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Abstract

In this paper, we consider singular two point fractional order boundary value problems satisfying
Riemann-Stieltjes integral boundary conditions with increasing homeomorphism and positive homomor-
phism operator(IHPHO). By applying Krasnoselskii’s cone fixed point theorem in a Banach space, we
derive sufficient conditions for the existence of denumerably many positive solutions. Finally, we provide
an example to check the validity of our obtained results.

1 Introduction

In the qualitative theory of classical and fractional differential equations, various theorems have been exten-
sively deployed by researchers in establishing the existence and uniqueness of solutions to both the initial
and boundary value problems, for more detailes we refer [1, 6, 9, 13, 15, 16] and the references therein.
The fractional derivatives are used for a better description of considered material properties, mathematical
modelling based on enhanced rheological models naturally leads to differential equations of fractional order
and to the necessity of the formulation of initial conditions to such equations [18]. It should be noted that
most papers and books on fractional calculus are devoted to the solvability of linear initial fractional dif-
ferential equations in terms of special functions. Recently, there have been some papers dealing with the
existence, multiplicity and positive solutions of nonlinear initial fractional differential equations by the use
of techniques of nonlinear analysis, see [3, 7, 19] and reference therein. It is also noted that the differential
equations with boundary conditions have the same requirements, see [10, 2, 11] and references therein.

The turbulent flow through porous media is important for a wide range of scientific and engineering
applications such as fluidized bed combustion, compact heat exchangers, combustion in an inert porous
matrix, high temperature gas-cooled reactors, chemical catalytic reactors [4] and drying of different products
such as iron ore [14]. In studying such type of problems, Leibenson [12] introduced the p-Laplacian operator
into the following equation,

(

ϕp(ω
′(t))

)′
= f

(

t,ω(t),ω′(t)
)

,

where ϕp(ω) = |ω|p−2ω, p > 1, is the p-Laplacian operator whose inverse function is denoted by ϕq(τ )
with ϕq(τ ) = |τ |q−2τ , and p, q satisfy 1/p + 1/q = 1. It is a well known fact that the fractional p-Laplacian
operator arises in many applied fields such as turbulant filtration in porous media, blood flow problems,
rheology, modelling of viscoplasticity, material science and hence is is worth studying the fractional differential
equations with p-Laplacian operator.

In [5], Ege and Topal considered the fractional boundary value problem with IHPHO,

C
D

q
(

ϕ(CD
rω(t))

)

+ f
(

t,ω(t)
)

= 0, 0 < t < 1

α1ω(0) − β1ω
′(0) = −γ1ω(ξ1), α2ω(1) + β2ω

′(1) = −γ2ω(ξ2),
C
D

rω(0) = 0,
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where CDq and CDr are Caputo fractional derivatives of orders 0 < q ≤ 1 < r ≤ 2 and established existence
of positive solutions by utilizing Krasnoselskii’s and Legget–Williams cone fixed point theorems on a Banach
space.

In [17], Song and Cui studied the following fractional differential equation with the Riemann-Stieltjes
integral boundary conditions

C
D

α
1−

D
β
0+ω(t) = f(t,ω(t), Dβ+1

0+ ω(t), Dβ
0+ω(t)), 0 < t < 1,

ω(0) = ω′(0) = 0, ω(1) =

∫ 1

0

ω(t)dA(t),

whereCDα
1−

is the left Caputo fractional derivative of order 1 < α ≤ 2 and D
β
0+ is the right Riemann-Liouville

fractional derivative of order 0 < β ≤ 1,
∫ 1

0
ω(t)dA(t) is the Riemann-Stieltjes integral of ω with respect to

A, A : [0, 1] → R is a function of bounded variation and dA is a signed measure and established existence of
solutions by the method of coincidence degree theory.

