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Abstract

In this paper some recurrence relations satisfied by single and product moments of progressively Type-

II right censored order statistics from odds generalized exponential-Pareto distribution are obtained.

Then we use these results to compute the moments for all sample sizes and all censoring schemes.

This allows us to obtain best linear unbiased estimators of location and scale parameters based on

progressively Type-II right censored samples. The best linear unbiased predictors of censored failure

times are discussed briefly. Two numerical examples are presented to illustrate the estimation and

prediction methods discussed here.

1 Introduction

The scheme of progressive Type-II censoring is of importance in reliability and life-testing experiments. It
allows the experimenter to remove units from a life test at various stages during the experiment which may
lead to a saving of costs and of time (see Cohen [12] and Sen [30]). In such a random experiment, a group of n
independent and identical experimental units is put on a life test at time zero with continuous, identically dis-
tributed failure times X1, X2, ..., Xn. After the jth failure, a prespecified number Rj ≥ 0 of the n−j−

∑j−1
i=0 Ri

remaining (or surviving) units are randomly withdrawn from the experiment, 1 ≤ j ≤ m, m ≤ n, R0 = 0.
Removed units thus become right censored at the time of failure of other units. This progressive censoring

leads to m ordered observed failure times denoted by X
(R1,R2,...,Rm)
1:m:n , X

(R1,R2,...,Rm)
2:m:n , ..., X

(R1,R2,...,Rm)
m:m:n , and

these are called progressively Type-II right censored order statistics of size m from a sample of size n with pro-
gressive censoring scheme (R1, R2, ..., Rm). Thus, in this type of sampling, m failures are observed,

∑m
j=1 Rj

units are progressively censored and n = m +
∑m

j=1 Rj denotes the number of units in the life test. The
withdrawal of units may be seen as a model describing drop-outs of units due to failures which have causes
other than the specific one under study. In this sense, progressive censoring schemes are applied in clinical
trials as well. Here, the drop-outs of patients may be caused by migration, lack of interest or by personal
or ethical decisions, and they are regarded as random withdrawals. For a detailed discussion of progres-
sive censoring and the relevant developments in this area, one may refer to Sen [30] and Balakrishnan and
Aggarwala [4].

The situation with no censoring corresponds to the special case with m = n and R1 = R2 = ... = Rm = 0,
whereas the situation with ordinary Type-II right censoring at a given order statistic corresponds to the
special case with m < n, R1 = R2 = ... = Rm−1 = 0 and Rm = n − m.

If the failure times of the n items originally on test are from a continuous population with c.d.f. F(x)

and p.d.f. f(x), then the joint p.d.f. of X
(R1,R2,...,Rm)
1:m:n , X

(R1,R2,...,Rm)
2:m:n , ..., X

(R1,R2,...,Rm)
m:m:n is given by (cf.

Balakrishnan and Sandhu [11] and Saran and Pushkarna [28])

fX1:m:n ,...,Xm:m:n(x1, x2, ..., xm) = A(n, m− 1)

m∏

i=1

f(xi)[1− F (xi)]
Ri , 0 ≤ x1 < x2 < ... < xm < ∞, (1)
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452 Progressively Type-II Right Censored Order Statistics

where A(n, m− 1) = n(n − R1 − 1)(n − R1 − R2 − 2) · · · (n − R1 − R2 − ...− Rm−1 − m + 1).
Here, note that all the factors in A(n, m − 1) are positive integers. Also it may be observed that the

different factors in A(n, m − 1) represent the number of units still on test immediately preceding the first,
second, ..., mth observed failures, respectively. Similarly, for convenience in notation, let us define

A(p, q) = p(p − R1 − 1)(p − R1 − R2 − 2)...(p− R1 − R2 − ...− Rq − q),

for q = 0, 1, ..., p− 1, with all the factors being positive integers.
Progressive censoring and associated inferential procedures have been extensively studied in the literature

for a number of distributions by several authors. Cohen ([12], [13], [14], [15] and [16]), Mann ([20], [21]),
Cohen and Whitten [17], Viveros and Balakrishnan [31], Balakrishnan and Sandhu [11], Aggarwala and
Balakrishnan [1] and Balakrishnan and Aggarwala [4] have derived recurrence relations for single and product
moments of progressively Type-II right censored order statistics from exponential, Pareto and power function
distributions and their truncated forms.

