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Abstract

This paper is concerned with the following semi-linear Moore-Gibson-Thompson equation, namely{
uttt + utt −∆Hu−∆Hut = |u|p, η ∈ H, t > 0,

u(0, η) = u0(η) , ut(0, η) = u1(η), utt(0, η) = u2(η), η ∈ H,

where p > 1, and ∆H is the Kohn-Laplace operator on the (2n + 1)-dimensional Heisenberg group H.
We intend to apply the method of test function to establish the non-existence of global weak solutions.
Then, this result is extended to the case of 2× 2-system of the same type.

1 Introduction

The main goal of this paper is to discuss the non-existence of global weak solutions to the following semi-linear
Moore-Gibson-Thompson equation{

uttt + utt −∆Hu−∆Hut = |u|p, η ∈ H, t > 0,

u(0, η) = u0(η), ut(0, η) = u1(η), utt(0, η) = u2(η), η ∈ H,
(1)

where p > 1, and ∆H is the Kohn-Laplace operator on the (2n+ 1)-dimensional Heisenberg group H. Then
we extend our analysis to the following 2× 2-system of the same type,

uttt + utt −∆Hu−∆Hut = |v|q, η ∈ H, t > 0,

vttt + vtt −∆Hv −∆Hvt = |u|p, η ∈ H, t > 0,

u(0, η) = u0(η), ut(0, η)) = u1(η), utt(0, η) = u2(η), η ∈ H,

v(0, η) = v0(η), vt(0, η) = v1(η), vtt(0, η) = v2(η), η ∈ H.

(2)

Our article is motivated by the paper of W. Chen and A. Palmieri [8] which deals with the blow-up of
solutions for the following semi-linear Cauchy problem for MGT equation in the conservative case with
nonlinearity of derivative type, namely

βuttt + utt −∆u− β∆ut = |ut|p, x ∈ IRn, t > 0,

(u, ut, utt)(0, x) = ε(u0, u1, u2)(x), x ∈ IRn,

where p > 1 and ε is a positive parameter describing the size of initial data. More precisely, they proved
that there exists a positive constant ε0 such that for any ε ∈ (0, ε0] the solution u blows up in finite time.
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Furthermore, the upper bound estimate for the lifespan

T (ε) ≤


Cε−(

1
p−1−

n−1
2 )−1 if 1 < p < pGla(n),

eCε
−(p−1)

, if p = pGla(n),

holds, where C > 0 is a constant independent of ε and pGla(n) = n+1
n−1 is the so called Glassey exponent. The

MGT was previously analyzed by several authors from a different point of view. We can mention, among
others, the works ([1], [8], [7]) for a variety of problems related to this equations. Recently, the critical
exponent to the following structurally damped wave equation with the power nonlinearity |ut|p:{

utt −∆u+ µ(−∆)
α
2 ut = |ut|p, x ∈ IRn,

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ IRn,
(3)

has been studied by Tuan Anh Dao and Ahmad Z. Fino [3]. It was shown in [3] that if

1 < p ≤ 1 +
α̃

n
where α̃ = min{1, α},

then, there is no global (in time) weak solution to (3). Very recently, Vladimir Georgiev and Alessandro
Palmieri [9] investigated the non-existence of global (in time) solutions to the following semi-linear Cauchy
problem {

ut −∆Hu = |u|p, η ∈ H, t > 0,

u(0, η) = εu0(η), η ∈ H,
(4)

where p > 1 and ε > 0 is a parameter describing the smallness of the data. It was shown that if

1 < p ≤ pFuj (Q) = 1 +
2

Q
, where Q = 2n+ 2,

and

u0 ∈ L1(H) satisfies lim inf
R→∞

∫
DR

u0(η)dη > 0,

where DR = Bn(R)×Bn(R)× [−R2, R2], and Bn(R) denotes the ball in IRn around the origin with radius
R, then, there exists no global in time weak solution to (4). Let us underline that, to our knowledge, the
MGT equation has not been widely investigated on Heisenberg group. For this reason, motivated by the
above contributions, in particular by [9], our goal in this paper is to obtain suffi cient conditions for the
non-existence of global solutions to problems (1) and (2). For more details on Heisenberg groups and partial
differential equations in Heisenberg groups, we refer the reader to ([2], [4], [5], [6]) and the references therein.
First, for the sake of the reader, we give some known facts about the Heisenberg group H and the operator∆H.