Inspired by the works mentioned above, we focus in establishing the existence of denumerably many
positive solutions for IHPHO Riemann-Liouville fractional order boundary value problem,

ϕ
(

D
σ

0+ω(t)
)

+ ψ(t)f
(

ω(t)
)

= 0, 0 < t < 1,

ω(0) = ω′(0) = 0, D
δ

0+ω(1) =

∫ 1

0

Υ(ω(s)) dG(s),











(1)

where ψ(t) =
∏n

i=1 ψi(t), Dσ

0+ , Dδ

0+ denote fractional derivatives of Riemann-Liouville type with 2 < σ ≤ 3,

0 < δ ≤ σ−1,
∫ 1

0
Υ(ω(s))dG(s) denotes Riemann–Stieltjes integral of Υ(ω(s)) with respect to G, G : [0, 1] →

R is a function of bounded variation and dG is a signed measure, ϕ : R → R is an IHPHO with ϕ(0) = 0
and each ψi(t) ∈ Lpi [0, 1](pi ≥ 1) has a singularity in the interval (0, 1/2).

We assume that the following conditions hold throughout the paper:

(H1) f, Υ : [0, +∞) → [0, +∞) are continuous,

(H2) there exists a sequence {tj}∞j=1 such that 0 < tj+1 < tj < 1
2 ,

lim
j→∞

tj = ` <
1

2
, lim

t→tj

ψi(t) = +∞, j = 1, 2, 3, · · · , i = 1, 2, 3, · · · , n

and each ψi(t) does not vanish identically on any subinterval of [0, 1]. Moreover, there exists ηi > 0
such that

ηi < Ωi(t) < ∞ a.e. on [0, 1],

where Ωi(t) = ϕ−1 (ψi(t)) , i = 1, 2, · · · , n.

(H3) G is a bounded variation and nondecreasing function such that 0 < ∆ < ∞, where

∆ =
Γ(σ− δ)

Γ(σ)

∫ 1

0

dG(s).

2 Kernel and Its Bounds

In this section, we construct kernel for the boundary value problem (1) and estimate bounds for it, which
are useful for our later discussions.

Lemma 1 Let X ∈ C[0, 1]. Then the boundary value problem

ϕ
(

D
σ

0+ω(t)
)

+ X(t) = 0, t ∈ (0, 1), (2)
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ω(0) = ω′(0) = 0, D
δ

0+ω(1) =

∫ 1

0

A(s) dG(s), (3)

has a unique solution

ω(t) =

∫ 1

0

χ(t, τ )ϕ−1
(

X(τ )
)

dτ +
Γ(σ− δ)

Γ(σ)
tσ−1

∫ 1

0

A(τ ) dG(τ ), (4)

where

χ(t, τ ) =
1

Γ(σ)

{

tσ−1(1 − τ )σ−δ−1 − (t − τ )σ−1, τ ≤ t,
tσ−1(1 − τ )σ−δ−1, t ≤ τ.

(5)

Proof. By simple algebraic calculations it can be proved, so we omit the details here.

Lemma 2 The kernel χ(t, τ ) has the following properties:

(i) χ(t, τ ) ≥ 0 and continuous on [0, 1]× [0, 1],

(ii) χ(t, τ ) ≤ χ(1, τ ) for t, τ ∈ [0, 1],

(iii) maxτ∈[0,1] χ(1, τ ) = 1
4 ,

(iv) there exists κ ∈ (0, 1
2) such that κσ−1χ(1, τ ) ≤ χ(t, τ ) for t ∈ [κ, 1− κ], τ ∈ [0, 1].

Proof. (i), (ii) and (iii) are not difficult to establish so we omit the details here. We prove (iv). For
0 ≤ τ ≤ t ≤ 1, (t − τ )σ−1 ≤ tσ−1(1 − τ )σ−1 and for t ∈ [κ, 1− κ], we have

χ(t, τ ) ≥ tσ−1

[

(1 − τ )σ−δ−1

Γ(σ)
− (1 − τ )σ−1

Γ(σ)

]

≥ κσ−1

[

(1 − τ )σ−δ−1

Γ(σ)
− (1 − τ )σ−1

Γ(σ)

]

≥ κσ−1χ(1, τ ).

Other case is trivial. This completes the proof.

We denote the Banach space C([0, 1], R) by B with the norm ‖ω‖ = max
t∈[0,1]

|ω(t)|. For κ ∈ (0, 1/2), the

cone Pκ ⊂ B is defined by

Pκ =
{

ω ∈ B : ω(t) ≥ 0, min
t∈[κ, 1−κ]

ω(t) ≥ κσ−1‖ω(t)‖
}

,

For any ω ∈ Pκ, define an operator L : Pκ → B by

(Lω)(t) =

∫ 1

0

χ(t, τ )ϕ−1
[

ψ(τ )f
(

ω(τ )
)]

dτ +
Γ(σ− δ)

Γ(σ)
tσ−1

∫ 1

0

Υ(ω(τ )) dG(τ ).

