\right\| \leq L, \forall n \geq 1$. Since f satisfies (3),

$$
f\left(x, u_{n}\right) \leq C \exp \left(\kappa|u|^{2}\right)
$$

for some constant $C>0$.

$$
\begin{aligned}
\int_{\Omega}|f(x, u)|^{q} d x & \leq \int_{\Omega} C^{q} \exp \left(\kappa q\left|u_{n}\right|^{2}\right) d x \\
& =C^{q} \int_{\Omega} \exp \left(\kappa q\left\|u_{n}\right\|^{2}\left(\frac{\left|u_{n}\right|}{\left\|u_{n}\right\|}\right)^{2}\right) d x \\
& \leq C^{q} \int_{\Omega} \exp \left(\kappa q L^{2}\left(\frac{\left|u_{n}\right|}{\left\|u_{n}\right\|}\right)^{2}\right) d x
\end{aligned}
$$

By Theorem 2 if $0<\kappa<\frac{\beta(2 m, m)}{q L^{2}}$, then

$$
\sup _{n} \int_{\Omega}\left|f\left(x, u_{n}\right)\right|^{q} d x<\infty
$$

Now, suppose $\left\{u_{n}\right\}$ is a bounded sequence in $H_{0}^{m}(\Omega)$, then there exists $u \in H_{0}^{m}(\Omega)$ such that, upto a subsequence, $u_{n} \rightarrow u$ a.e. in Ω. We show that, for every $q>0, f\left(\cdot, u_{n}(\cdot)\right) \rightarrow f(\cdot, u(\cdot))$ in $L^{q}(\Omega)$. Indeed, since $f\left(\cdot, u_{n}(\cdot)\right) \rightarrow f(\cdot, u(\cdot))$ a.e. in Ω, for a fixed $p>1$ there exists a constant $C_{1}>0$ such that

$$
\int_{\Omega}\left|f\left(x, u_{n}(x)\right)\right|^{p q} d x \leq C_{1}
$$

Let $\epsilon>0$ be arbitrary and $\Omega^{\prime} \subset \Omega$ be a measurable subset. By Hölder's inequality

$$
\int_{\Omega^{\prime}}\left|f\left(x, u_{n}\right)\right|^{q} d x \leq|\Omega|^{\frac{1}{p^{\prime}}}\left(\int_{\Omega}\left|f\left(x, u_{n}\right)\right|^{p q} d x\right)^{\frac{1}{p}} \leq C_{1}^{\frac{1}{p}}|\Omega|^{\frac{1}{p^{\prime}}}<\epsilon
$$

provided $|\Omega|$ is small. Here $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. By Vitali convergence theorem, $f\left(\cdot, u_{n}(\cdot)\right) \rightarrow f(\cdot, u(\cdot))$ in $L^{q}(\Omega)$.
Now, we show that $H^{\prime}: H_{0}^{m}(\Omega) \rightarrow\left(H_{0}^{m}(\Omega)\right)^{*}$ is continuous and compact. Let $u_{n} \rightarrow u$ in $H_{0}^{m}(\Omega)$. Then, $\left\{u_{n}\right\}$ is bounded and $u_{n} \rightarrow u$ a.e. in Ω. For some $v \in H_{0}^{m}(\Omega)$ with $\|v\| \leq 1$, we have

$$
\begin{aligned}
\left|\left\langle H^{\prime}\left(u_{n}\right)-H^{\prime}(u), v\right\rangle\right| & \leq\left(\int_{\Omega}\left|f\left(x, u_{n}\right)-f(x, u)\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}|v|^{2} d x\right)^{\frac{1}{2}} \\
& \leq C\|v\|\left(\int_{\Omega}\left|f\left(x, u_{n}\right)-f(x, u)\right|^{2} d x\right)^{\frac{1}{2}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus H^{\prime} is continuous. Similarly, we can show that H^{\prime} is compact.
Lemma 2 1. The functional Φ is sequentially weak lower semicontinuous.
2. Φ belongs to the class \mathcal{L}_{X}.