The Heisenberg group H whose points will be denoted by η = (x, y, τ), is the Lie group (R2n+1; ◦) with
the non-commutative group operation ◦ defined by

η ◦ η′ = (x+ x′, y + y′, τ + τ ′ + 2(x.y′ − x′.y)),

for all η = (x, y, τ), η′ = (x′, y′, τ ′) ∈ Rn × Rn × R, where . denotes the standard scalar product in Rn. This
group operation endows H with the structure of a Lie group.
The Laplacian ∆H over H is obtained from the vector fields Xi = ∂

∂xi
+ 2yi

∂
∂τ and Yi = ∂

∂yi
− 2xi

∂
∂τ , by

∆H =

n∑
i=1

(
X2
i + Y 2i

)
.
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Observe that the vector field T = ∂
∂τ does not appear in the equality above. This fact makes us presume

a "loss of derivative" in the variable τ . The compensation comes from the relation

[Xi, Yj ] = −4T, i, j ∈ 1, 2, 3, ...., n.

The relation above proves thatH is a nilpotent Lie group of order 2. Explicit computation gives the expression

∆H =

n∑
i=1

(
∂2

∂x2i
+

∂2

∂y2i
+ 4yi

∂2

∂xi∂τ
− 4xi

∂2

∂yi∂τ
+ 4(x2i + y2i )

∂2

∂τ2

)
.

A natural group of dilatations on H is given by

δλ(η) = (λx, λy, λ2τ), λ > 0,

whose Jacobian determinant is λQ, where Q = 2n+ 2 is the homogeneous dimension of H. The operator ∆H
is a degenerate elliptic operator. It is invariant with respect to the left translation of H and homogeneous
with respect to the dilations δλ. More precisely, we have

∆H(u(η ◦ η′)) = ∆Hu(η ◦ η′), ∆H(u ◦ δλ) = λ2(∆Hu) ◦ δλ, for all η, η′ ∈ H.

The natural distance from η to the origin is introduced by Folland and Stein, see [4]

|η|H =

τ2 +

(
n∑
i=1

(x2i + y2i )

)2 1
4

.

Before stating our main results, we collect some preliminary knowledge needed in our proof. Let us set
HT = (0, T )×H, and H = (0,∞)×H.

Definition 1 (Weak solution for (1)) Let T > 0, p > 1, and (u0, u1, u2) ∈
(
L1(H)

)3
. We say that

u ∈ ILploc(HT ) is a local weak solution to (1) on HT if∫
HT
|u(t, η)|pϕ(t, η)dηdt+

∫
H

(u1(η) + u2(η))ϕ(0, η)dη −
∫
H
u0(η)∆Hϕ(0, η)dη

= −
∫
HT

u(t, η)ϕttt(t, η)dηdt+

∫
HT

u(t, η)ϕtt(t, η)dηdt−
∫
HT

u(t, η)∆Hϕ(t, η)dηdt

+

∫
HT

u(t, η)∆Hϕt(t, η)dηdt, (5)

for any test function ϕ ∈ C∞0 ([0,∞)×H) such that ϕ(T, η) = ϕt(T, η) = ϕtt(T, η) = 0 for all η ∈ H. If
T =∞, we say that u is a global weak solution to (1).

Definition 2 (Weak solution for (2)) Let p, q > 1 and T > 0. We say that (u, v) is a weak solution to
the problem (2) if (u, v) ∈ ILploc(HT )× ILqloc(HT ) and satisfies the equations∫

HT
|v(t, η)|qϕ(t, η)dηdt+

∫
H

(u1(η) + u2(η))ϕ(0, η)dη −
∫
H
u0(η)∆Hϕ(0, η)dη

= −
∫
HT

u(t, η)ϕttt(t, η)dηdt+

∫
HT

u(t, η)ϕtt(t, η)dηdt−
∫
HT

u(t, η)∆Hϕ(t, η)dηdt

+

∫
HT

u(t, η)∆Hϕt(t, η)dηdt, (6)
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and ∫
HT
|u(t, η)|pϕ(t, η)dηdt+

∫
H

(v1(η) + v2(η))ϕ(0, η)dη −
∫
H
v0(η)∆Hϕ(0, η)dη

= −
∫
HT

v(t, η)ϕttt(t, η)dηdt+

∫
HT

v(t, η)ϕtt(t, η)dηdt−
∫
HT

v(t, η)∆Hϕ(t, η)dηdt

+

∫
HT

v(t, η)∆Hϕt(t, η)dηdt, (7)

for any test function ϕ ∈ C∞0 ([0,∞)×H) such that ϕ(T, η) = ϕt(T, η) = ϕtt(T, η) = 0 for all η ∈ H. If
T =∞, we say that (u, v) is a global weak solution to (2).