Lemma 3 Assume that (H1) holds. Then for each κ ∈ (0, 1/2), L(Pκ) ⊂ Pκ and L : Pκ → Pκ is completely
continuous.

Proof. Let κ ∈ (0, 1/2). Since f(ω(τ )) is nonnegative for τ ∈ [0, 1],ω ∈ Pκ. Since χ(t, τ ) is nonnegative for
all t, τ ∈ [0, 1], it follows that L(ω(t)) ≥ 0 for all t ∈ [0, 1], ω ∈ Pκ. Now, by Lemma 2, we have

min
t∈[κ,1−κ]

(Lω)(t) = min
t∈[κ,1−κ]

{

∫ 1

0

χ(t, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

)

dτ +
Γ(σ − δ)

Γ(σ)
tσ−1

∫ 1

0

Υ(ω(τ )) dG(τ )

}

≥ κσ−1

∫ 1

0

χ(1, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

)

dτ +
Γ(σ− δ)

Γ(σ)
κσ−1

∫ 1

0

Υ(ω(τ )) dG(τ )

≥ κσ−1 max
t∈[0,1]

{

∫ 1

0

χ(t, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

)

dτ +
Γ(σ− δ)

Γ(σ)

∫ 1

0

Υ(ω(τ )) dG(τ )

}

≥ κσ−1 max
t∈[0,1]

|Lω(t)|.

Thus L(Pκ) ⊂ Pκ. Therefore, the operator L is completely continuous by standard methods and by the
Arzela-Ascoli theorem.
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3 Denumerably Many Positive Solutions

For the existence of denumerably many positive solutions to the boundary value problem (1), we utilize the
following theorems.

Theorem 1 ([8]) Let E be a cone in a Banach space X and Λ1, Λ2 are open sets with 0 ∈ Λ1, Λ1 ⊂ Λ2. Let
A : E ∩ (Λ2\Λ1) → E be a completely continuous operator such that

(a) ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂Λ1, and ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂Λ2, or

(b) ‖Az‖ ≥ ‖z‖, z ∈ E ∩ ∂Λ1, and ‖Az‖ ≤ ‖z‖, z ∈ E ∩ ∂Λ2.

Then A has a fixed point in E ∩ (Λ2\Λ1).

Theorem 2 (Hölder’s Inequality) Let f ∈ Lpi [0, 1] with pi > 1, for i = 1, 2, · · · , n and
∑n

i=1
1
pi

= 1.

Then
∏n

i=1 fi ∈ L1[0, 1] and ‖∏n
i=1 fi‖1

≤ ∏n
i=1 ‖fi‖pi . Further, if f ∈ L1[0, 1] and g ∈ L∞[0, 1], then

fg ∈ L1[0, 1] and ‖fg‖1 ≤ ‖f‖1‖g‖∞.

Consider three possible cases for ψ ∈ Lpi [0, 1] :

n
∑

i=1

1

pi
< 1,

n
∑

i=1

1

pi
= 1,

n
∑

i=1

1

pi
> 1.

Firstly, we seek denumerably many positive solutions for the case
∑n

i=1
1
pi

< 1.

Theorem 3 Suppose (H1) − (H3) hold, let {κj}∞j=1 be a sequence with tj+1 < κj < tj . Let {Ej}∞j=1 and
{Dj}∞j=1 be such that

Ej+1 < κσ−1
j Dj < Dj < βDj < Ej, j ∈ N,

where

β = max

{

[

n
∏

i=1

ηi

∫ 1−κ1

κ1

χ(1, τ )dτ + ∆1

]−1

, 1

}

, ∆1 =
Γ(σ− δ)

Γ(σ)

∫ 1−κ1

κ1

dG(s).

Assume that f satisfies

(A1) f(ω) ≤ ϕ(K1Ej) and Υ(ω) ≤ K1Ej ∀ t ∈ [0, 1], 0 ≤ ω ≤ Ej , j ∈ N, where

K1 ≤
[

‖χ(1, ·)‖q

n
∏

i=1

‖Ωi‖pi + ∆

]−1

,

(A2) f(ω) ≥ ϕ(βDj) and Υ(ω) ≥ βDj ∀ t ∈ [κj, 1 − κj ], κσ−1
j Dj ≤ ω ≤ Dj .