Proof. (i). Let $\left\{u_{n}\right\}$ be a sequence in $H_{0}^{m}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $H_{0}^{m}(\Omega)$. Then

$$
\begin{equation*}
\int_{\Omega}\left|\nabla^{m} u\right|^{2} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \tag{5}
\end{equation*}
$$

Since the function $t \mapsto \hat{M}(t)$ is continuous and non-decreasing,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \Phi\left(u_{n}\right) & =\frac{1}{2} \liminf _{n \rightarrow \infty} \hat{M}\left(\int_{\Omega}\left|\nabla^{m} u_{n}\right|^{2} d x\right) \\
& =\frac{1}{2} \hat{M}\left(\liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla^{m} u_{n}\right|^{2} d x\right) \\
& \geq \frac{1}{2} \hat{M}\left(\int_{\Omega}\left|\nabla^{m} u\right|^{2} d x\right)=\Phi(u)
\end{aligned}
$$

Thus Φ is sequentially weak lower semicontinuous.
(ii). It is easy to see that $\gamma(u) \in L_{X}$. Since \hat{M} is continuous and non-decreasing, we deduce that $\Phi \in \mathcal{L}_{X}$.

Proof of Theorem 3. By Lemma 1, I is well defined and continuously Gateaux differentiable function with compact derivative $\left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega} f(x, u) v d x, \forall u, v \in H_{0}^{m}(\Omega)$. By Lemma 2, Φ is sequentially weakly lower semicontinuous functional which belongs to the class \mathcal{L}_{X}. Next, we show that Φ is coercive.

$$
\Phi(u)=\frac{1}{2} \hat{M}\left(\|u\|^{2}\right) \geq \frac{1}{2}\|u\|^{2 \alpha}
$$

Thus Φ is coercive. It is easy to see that $u_{0}=0$ is only global minimum of Φ and $\Phi(0)=0=I(0)$. Moreover, if $\|u\| \leq r$ then $\Phi(u) \leq \frac{1}{2} \hat{M}\left(r^{n}\right)$ and hence Φ is bounded on each bounded subset of $H_{0}^{m}(\Omega)$.

Next, we show that the operator $\Phi^{\prime}: H_{0}^{m}(\Omega) \rightarrow\left(H_{0}^{m}(\Omega)\right)^{*}$ is invertible on $H_{0}^{m}(\Omega)$. In view of MintyBrowder theorem [19, Theorem 26 A], it is enough to show that Φ is strictly convex, hemicontinuous and coercive. Let $u, v \in H_{0}^{m}(\Omega)$ with $u \neq v$ and $t \in[0,1]$. Since the operator $\gamma^{\prime}: H_{0}^{m}(\Omega) \rightarrow\left(H_{0}^{m}(\Omega)\right)^{*}$ given by

$$
\left\langle\gamma^{\prime}(u), v\right\rangle=\int_{\Omega} \nabla^{m} u \nabla^{m} v d x
$$

is strictly monotone, γ is strictly convex, see [19, Proposition 25.10]. Furthermore, as M is non-decreasing, the function \hat{M} is convex in $[0,+\infty)$. Thus

$$
\hat{M}(\gamma(t u+(1-t) v)<\hat{M}(t \gamma(u)+(1-t) \gamma(v)) \leq t \hat{M}(\gamma(u))+(1-t) \hat{M}(\gamma(v))
$$

This shows that Φ^{\prime} is strictly monotone. For any $u \in H_{0}^{m}(\Omega)$, by (M1), we see that

$$
\frac{\left\langle\Phi^{\prime}(u), u\right\rangle}{\|u\|}=\frac{M(\gamma(u))\|u\|^{2}}{\|u\|} \geq m_{0}\|u\|^{2 \alpha-1}
$$