Saran and Pande [27], Saran and Pushkarna ([28], [29]), Saran et al. [26] and Pushkarna et al. [25] have
derived recurrence relations for single and product moments of the corresponding progressively Type-II right
censored order statistics from half logistic, Burr, left truncated logistic, Frechet and a general class of doubly
truncated continuous distributions.

Mahmoud et al. [19] derived some new recurrence relations for single and product moments of pro-
gressively Type-II right censored order statistics from the linear exponential distribution and also obtained
maximum likelihood estimators (MLEs) of the location and scale parameters. Balakrishnan et al. [5] and
Balakrishnan and Saleh ([7], [8], [9], [10]) have established several recurrence relations for single and prod-
uct moments of progressively Type-II right censored order statistics from logistic, half-logistic, log-logistic,
generalized half logistic and generalized logistic distributions and utilized them to derive the best linear
unbiased estimators of the location and scale parameters.

In this paper, we derive some recurrence relations satisfied by the single and product moments of progres-
sively Type-II right censored order statistics from odds generalized exponential-Pareto distribution. These
relations enable the recursive computation of moments for all sample sizes and all possible progressive cen-
soring schemes. Then we use these results to compute the means, variances and covariances of progressively
Type-II right censored order statistics for some specific values of the parameters, which will be utilized to de-
rive the best linear unbiased estimators (BLUEs) of location and scale parameters of the location-scale odds
generalized exponential-Pareto distribution as well as their variances and covariances. Tables of these quan-
tities are presented for different sample sizes up to n = 8 and some selected progressive censoring schemes,
corresponding to particular values of the parameters. Further, for the special case R1 = R2 = ... = Rm = 0,
the derived results would reduce to the general recurrence relations for the usual order statistics from the
odds generalized exponential-Pareto distribution. Also, we briefly discuss the best linear unbiased predictors
(BLUPs) of the censored failure times by making use of the results developed on the BLUEs. Finally, two
numerical examples, one with real data and another with simulated data, are presented to illustrate the
estimation and prediction methods discussed here.

2 Odds Generalized Exponential-Pareto Distribution

The pdf and cdf of odds generalized exponential-Pareto distribution are given by

f(x) =
λθ

αθ
xθ−1e

−λ
h

( x
α )

θ
−1

i

, x ≥ α, λ, θ > 0, (2)

F (x) = 1 − e
−λ

h

( x
α )

θ
−1

i

. (3)

And the characterizing differential equation for odds generalized exponential-Pareto distribution is given by

αθf(x) = λθxθ−1(1 − F (x)). (4)
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Figure 1: p.d.f. of odds generalized exponential-Pareto distribution
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Figure 2: c.d.f. of odds generalized exponential-Pareto distribution

More details on this distribution can be found in Maiti and Pramanik [22]. The graphs of the p.d.f. and
c.d.f. of odds generalized exponential-Pareto distribution as given in (2) and (3) for α = 1, λ = 2, 0.5 and
for different values of θ = 1.0, 2.0, 3.0 are shown in Figures 1 and 2, respectively.

The c.d.f. of the location-scale parameter odds generalized exponential-Pareto distribution is given by

F (x) = 1 − e
−λ

h

(x−µ

σα )
θ
−1

i

, x ≥

(
α − µ

σ

)

, λ, θ > 0. (5)

3 Recurrence Relations for Single Moments

In this section, we shall establish several recurrence relations for single moments of progressively Type-II right
censored order statistics from odds generalized exponential-Pareto distribution satisfying the characterizing
differential equation (4). Using (1), we have

µ(R1,R2,...,Rm)(k)

r:m:n = E[X(R1,R2,...,Rm)
r:m:n ]k

= A(n, m− 1)