Then the BVP (1) has denumerably many positive solutions {ωj}∞j=1 such that Dj ≤ ‖ωj‖ ≤ Ej for
j = 1, 2, 3 · · · .

Proof. Let Λ1,j = {ω ∈ B : ‖ω‖ < Ej} and Λ2,j = {ω ∈ B : ‖ω‖ < Dj} be open subsets of B. Let {κj}∞j=1

be given in the hypothesis and we note that ` < tj+1 < κj < tj < 1/2, for all j ∈ N. For each j ∈ N, we
define the cone Pκj by

Pκj =
{

ω ∈ B : ω(t) ≥ 0, min
t∈[κj , 1−κj]

ω(t) ≥ κσ−1
j ‖ω(t)‖

}

.
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Let ω ∈ Pκj ∩ ∂Λ1,j . Then, ω(s) ≤ Ej = ‖ω‖ for all s ∈ [0, 1]. By (A1),

‖Lω‖ = max
t∈[0,1]

{

∫ 1

0

χ(t, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

)

dτ +
Γ(σ − δ)

Γ(σ)
tσ−1

∫ 1

0

Υ(ω(τ )) dG(τ )

}

≤ max
t∈[0,1]

{

K1Ej

∫ 1

0

χ(t, τ )ϕ−1

(

n
∏

i=1

ψi(τ )

)

dτ + K1Ej
Γ(σ− δ)

Γ(σ)
tσ−1

∫ 1

0

dG(τ )

}

≤ K1Ej

[

∫ 1

0

χ(1, τ )ϕ−1

(

n
∏

i=1

ψi(τ )

)

dτ +
Γ(σ− δ)

Γ(σ)

∫ 1

0

dG(τ )

]

≤ K1Ej

[

∫ 1

0

χ(1, τ )

n
∏

i=1

ϕ−1 (ψi(τ )) dτ +
Γ(σ − δ)

Γ(σ)

∫ 1

0

dG(τ )

]

≤ K1Ej

[

∫ 1

0

χ(1, τ )
n
∏

i=1

Ωi(τ ) dτ + ∆

]

.

There exists q > 1 such that
∑n

i=1
1
pi

+ 1
q = 1. By the first part of Theorem 2, we have

‖Lω‖ ≤ K1Ej

[

‖χ(1, ·)‖q

n
∏

i=1

‖Ωi‖pi + ∆

]

≤ Ej.

Since Ej = ‖ω‖ for ω ∈ Pκj ∩ ∂Λ2,j, we get

‖Lω‖ ≤ ‖ω‖. (6)

Let t ∈ [κj, 1− κj]. Then

Dj = ‖ω‖ ≥ ω(t) ≥ min
t∈[κj , 1−κj ]

ω(t) ≥ κσ−1
j ‖ω‖ ≥ κσ−1

j Dj .

Thus,

‖Lω‖ = max
t∈[0,1]

{

∫ 1

0

χ(t, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

dτ +
Γ(σ − δ)

Γ(σ)
tσ−1

∫ 1

0

Υ(ω(τ )) dG(τ )

}

≥ max
t∈[0,1]

{

∫ 1−κj

κj

χ(t, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

dτ +
Γ(σ− δ)

Γ(σ)
tσ−1

∫ 1−κj

κj

Υ(ω(τ )) dG(τ )

}

.

By (A2),

‖Lω‖ ≥
∫ 1−κj

κj

χ(1, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

dτ +
Γ(σ− δ)

Γ(σ)

∫ 1−κj

κj

Υ(ω(τ )) dG(τ )

≥βDj

[

∫ 1−κj

κj

χ(1, τ )ϕ−1 (ψ(τ )) dτ +
Γ(σ− δ)

Γ(σ)

∫ 1−κj

κj

dG(τ )

]

≥βDj

[

∫ 1−κ1

κ1

χ(1, τ )ϕ−1

(

n
∏

i=1

ψi(τ )

)

dτ +
Γ(σ − δ)

Γ(σ)

∫ 1−κ1

κ1

dG(τ )

]

≥βDj

[

∫ 1−κ1

κ1

χ(1, τ )

n
∏

i=1

Ωi(τ )dτ + ∆1

]

≥ βDj

[

n
∏

i=1

ηi

∫ 1−κ1

κ1

χ(1, τ )dτ + ∆1

]

≥ Dj = ‖ω‖.