Thus Φ^{\prime} is coercive. By using standard arguments, we can conclude that Φ^{\prime} is hemicontinuous. By Theorem [19, Theorem 26-A] there exists $\Phi^{\prime-1}:\left(H_{0}^{m}(\Omega)\right)^{*} \rightarrow H_{0}^{m}(\Omega)$ and $\Phi^{\prime-1}$ is bounded. Now, we show that $\Phi^{\prime-1}$ is continuous. Let $\left\{v_{n}\right\} \subseteq\left(H_{0}^{m}(\Omega)\right)^{*}$ be a sequence converging to $v \in\left(H_{0}^{m}(\Omega)\right)^{*}, u_{n}=\Phi^{\prime-1}\left(v_{n}\right)$ and $u=\Phi^{\prime-1}(v)$. Then $\left\{u_{n}\right\}$ is bounded in $H_{0}^{m}(\Omega)$ and upto a subsequence $u_{n} \rightharpoonup u_{0}$ weakly in $H_{0}^{m}(\Omega)$. Since $v_{n} \rightarrow v$, it is easy to see that

$$
\lim _{n \rightarrow \infty}\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}-u_{0}\right\rangle=\lim _{n \rightarrow \infty}\left\langle v_{n}, u_{n}-u_{0}\right\rangle=0
$$

which implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left(\int_{\Omega}\left|\nabla^{m} u_{n}\right|^{2} d x\right) \int_{\Omega} \nabla^{m} u_{n} \nabla^{m}\left(u_{n}-u_{0}\right) d x=0 \tag{6}
\end{equation*}
$$

Since $\left\{u_{n}\right\}$ is bounded in $H_{0}^{m}(\Omega)$, we have

$$
\int_{\Omega}\left|\nabla^{m} u_{n}\right|^{2} d x \rightarrow b \geq 0 \text { as } n \rightarrow \infty
$$

If $b=0$, then $\left\{u_{n}\right\}$ converges to $u_{0}=0$ in $H_{0}^{m}(\Omega)$ and the proof is complete. If $b>0$,

$$
M\left(\int_{\Omega}\left|\nabla^{m} u_{n}\right|^{2} d x\right) \rightarrow M(b) \text { as } n \rightarrow \infty
$$

By (M1),

$$
\begin{equation*}
M\left(\int_{\Omega}\left|\nabla^{m} u_{n}\right|^{2} d x\right) \geq C>0 \tag{7}
\end{equation*}
$$

From (6) and (7),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \nabla^{m} u_{n} \nabla^{m}\left(u_{n}-u_{0}\right) d x=0 \tag{8}
\end{equation*}
$$

Since $u_{n} \rightharpoonup u_{0}$ weakly in $H_{0}^{m}(\Omega)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \nabla^{m} u_{0} \nabla^{m}\left(u_{n}-u_{0}\right) d x=0 \tag{9}
\end{equation*}
$$

From (8) and (9), $u_{n} \rightarrow u_{0}$ in $H_{0}^{m}(\Omega)$. Since Φ^{\prime} is continuous and injective, $u_{n} \rightarrow u$ in $H_{0}^{m}(\Omega)$ and hence $\Phi^{\prime-1}$ is continuous. In the following, we prove that

$$
\begin{equation*}
\limsup _{u \rightarrow 0} \frac{I(u)}{\Phi(u)} \leq 0 \tag{10}
\end{equation*}
$$

By the hypothesis (H2), for every $\epsilon>0$, there exists $\delta_{1}>0$ such that for all $x \in \Omega$ and $|t| \leq \eta_{1}$,

$$
\begin{equation*}
F(x, t) \leq \epsilon|t|^{2 \alpha} \tag{11}
\end{equation*}
$$

Since $f \in \mathcal{F}$, for a fixed $\alpha>0$ and $q>2 \alpha$ there exists $C>0$ such that for every $x \in \Omega$ and $|t| \geq \delta_{1}$,

$$
\begin{equation*}
F(x, t) \leq C|t|^{q} \exp \left(\alpha t^{2}\right) \tag{12}
\end{equation*}
$$

On combining (11) and (12), we obtain

$$
\begin{equation*}
F(x, t) \leq \epsilon|t|^{2 \alpha}+C|t|^{q} \exp \left(\alpha t^{2}\right) \tag{13}
\end{equation*}
$$