Now, we are ready to state the main results of this paper.

Theorem 1 Let (u0, u1, u2) ∈ L1(H)× L1(H)× L1(H) satisfying the following condition:∫
H

(u1(η) + u2(η)) dη > 0. (8)

If

1 < p ≤ 1 +
2

Q− 1
, (9)

then there is no global (in time) weak solution to problem (1).

Theorem 2 We assume that (u0, u1, u2) ∈
(
L1(H)

)3
and (v0, v1, v2) ∈

(
L1(H)

)3
satisfying the following

conditions: ∫
H

(u1(η) + u2(η)) dη > 0 and
∫
H

(v1(η) + v2(η)) dη > 0. (10)

If

1 < pq ≤ 1 +
2

Q− 1
max {p+ 1, q + 1} , (11)

then there is no global (in time) weak solution to (2).

The proofs of our main results are given in the next section.

2 Proofs

In this section, we give the proofs of Theorems 1 and 2.

Remark 1 Throughout, C denotes a positive constant, whose value may change from line to line.

2.1 Proof of Theorem 1

Proof. Let u be a global weak solution to (1), then for any regular test function ϕ, one has∫
H
|u(t, η)|pϕ(t, η)dηdt+

∫
H

(u1(η) + u2(η))ϕ(0, η)dη −
∫
H
u0(η)∆Hϕ(0, η)dη

≤
∫
H
|u(t, η)||ϕttt(t, η)|dηdt+

∫
H
|u(t, η)||ϕtt(t, η)|dηdt+

∫
H
|u(t, η)||∆Hϕ(t, η)|dηdt

+

∫
H
|u(t, η)||∆Hϕt(t, η)|dηdt = J1 + J2 + J3 + J4.

(12)
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Applying the following ε-Young inequality

ab ≤ εap + Cεb
p′ , a, b, ε, Cε > 0, p > 1,

1

p
+

1

p′
= 1,

we get estimate for J1 as follows:

|J1| ≤
∫
H
|u(t, η)||ϕttt(t, η)|dηdt =

∫
H
|u(t, η)|ϕ

1
p (t, η)ϕ−

1
p (t, η)|ϕttt(t, η)|dηdt

≤ ε
∫
H
|u(t, η)|pϕ(t, η)dηdt+ Cε

∫
H
ϕ−

1
p−1 (t, η)|ϕttt(t, η)|

p
p−1 dηdt.

(13)

Similarly, we have

|J2| ≤
∫
H
|u(t, η)||ϕtt(t, η)|dηdt =

∫
H
|u(t, η)|ϕ

1
p (t, η)ϕ−

1
p (t, η)|ϕtt(t, η)|dηdt

≤ ε
∫
H
|u(t, η)|pϕ(t, η)dηdt+ Cε

∫
H
ϕ−

1
p−1 (t, η)|ϕtt(t, η)|

p
p−1 dηdt,

(14)

|J3| ≤
∫
H
|u(t, η)||∆Hϕ(t, η)|dηdt =

∫
H
|u(t, η)|ϕ

1
p (t, η)ϕ−

1
p (t, η)|∆Hϕ(t, η)|dηdt

≤ ε
∫
H
|u(t, η)|pϕ(t, η)dηdt+ Cε

∫
H
ϕ−

1
p−1 (t, η)|∆Hϕ(t, η)|

p
p−1 dηdt,

(15)

and

|J4| ≤
∫
H
|u(t, η)||∆Hϕt(t, η)|dηdt =

∫
H
|u(t, η)|ϕ

1
p (t, η)ϕ−

1
p (t, η)|∆Hϕt(t, η)|dηdt

≤ ε
∫
H
|u(t, η)|pϕ(t, η)dηdt+ Cε

∫
H
ϕ−

1
p−1 (t, η)|∆Hϕt(t, η)|

p
p−1 dηdt.