Thus, if ω ∈ Pκ ∩ ∂Λ2,k, then
‖Lω‖ ≥ ‖ω‖. (7)
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It is evident that 0 ∈ Λ2,j ⊂ Λ2,j ⊂ Λ1,j. From (6) and (7), it follows from Theorem 1 that the operator
L has a fixed point ωj ∈ Pκj ∩

(

Λ1,j\Λ2,j

)

such that Dj ≤ ‖ωj‖ ≤ Ej. This completes the proof of the
theorem.

For
∑n

i=1
1
pi

= 1, we have the following theorem.

Theorem 4 Suppose (H1) − (H3) hold, let {κj}∞j=1 be a sequence with tj+1 < κj < tj . Let {Ej}∞j=1 and
{Dj}∞j=1 be such that

Ej+1 < κσ−1
j Dj < Dj < βDj < Ej, j ∈ N,

Assume that f satisfies (A2) and

(B1) f(ω(t)) ≤ ϕ(K2Ej) and Υ(ω) ≤ K2Ej for all t ∈ [0, 1], 0 ≤ ω ≤ Ej, j ∈ N, where

K2 ≤ min

{

[

‖χ(1, ·)‖∞
n
∏

i=1

‖Ωi‖pi + ∆

]−1

, β

}

.

Then the BVP (1) has denumerably many positive solutions {ωj}∞j=1. Furthermore, Dj ≤ ‖ωj‖ ≤ Ej for
each j ∈ N.

Proof. For a fixed k, let Λ1,k be as in the proof of Theorem 3 and letω ∈ Pκj∩∂Λ2,k. Thenω(s) ≤ Ej = ‖ω‖,
for all s ∈ [0, 1]. By (B1) and Theorem 3,

‖Lω‖ = max
t∈[0,1]

{

∫ 1

0

χ(t, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

)

dτ +
Γ(σ − δ)

Γ(σ)
tσ−1

∫ 1

0

Υ(ω(τ )) dG(τ )

}

≤ max
t∈[0,1]

{

K1Ej

∫ 1

0

χ(t, τ )ϕ−1

(

n
∏

i=1

ψi(τ )

)

dτ + K1Ej
Γ(σ − δ)

Γ(σ)
tσ−1

∫ 1

0

dG(τ )

}

≤ K1Ej

[

∫ 1

0

χ(1, τ )ϕ−1

(

n
∏

i=1

ψi(τ )

)

dτ +
Γ(σ − δ)

Γ(σ)

∫ 1

0

dG(τ )

]

≤ K1Ej

[

∫ 1

0

χ(1, τ )

n
∏

i=1

Ωi(τ ) dτ + ∆

]

≤ K1Ej

[

‖χ(1, ·)‖∞
n
∏

i=1

‖Ωi‖pi + ∆

]

≤ Ej.

Thus, ‖Lω‖ ≤ ‖ω‖, for ω ∈ Pκj ∩ ∂Λ1,j. Now define Λ2,j = {ω ∈ B : ‖ω‖ < Dj}. Let ω ∈ Pκj ∩ ∂Λ2,j and
let s ∈ [κj, 1 − κj]. Then, the argument leading to (7) can be done to the present case. This completes the
proof of the theorem.

Lastly, the case
∑n

i=1
1
pi

> 1.

Theorem 5 Assume that (H1) − (H3) hold. Let {Ej}∞j=1 and {Dj}∞j=1 be such that

Ej+1 < κσ−1
j Dj < βDj < Ej, j ∈ N,

Assume that f satisfies (A2) and

(E1) f(ω(t)) ≤ ϕ(K3Ej) for all t ∈ [0, 1], 0 ≤ ω ≤ Ej, j ∈ N, where

K3 ≤ min

{

[

‖χ(1, ·)‖∞
n
∏

i=1

‖Ωi‖1 + ∆

]−1

, β

}

.