On using (13), (2) and Hölder's inequality

$$
\begin{aligned}
I(u) & =\int_{\Omega} F(x, u) d x \\
& \leq \int_{\Omega}\left(\epsilon|u|^{2 \alpha}+C|u|^{q} \exp \left(\alpha|u|^{2}\right)\right) d x \\
& \leq \epsilon \int_{\Omega}|u|^{2 \alpha} d x+C\left(\int_{\Omega} \exp \left(p \alpha\|u\|^{2}\left(\frac{|u|^{2}}{\|u\|^{2}}\right)\right)\right)^{\frac{1}{p}}\left(\int_{\Omega}|u|^{p^{\prime} q}\right)^{\frac{1}{p^{\prime}}} \\
& \leq \epsilon S_{2 \alpha}^{2 \alpha}\|u\|^{2 \alpha}+C\left(S_{p^{\prime} q}\right)^{q} C_{0}^{\frac{1}{p}}\|u\|^{q} \\
& \leq \frac{2 \epsilon \alpha}{m_{0}} S_{2 \alpha}^{2 \alpha} \Phi(u)+C\left(S_{p^{\prime} q}\right)^{q} C_{0}^{\frac{1}{p}}\left(\frac{2 \alpha}{m_{0}} \Phi(u)\right)^{\frac{q}{2 \alpha}}
\end{aligned}
$$

Then

$$
\frac{I(u)}{\Phi(u)} \leq \frac{2 \epsilon \alpha}{m_{0}} S_{2 \alpha}^{2 \alpha}+C\left(S_{p^{\prime} q}\right)^{q} C_{0}^{\frac{1}{p}}\left(\frac{2 \alpha}{m_{0}}\right)^{\frac{q}{2 \alpha}} \Phi(u)^{\frac{q-2 \alpha}{2 \alpha}}
$$

where $C_{0}=C(2 m, m)$ is defined in (2). Since $q>2 \alpha$ and $\Phi(u) \rightarrow 0$ as $u \rightarrow 0$, we see that

$$
\lim _{\|u\| \rightarrow 0} \frac{I(u)}{\Phi(u)} \leq 0
$$

Next, we show that

$$
\begin{equation*}
\limsup _{\|u\| \rightarrow \infty} \frac{I(u)}{\Phi(u)} \leq 0 \tag{14}
\end{equation*}
$$

By the assumptions (F3), for every $\epsilon>0$ there exists $\delta_{2}>0$ such that

$$
\begin{equation*}
F(x, t) \leq \epsilon|t|^{2 \alpha} \text { for every } x \in \Omega \text { and }|t|>\delta_{2} \tag{15}
\end{equation*}
$$

Since $f \in \mathcal{F}$, there exists $K>0$ such that for every $x \in \Omega$,

$$
\begin{equation*}
\sup _{|t| \leq \delta_{2}}|f(x, t)| \leq K \tag{16}
\end{equation*}
$$

On combining (15) and (16), we get

$$
F(x, t) \leq K \delta_{2}+\epsilon|t|^{2 \alpha} \text { for every } x \in \Omega \text { and } t \in \mathbb{R}
$$

Thus

$$
I(u) \leq K \delta_{2}|\Omega|+\epsilon \int_{\Omega}|u|^{2 \alpha} d x
$$

Since $H_{0}^{m}(\Omega) \hookrightarrow L^{2 \alpha}(\Omega)$,

$$
\frac{I(u)}{\Phi(u)} \leq \frac{2 \alpha}{m_{0}\|u\|^{2 \alpha}}\left(K \delta_{2}|\Omega|+\epsilon \int_{\Omega}|u|^{2 \alpha} d x\right) \leq \frac{2 \alpha K \delta_{2}|\Omega|}{m_{0}\|u\|^{2 \alpha}}+\frac{2 \alpha \epsilon S_{2 \alpha}^{2 \alpha}}{m_{0}}
$$