(16)

Combining the estimates from (12) to (16), one has∫
H
|u(t, η)|pϕ(t, η)dηdt+

∫
H

(u1(η) + u2(η))ϕ(0, η)dη

≤
(
A(p, ϕ) + B(p, ϕ) + C(p, ϕ) +D(p, ϕ) +

∫
H
|u0(η)||∆Hϕ(0, η)|dη

)
,

(17)

where

A(p, ϕ) =

∫
H
ϕ−

1
p−1 (t, η)|ϕttt(t, η)|

p
p−1 dηdt, (18)

B(p, ϕ) =

∫
H
ϕ−

1
p−1 (t, η)|ϕtt(t, η)|

p
p−1 dηdt, (19)

C(p, ϕ) =

∫
H
ϕ−

1
p−1 (t, η)|∆Hϕ(t, η)|

p
p−1 dηdt, (20)

and

D(p, ϕ) =

∫
H
ϕ−

1
p−1 (t, η)|∆Hϕt(t, η)|

p
p−1 dηdt. (21)

We introduce the following test function as defined in ([9])

ϕR(t, η) = φσ
(
τ2 + |x|4 + |y|4 + t4

R4

)
, R > 0, σ >> 1, (22)
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where φ ∈ C∞0 (IR+) is a decreasing function satisfying

φ(r) =

 1 if 0 ≤ r ≤ 1,

0, if r ≥ 2.

We point out that supp(ϕR) is a subset of

TR =

{
(t, x, y, τ) ∈ H : 0 ≤ τ2 + |x|4 + |y|4 + t4 ≤ 2R4

}
,

while supp(ϕR)ttt), supp(ϕR)tt), supp(∆HϕR) and supp(∆H(ϕR)t) are subsets of

TR =

{
(t, x, y, τ) ∈ H : R4 ≤ τ2 + |x|4 + |y|4 + t4 ≤ 2R4

}
.

Moreover, it is clear that

∆HϕR(t, η) =
4σ (N + 4)

R4
(
|x|2 + |y|2

)
φ′σ−1

+
16σ

R8
((
|x|6 + |y|6

)
+ 2τ

(
|x|2 − |y|2

)
x.y + τ2

(
|x|2 + |y|2

))
φ′′σ−1

+
16σ (σ − 1)

R8
((
|x|6 + |y|6

)
+ 2τ

(
|x|2 − |y|2

)
x.y + τ2

(
|x|2 + |y|2

))
φ′2φσ−2.

We can easily check that there is a positive constant C > 0, independent of R, such that

|∆HϕR(t, η)| ≤ CR−2φσ−2
(
|φ′|φ+ φ′2 + |φ′′|φ

)
, (23)

and
|(∆HϕR(t, η))t| ≤ CR−3, (24)

|(ϕR(t, η))t| ≤ CR−1, (25)

|(ϕR(t, η))tt| ≤ CR−2, (26)

|(ϕR(t, η))ttt| ≤ CR−3. (27)

From (23)—(27), one obtains

A(p, ϕ) ≤ CRQ+1−
3p
p−1 , (28)

and

B(p, ϕ) ≤ CRQ+1−
2p
p−1 , (29)

C(p, ϕ) ≤ CRQ+1−
2p
p−1 , (30)

D(p, ϕ) ≤ CRQ+1−
3p
p−1 . (31)

At this stage, we pass to the scaled variables

(t, η) = (t, x, y, τ) 7→
(
(t̃, η̃) = (t̃ = R−1t, x̃ = R−1x, ỹ = R−1y, τ̃ = R−2τ)

)
.

Let

K =

{
(t̃, x̃, ỹ, τ̃) ∈ H such that 1 ≤ |t̃|4 + |x̃|4 + |ỹ|4 + |τ̃ |2 ≤ 2

}
,
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and

KR =

{
(x, y, τ) ∈ H such that R4 ≤ |x|4 + |y|4 + |τ |2 ≤ 2R4

}
.

Employing (17), (28) and (29), one has∫
H
|u(t, η)|pϕR(t, η)dηdt+

∫
H

(u1(η) + u2(η))ϕR(0, η)dη

≤ C
(
Rγ1 +Rγ2 +

∫
KR
|u0(η)||∆HϕR(0, η)|dη

)
,

(32)

where
γ1 = Q+ 1− 2p

p− 1
and γ2 = Q+ 1− 3p

p− 1
,

which follows from (32) that∫
H

(u1(η) + u2(η))ϕR(0, η)dη ≤ C
(
Rγ1 +Rγ2 +

∫
KR
|u0(η)||∆HϕR(0, η)|dη

)
, (33)

and ∫
H
|u(t, η)|pϕR(t, η)dηdt ≤ C

(
Rγ1 +Rγ2 +

∫
KR
|u0(η)||∆HϕR(0, η)|dη

)
. (34)

It is clear that the assumption (9) is equivalent to γ1 = max(γ1, γ2) ≤ 0 . For this reason, we will split our
consideration into two cases.