∫ ∫

· · ·

∫

α≤x1<x2<...<xm<∞

∫

xk
r

m∏

t=1

f(xt)[1 − F (xt)]
Rtdxt. (6)

Theorem 1 For k ≥ 0,

αθµ
(0)
1:1:1

(k+1)
=

λθ

θ + k + 1

[

−αθ+k+1 + µ
(0)
1:1:1

(θ+k+1)
]

. (7)



454 Progressively Type-II Right Censored Order Statistics

Proof. From (6), for n = m = r = 1, we obtain

αθµ
(0)
1:1:1

(k+1)
= A(n, 0)

∫ ∞

α

αθxk+1
1 f(x1) [1 − F (x1)]

n−1
dx1,

using (4), we have

αθµ
(0)
1:1:1

(k+1)
= nλθ

∫ ∞

α

xθ+k
1 [1 − F (x1)]

n
dx1.

Solving the integral on the R.H.S. of the above equation by taking (1 − F (x1))
n for differentiation and the

rest of the integrand for integration, and then after some simplification, it leads to the required result (7).

Theorem 2 For n ≥ 2 and k ≥ 0,

αθµ
(n−1)
1:1:n

(k+1)
=

nλθ

θ + k + 1

[

−αθ+k+1 + µ
(n−1)
1:1:n

(θ+k+1)
]

. (8)

Proof. Proceeding in a similar manner as in Theorem 1, we can easily establish the relation (8).

Theorem 3 For 2 ≤ m ≤ n − 1, k ≥ 0 and R1 ≥ 0,

αθµ
(R1,R2,...,Rm)
1:m:n

(k+1)
=

λθ

θ + k + 1

[

(n − R1 − 1)µ
(R1+R2+1,R3,...,Rm)
1:m−1:n

(θ+k+1)
− nαθ+k+1

+(R1 + 1)µ
(R1,R2,...,Rm)
1:m:n

(θ+k+1)
]

. (9)

Proof. The relation in (9) may be proved by following exactly the same steps as those used in proving
Theorem 4, which is presented next.

Theorem 4 For 2 ≤ r ≤ n − 1, m < n, k ≥ 0 and Rr ≥ 0,

αθµ(R1,R2,...,Rm)
r:m:n

(k+1)
=

λθ

θ + k + 1

[

(n − Sr − r)µ
(R1,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r:m−1:n

(θ+k+1)

− (n − Sr−1 − r + 1)µ
(R1,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1:m−1:n

(θ+k+1)

+(Rr + 1)µ(R1,...,Rm)
r:m:n

(θ+k+1)
]

, (10)

where Si = R1 + R2 + ... + Ri, 1 ≤ i ≤ m.

Proof. Using (6), we have

αθµ(R1,R2,...,Rm)
r:m:n

(k+1)

= A(n, m − 1)

∫ ∫

· · ·

∫

α≤x1<x2<...<xr−1<xr+1<...<xm<∞

I(xr−1, xr+1)
m∏

u=1,u 6=r

[1− F (xu)]Ruf(xu)dxu, (11)

where

I(xr−1 , xr+1) =

∫ xr+1

xr−1

αθxk+1
r [1− F (xr)]

Rrf(xr)dxr. (12)

Using the characterizing differential equation (4), we have

I(xr−1, xr+1) = λθ

∫ xr+1

xr−1

xk+θ
r [1− F (xr)]

Rr+1dxr. (13)

Upon substituting the resultant expression for I(xr−1, xr+1) from (13) in (11) and simplifying, it leads
to Theorem 4

Next, we state another result on single moments which can easily be estblished on similar lines.
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Theorem 5 For 2 ≤ m ≤ n, k ≥ 0 and Rm ≥ 0,

αθµ(R1,R2,...,Rm)
m:m:n

(k+1)
=

λθ

θ + k + 1

[

−(n − Sm−1 − r + 1)µ
(R1,R2,...,Rm−2,Rm−1+Rm+1)
m−1:m−1:n

(θ+k+1)

+(Rm + 1)µ(R1,...,Rm)
m:m:n

(θ+k+1)
]

.