Then the BVP (1) has denumerably many positive solutions {ωj}∞k=1 such that Dj ≤ ‖ωj‖ ≤ Ej for
k = 1, 2, 3, · · ·.
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Proof. By (E1),

‖Lω‖ = max
t∈[0,1]

{

∫ 1

0

χ(t, τ )ϕ−1
(

ψ(τ )f(ω(τ ))
)

)

dτ +
Γ(σ − δ)

Γ(σ)
tσ−1

∫ 1

0

Υ(ω(τ )) dG(τ )

}

≤ max
t∈[0,1]

{

K1Ej

∫ 1

0

χ(t, τ )ϕ−1

(

n
∏

i=1

ψi(τ )

)

dτ + K1Ej
Γ(σ− δ)

Γ(σ)
tσ−1

∫ 1

0

dG(τ )

}

≤ K1Ej

[

∫ 1

0

χ(1, τ )ϕ−1

(

n
∏

i=1

ψi(τ )

)

dτ +
Γ(σ− δ)

Γ(σ)

∫ 1

0

dG(τ )

]

≤ K1Ej

[

∫ 1

0

χ(1, τ )
n
∏

i=1

Ωi(τ ) dτ + ∆

]

≤ K1Ej

[

‖χ(1, ·)‖∞
n
∏

i=1

‖Ωi‖1 + ∆

]

≤ Ej.

This shows that if ω ∈ Pκj ∩ ∂Λ1,k, where Λ1,k = {ω ∈ B : ‖ω‖ < Ej}, Then, ‖Lω‖ ≤ ‖ω‖. Define
Λ2,k = {ω ∈ B : ‖ω‖ < Dj} and let z ∈ Pκj ∩ ∂Λ2,k. Then, the argument worked in the proof of Theorem 3
can be applied directly to get ‖Lω‖ ≥ ‖ω‖. This completes the proof of the theorem.

4 Example

In this section, we present an example to check validity of our main results.

Example 1 Consider the following fractional order boundary value problem

ϕ(D
5/2
0+ ω(t)) +ψ(t)f(ω(t)) = 0, t ∈ (0, 1),

ω(0) = ω′(0) = 0, D
3/4

0+ ω(1) =

∫ 1

0

Υ(ω(τ )) dG(τ ),











(8)

where

ϕ(ω) =

{

ω
3

1+ω2 , ω ≤ 0,

ω2, ω > 0,

ψ(t) = ψ1(t)ψ2(t) in which ψ1(t) = 1

|t− 1
4
|
1
2

and ψ2(t) = 1

|t−1
3
|
1
2

,

f(ω) =























































































1
2
× 10−8

, ω ∈ (10−4
, +∞),

1260×10−(8k+4)− 1
2
×10−8k

10−(4k+2)−10−4k (ω− 10−4k)

+1
2
× 10−8k

,

ω ∈
[

10−(4k+2)
, 10−4k

]

,

1260 × 10−(8k+4)
, ω ∈

(

1
53/2 × 10−(4k+2)

, 10−(4k+2)

)

,

1260×10−(8k+4)− 1
2
×10−(8k+8)

1

53/2
×10−(4k+2)−10−(4k+4) (ω− 10−(4k+4))

+1
2
× 10−(8k+8)

,

ω ∈
(

10−(4k+4)
,

1
53/2 × 10−(4k+2)

]

,
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Υ(ω) =























































































3
4
× 10−4

, ω ∈ (10−4
, +∞),

36×10−(4k+2)− 3
4
×10−4k

10−(4k+2)−10−4k (ω− 10−4k)

+3
4
× 10−4k

,

ω ∈
[

10−(4k+2)
, 10−4k

]

,

36 × 10−(4k+2)
, ω ∈

(

1
53/2 × 10−(4k+2)

, 10−(4k+2)

)

,

36×10−(4k+2)− 3
4
×10−(4k+4)

1

53/2
×10−(4k+2)−10−(4k+4) (ω− 10−(4k+4))

+3
4
× 10−(4k+4)

,

ω ∈
(

10−(4k+4)
,

1
53/2 × 10−(4k+2)

]

,

G(t) =



















t, t ∈ [0, 1/2)∪ [2/3, 5/6),

1
2
, t ∈ [1/2, 2/3),

5
6 , t ∈ [5/6, 1],

Let

tj =
31

64
−

j
∑

r=1

1

4(r + 1)4
, κj =

1

2
(tj + tj+1), j = 1, 2, 3, · · · .