Case 1: In the subcritical case 1 < p < 1 + 2
Q−1 , letting R→∞ in (33) we easily deduce∫

H
(u1(η) + u2(η)) dη < 0,

which contradicts the assumption (8).

Case 2: For the critical case p = 1 + 2
Q−1 , from (34) we can see that∫

H
|u(t, η)|pdηdt ≤ C hence lim

R→∞

∫
TR

|u(t, η)|pϕR(t, η)dηdt = 0. (35)

From (12), one obtains∫
H
|u(t, η)|pϕR(t, η)dηdt+

∫
H

(u1(η) + u2(η))ϕR(0, η)dη ≤ C
∫
TR

|u(t, η)|pϕR(t, η)dηdt.

Letting R→∞ and invoking (35), we get easily∫
H
|u(t, η)|p)dηdt+

∫
H

(u1(η) + u2(η)) dη = 0,

which contradicts the assumption (8). Summarizing, the proof of the Theorem 1 is completed.

2.2 Proof of Theorem 2

Proof. First, we introduce the same test function as in Theorem 1. Let us assume that (u, v) is the global
solution to (2). Then for any regular test function ϕ, we have∫

H
|u(t, η)|pϕ(t, η)dηdt+

∫
H

(v1(η) + v2(η))ϕ(0, η)dη −
∫
H
v0(η)∆Hϕ(0, η)dη

≤
∫
H
|v(t, η)||ϕttt(t, η)|dηdt+

∫
H
|v(t, η)||ϕtt(t, η)|dηdt+

∫
H
|v(t, η)||∆Hϕ(t, η)|dηdt

+

∫
H
|v(t, η)||∆Hϕt(t, η)|dηdt,

(36)
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and ∫
H
|v(t, η)|qϕ(t, η)dηdt+

∫
H

(u1(η) + u2(η))ϕ(0, η)dη −
∫
H
u0(η)∆Hϕ(0, η)dη

≤
∫
H
|u(t, η)||ϕttt(t, η)|dηdt+

∫
H
|u(t, η)||ϕtt(t, η)|dηdt+

∫
H
|u(t, η)||∆Hϕ(t, η)|dηdt

+

∫
H
|u(t, η)||∆Hϕt(t, η)|dηdt.

(37)

Taking ϕ = ϕR and using the Holder inequality with parameters p and
p
p−1 , one obtains∫

H
|v(t, η)|qϕR(t, η)dηdt+

∫
H

(u1(η) + u2(η))ϕR(0, η)dη −
∫
H
|u0(η)||∆HϕR(0, η)|dη

≤
(
A(p, ϕR)

p−1
p + B(p, ϕR)

p−1
p + C(p, ϕR)

p−1
p +D(p, ϕR)

p−1
p

)(∫
H
|u(t, η)|pϕR(t, η)dηdt

) 1
p

.

(38)

An analogous treatment with parameters q and q
q−1 , gives∫

H
|u(t, η)|pϕR(t, η)dηdt+

∫
H

(v1(η) + v2(η))ϕR(0, η)dη −
∫
H
|v0(η)||∆HϕR(0, η)|dη

≤
(
A(q, ϕR)

q−1
q + B(q, ϕR)

q−1
q + C(q, ϕR)

q−1
q +D(q, ϕR)

q−1
q

)(∫
H
|v(t, η)|qϕR(t, η)dηdt

) 1
q

.

(39)

Using the same change of variables as in Theorem 1, one has∫
H
|v(t, η)|qϕR(t, η)dηdt ≤ CR

(Q+1)(p−1)
p −2

(∫
H
|u(t, η)|pϕR(t, η)dηdt

) 1
p

, (40)

and ∫
H
|u(t, η)|pϕR(t, η)dηdt ≤ CR

(Q+1)(q−1)
q −2

(∫
H
|v(t, η)|qϕR(t, η)dηdt

) 1
q

. (41)

We easily deduce from (38) and (39) by letting R→∞ that∫
H

(u1(η) + u2(η)) dη < 0 and
∫
H

(v1(η) + v2(η)) dη < 0,

which contradicts the assumption (10). In the second case pq = 1 + 2
Q−1 max{p+ 1, q + 1}, from (41) there

exists a positive constant C such that∫
H
|u(t, η)|pdηdt ≤ C hence lim

R→∞

∫
TR

|u(η, t)|pϕR(t, η)dηdt = 0.

As in the case 2 in the proof of Theorem 1, we deduce a contradiction. Summarizing, the proof of the
Theorem 2 is completed.
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