Remark 1 It may be mentioned that if R1 = R2 = ... = Rk−1 = 0, i.e. there is no censoring before
the time of the kth failure, then the first k progressively Type-II right censored order statistics are simply
the first k usual order statistics. Thus, for the special case R1 = R2 = ... = Rm = 0, so that m = n in
which case the progressively censored order statistics become the usual order statistics X1:n, X2:n, ..., Xn:n,
the recurrence relations established in Section 3 would reduce to the corresponding recurrence relations for the
single moments of usual order statistics from the odds generalized exponential-Pareto distribution satisfying
the characterizing differential equation (4).

4 Recurrence Relations for Product Moments

Using (1) we can write the product moments of progressively Type-II right censored order statistics as
follows:

µ(R1,R2,...,Rm)(k1,k2)

r,s:m:n = E

[{

X(R1,R2,...,Rm)
r:m:n

}k1
{

X(R1,R2,...,Rm)
s:m:n

}k2
]

= A(n, m− 1)

∫ ∫

· · ·

∫

0≤x1<x2<...<xm<∞

∫

xk1
r xk2

s

m∏

t=1

f(xt)[1− F (xt)]
Rtdxt, (14)

where 1 ≤ r < s ≤ m ≤ n and k1, k2 ≥ 0. In this Section, we shall derive various recurrence relations for the
product moments of progressively Type-II right censored order statistics from odds generalized exponential-
Pareto distribution with p.d.f. f(x) and c.d.f. F(x) satisfying the characterizing differential equation (4).

Theorem 6 For 2 ≤ r < s ≤ m < n, k, t ≥ 0 and Rr ≥ 0,

αθµ(R1,R2,...,Rm)
r,s:m:n

(k+1,t)
=

λθ

θ + k + 1

[

(n − Sr − r)µ
(R1,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r,s−1:m−1:n

(θ+k+1,t)

−(n − Sr−1 − r + 1)µ
(R1,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1,s−1:m−1:n

(θ+k+1,t)

+(Rr + 1)µ(R1,...,Rm)
r,s:m:n

(θ+k+1,t)
]

. (15)

Proof. From (14), let us consider for 2 ≤ r < s ≤ m < n, k, t ≥ 0 and Rr ≥ 0,

αθµ(R1,R2,...,Rm)
r,s:m:n

(k+1,t)

= A(n, m− 1)

∫ ∫

· · ·

∫

0≤x1<x2<...<xr−1<xr+1<...xm<∞

xt
sI(xr−1 , xr+1)

m∏

u=1,u 6=r

f(xu)[1− F (xu)]Rudxu, (16)

where I(xr−1, xr+1) is the same as given in equation (12). Now putting the value of I(xr−1, xr+1) into the
equation (16) and then simplifying, it leads to (15).

Theorem 7 For 2 ≤ s ≤ m ≤ n − R1, k, t ≥ 0 and R1 ≥ 0,

αθµ
(R1,R2,...,Rm)
1,s:m:n

(k+1,t)
=

λθ

θ + k + 1

[

(n − S1 − 1)µ
(R1+R2+1,R3,...,Rm)
1,s−1:m−1:n

(θ+k+1,t)

−nαθ+k+1µ
(R2,R3,R4,...,Rm)
s−1:m−1:n−R1−1

(k)
+ (R1 + 1)µ

(R1,R2,...,Rm)
1,s:m:n

(θ+k+1,t)
]

. (17)
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Proof. The relation in (17) may be proved by following exactly the same steps as those used in proving
Theorem 6.

Theorem 8 For 1 ≤ r < s < m < n, k, t ≥ 0 and Rs ≥ 0,

αθµ(R1,R2,...,Rm)
r,s:m:n

(k,t+1)
=

λθ

θ + t + 1

[

(n − Ss − s)µ
(R1,...,Rs−1,Rs+Rs+1+1,Rs+2,...,Rm)
r,s:m−1:n

(k,t+θ+1)

−(n − Ss−1 − s + 1)µ
(R1,...,Rs−2,Rs−1+Rs+1,Rs+1,...,Rm)
r,s−1:m−1:n

(k,t+θ+1)

+(Rs + 1)µ(R1,...,Rm)
r,s:m:n

(k,t+θ+1)
]

. (18)

Proof. The relation in (18) may be proved by following the similar steps as those used in proving (15).
Finally, we state another result on product moments which can be established on similar lines.