This proves (14). From (10) and (14), we obtain

$$
\max \left\{\limsup _{\|u\| \rightarrow \infty} \frac{I(u)}{\Phi(u)}, \limsup _{u \rightarrow 0} \frac{I(u)}{\Phi(u)}\right\} \leq 0
$$

Thus all the conditions of Theorem 4 are satisfied. Moreover, the functional $\Lambda(u)=\int_{\Omega} G(x, u) d x$, where $G(x, t)=\int_{\Omega} g(x, s) d x$, is continuously Gateaux differentiable in $H_{0}^{m}(\Omega)$. It is easy to see that Λ has compact derivative given by

$$
\left\langle\Lambda^{\prime}(u), v\right\rangle=\int_{\Omega} g(x, u) v d x
$$

By Theorem 4 there exists $\eta>0$ such that for every $\lambda \in K$ there exists $\mu^{*}>0$ such that for each $\mu \in\left[0, \mu^{*}\right]$, the functional $\Phi-\lambda I-\mu \Lambda$ has at least three critical points whose norm is less than η. Hence, (1) has three weak solutions. This completes the proof.

Acknowledgment. The author is supported by Science and Engineering Research Board, India under the grant number MTR/2018/000233. I would like to thank the referee for his/her suggestions.

References

[1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 128(1988), 385-398.
[2] N. T. Chung and H. Q. Toan, Multiple solutions for a class of p-Kirchhoff type equations via variational methods, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 109(2015), 247-256.
[3] F. Colasuonno and P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74(2011), 5962-5974.
[4] J. M. do Ó and A. C. Macedo, Adams type inequality and application for a class of polyharmonic equations with critical growth, Adv. Nonlinear Stud., 15(2015), 867-888.
[5] S. El Manouni and F. Faraci, Multiplicity results for some elliptic problems of n-Laplace type, Taiwanese J. Math., 16(2012), 901-911.
[6] F. Faraci and G. Smyrlis, Three solutions for a class of higher dimensional singular problems, NoDEA Nonlinear Differential Equations Appl., 23(2016), 14 pp.
[7] M. Ferrara, S. Khademloo and S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput., 234(2014), 316-325.
[8] S. Goyal and K. Sreenadh, The Nehari manifold for a quasilinear polyharmonic equation with exponential nonlinearities and a sign-changing weight function, Adv. Nonlinear Anal., 4(2015), 177-200.
[9] S. Heidarkhani, S. Khademloo and A. Solimaninia, Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem, Portugal. Math., 71(2014), 39-61.
[10] G. Kirchhoff, Vorlesungen über mathematische physik: mechanik, BG Teubner, 1876.
[11] O. Lakkis, Existence of solutions for a class of semilinear polyharmonic equations with critical exponential growth, Adv. Differential Equations, 4(1999), 877-906.
[12] N. Lam and G. Lu, Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth, Discrete Contin. Dyn. Syst, 32(2012), 2187-2205.
[13] C. Li and C.-L Tang, Three solutions for a Navier boundary value problem involving the p-biharmonic, Nonlinear Anal., 72(2010), 1339-1347.
[14] L. Li and C.-L Tang, Existence of three solutions for (p, q)-biharmonic systems, Nonlinear Anal., $73(2010), 796-805$.
[15] P. K. Mishra, S. Goyal and K. Sreenadh, Polyharmonic Kirchhoff type equations with singular exponential nonlinearities, Commun. Pure Appl. Anal., 15(2016), 1689-1717.
[16] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20(1971), 1077-1092.
[17] B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71(2009), 4151-4157.
[18] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17(1967), 473-483.
[19] E. Zeidler, Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators, Springer Science \& Business Media, 2013.
[20] L. Zhao and N. Zhang, Existence of solutions for a higher order Kirchhoff type problem with exponential critical growth, Nonlinear Anal., 132(2016), 214-226.

[^0]: *Mathematics Subject Classifications:35J30, 35J35, 35J61, 35J9.
 ${ }^{\dagger}$ Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani, Jhunjhunu, Rajasthan, India