Then κ1 = 15
32 − 1

648 < 15
32 and tj+1 < κj < tj , κj > 1

5 . Therefore, κσ−1
j > 1

53/2 , j = 1, 2, 3, · · · . It is easy to
see

t1 =
15

32
<

1

2
, tj − tj+1 =

1

4(j + 2)4
, j = 1, 2, 3, · · · .

Since
∑∞

j=1
1
j4 = π4

90
and

∑∞
j=1

1
j2 = π2

6
, we see that

` = lim
j→∞

tj =
31

64
−

∞
∑

i=1

1

4(i + 1)4
=

47

64
− π4

360
>

1

5
,

ψ1,ψ2 ∈ Lp[0, 1] for all 0 < p < 2, so η1 = η2 =
1√
3
,

∆ =
Γ(σ− δ)

Γ(σ)

∫ 1

0

dG(s) =
Γ(5/2− 3/4)

Γ(5/2)
× 5

6
≈ 0.5761394489,

∆1 =
Γ(σ− δ)

Γ(σ)

∫ 1−κ1

κ1

dG(s) =
Γ(5/2 − 3/4)

Γ(5/2)
[G(1 − κ1) − G(κ1)] ≈ 0.02053830443,

∫ 1−κ1

κ1

χ(1, τ )dτ =

∫ 1−15
32

− 1
648

15
32

− 1
648

[

(1 − τ )
5
2
− 3

4
−1 − (1 − τ )

5
2
−1
]

dτ ≈ 0.02301858242,

So, we get

β = max

{

[

n
∏

i=1

ηi

∫ 1−κ1

κ1

χ(1, τ )dτ + ∆1

]−1

, 1

}

= max

{

35.44695838, 1

}

= 35.44695838,

‖χ(1, ·)‖q =

[
∫ 1

0

|χ(1, τ )|qdτ

]

1
q

<
1

4
for any q > 0.
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Next, let 0 < ε < 1 be fixed. Then ψ1,ψ2 ∈ L1+ε[0, 1]. It follows that

‖Ω1‖1+ε = ‖ϕ−1(ψ1)‖1+ε =

[

1

3 − ε

(

3
3−ε
4 + 1

)

2
1+ε
2

]
1

1+ε

,

‖Ω2‖1+ε = ‖ϕ−1(ψ2)‖1+ε =

[

4

3 − ε

(

2
3−ε
4 + 1

)

(1/3)
3−ε
4

]
1

1+ε

.

So, for 0 < ε < 1, we have

0.7898442122≤
[

‖χ(1, ·)‖q

n
∏

i=1

‖Ωi‖pi + ∆

]−1

≤ 0.8457314598.

Taking K1 = 0.78. In addition if we take Ej = 10−4j, Dj = 10−(4j+2), then

Ej+1 = 10−(4j+4) <
1

53/2
× 10−(4j+2) < κσ−1

j Dj < Dj = 10−(4j+2) < Ej = 10−4j,

βDj = 35.44695838× 10−(4j+2) < 0.78× 10−4j = K1Ej , j = 1, 2, 3, · · · , and f and χ satisfies the following
growth conditions:

f(ω) ≤ ϕ(K1Ej) = K2
1E2

j = 0.6084× 10−8j, ω ∈
[

0, 10−4j

]

,

f(ω) ≥ ϕ(βDj ) = β2D2
j = 1256.486858× 10−(8j+4), ω ∈

[

1

53/2
× 10−(4j+2), 10−(4j+2)

]

,

χ(t,ω) ≤ M1Ej = 0.78× 10−4j, ω ∈
[

0, 10−4j

]

,

χ(t,ω) ≥ βDj = 35.44695838× 10−(4j+2), ω ∈
[

1

53/2
× 10−(4j+2), 10−(4j+2)

]

.

Then all the conditions of Theorem 3 are satisfied. Therefore, by Theorem 3, the boundary value problem
(8) has countably many positive solutions {ω[j]}∞j=1 such that 10−(4j+2) ≤ ‖ω[j]‖ ≤ 10−4j for each j =
1, 2, 3, · · · .
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