Theorem 9 For 1 ≤ r < m < n, k, t ≥ 0 and Rm ≥ 0,

αθµ(R1,R2,...,Rm)
r,m:m:n

(k,t+1)
=

λθ

θ + t + 1

[

−(n − Sm−1 − m + 1)µ
(R1,...,Rm−2,Rm−1+Rm+1)
r−1,m−1:m−1:n

(k,t+θ+1)

+(Rm + 1)µ(R1,...,Rm)
r,m:m:n

(k,t+θ+1)
]

. (19)

Remark 2 For the special case R1 = R2 = ... = Rm = 0, the recurrence relations established in Section 4
reduce to the corresponding recurrence relations for the product moments of usual order statistics from the
odds generalized exponential-Pareto distribution satisfying the characterizing differential equation (4).

5 Numerical Results

The recurrence relations obtained in the preceding Sections 3 and 4 allow us to evaluate the means, variances
and covariances of progressively Type-II right censored order statistics from odds generalized exponential-
Pareto distribution for all sample sizes ’n’ and all censoring schemes (R1, R2, ..., Rm), m < n. These
quantities can be used for various inferential purposes; for example, they are useful in determining BLUEs of
location/scale parameters and BLUPs of censored failure times. In this Section, we compute means, variances
and covariances of progressively Type-II right censored order statistics from odds generalized exponential-
Pareto distribution for some specific values of parameters, viz. α = 1, λ = 2, θ = 2, for sample sizes up to
n = 8 and for different choices of m and progressive censoring schemes (R1, R2, ..., Rm), m < n. These
values are presented in the following Tables 1 and 2.

Table 1: First four single moments of progressively Type-II right
censored order statistics from odds generalized exponential-Pareto
distribution

S.No. n m Censoring Scheme µ
(R1,R2,...,Rm)
r:m:n

(k)
, r = 1, 2, ...,m and k = 1

1 4 2 1,1 1.059163 1.167175
2 5 2 1,2 1.047804 1.122423
3 5 2 2,1 1.047804 1.156746
4 5 2 0, 3 1.047804 1.104598
5 5 2 3, 0 1.047804 1.251405
6 6 2 2, 2 1.040112 1.115192
7 7 2 3, 2 1.034556 1.109974
8 4 3 0, 0, 1 1.059163 1.133118 1.235289
9 5 3 0, 0, 2 1.047804 1.104598 1.175899
10 5 3 0, 1, 1 1.047804 1.104598 1.208894
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11 5 3 2, 0, 0 1.047804 1.156746 1.346063
12 6 3 1, 1, 1 1.040112 1.097265 1.202131
13 6 3 1,2,0 1.040112 1.097265 1.293977
14 6 3 1,0,2 1.040112 1.097265 1.168972
15 7 3 0, 2, 2 1.034556 1.073450 1.146498
16 7 3 1, 2, 1 1.034556 1.080926 1.187074
17 5 4 0, 0, 0, 1 1.047804 1.104598 1.175899 1.274883
18 5 4 1, 0, 0, 0 1.047804 1.122423 1.225391 1.406400
19 6 4 1, 0, 1, 0 1.040112 1.097265 1.168972 1.356480
20 7 4 1, 2, 0, 0 1.034556 1.080926 1.187074 1.372562
21 8 4 1,3,0,0 1.030353 1.069389 1.176467 1.363248
22 8 4 2,0,0,2 1.030353 1.076890 1.132307 1.202054
23 8 4 1,1,2,0 1.030353 1.069389 1.125141 1.318097

S.No. n m Censoring Scheme µ
(R1,R2,...,Rm)
r:m:n

(k)
, r = 1, 2, ...,m and k = 2

1 4 2 1,1 1.125000 1.375000
2 5 2 1,2 1.100000 1.266667
3 5 2 2,1 1.100000 1.350000
4 5 2 0, 3 1.100000 1.225000
5 5 2 3, 0 1.100000 1.600000
6 6 2 2, 2 1.083333 1.250000
7 7 2 3, 2 1.071429 1.238095
8 4 3 0, 0, 1 1.125000 1.291667 1.541667
9 5 3 0, 0, 2 1.100000 1.225000 1.391667
10 5 3 0, 1, 1 1.100000 1.225000 1.475000
11 5 3 2, 0, 0 1.100000 1.350000 1.850000
12 6 3 1, 1, 1 1.083333 1.208333 1.45833
13 6 3 1,2,0 1.083333 1.208333 1.708333
14 6 3 1,0,2 1.083333 1.208333 1.375000
15 7 3 0, 2, 2 1.071429 1.154762 1.321429
16 7 3 1, 2, 1 1.071429 1.171429 1.421429
17 5 4 0, 0, 0, 1 1.100000 1.225000 1.391667 1.641667
18 5 4 1, 0, 0, 0 1.100000 1.266667 1.516667 2.016667
19 6 4 1, 0, 1, 0 1.083333 1.208333 1.375000 1.875000
20 7 4 1, 2, 0, 0 1.071429 1.171429 1.421429 1.921429
21 8 4 1,3,0,0 1.062500 1.145833 1.395833 1.895833
22 8 4 2,0,0,2 1.062500 1.162500 1.287500 1.454167
23 8 4 1,1,2,0 1.062500 1.145833 1.270833 1.770833

S.No. n m Censoring Scheme µ
(R1,R2,...,Rm)
r:m:n

(k)
, r = 1, 2, ...,m and k = 3

1 4 2 1,1 1.198593 1.636284
2 5 2 1,2 1.157171 1.437777
3 5 2 2,1 1.157171 1.590950
4 5 2 0, 3 1.157171 1.364283
5 5 2 3, 0 1.157171 2.095724
6 6 2 2, 2 1.130014 1.408812
7 7 2 3, 2 1.110845 1.388339
8 4 3 0, 0, 1 1.198593 1.481873 1.945106
9 5 3 0, 0, 2 1.157171 1.364283 1.658258
10 5 3 0, 1, 1 1.157171 1.364283 1.817618
11 5 3 2, 0, 0 1.157171 1.590950 2.600498
12 6 3 1, 1, 1 1.130014 1.335751 1.786550
13 6 3 1,2,0 1.130014 1.335751 2.306234
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14 6 3 1,0,2 1.130014 1.335751 1.627994
15 7 3 0, 2, 2 1.110845 1.245027 1.531651
16 7 3 1, 2, 1 1.110845 1.272984 1.718137
17 5 4 0, 0, 0, 1 1.157171 1.364283 1.658258 2.136339
18 5 4 1, 0, 0, 0 1.157171 1.437777 1.897298 2.952098
19 6 4 1, 0, 1, 0 1.130014 1.335751 1.627994 2.645354
20 7 4 1, 2, 0, 0 1.110845 1.272984 1.718137 2.747558
21 8 4 1,3,0,0 1.096596 1.230269 1.671445 2.693880
22 8 4 2,0,0,2 1.096596 1.258129 1.470437 1.770950
23 8 4 1,1,2,0 1.096596 1.230269 1.441233 2.429806

S.No. n m Censoring Scheme µ
(R1,R2,...,Rm)
r:m:n

(k)
, r = 1, 2, ...,m and k = 4

1 4 2 1,1 1.281250 1.968750
2 5 2 1,2 1.220000 1.642222
3 5 2 2,1 1.220000 1.895000
4 5 2 0, 3 1.220000 1.526250
5 5 2 3, 0 1.220000 2.820000
6 6 2 2, 2 1.180556 1.597222
7 7 2 3, 2 1.153061 1.565760
8 4 3 0, 0, 1 1.281250 1.711806 2.482639
9 5 3 0, 0, 2 1.220000 1.526250 1.990139
10 5 3 0, 1, 1 1.220000 1.526250 2.263750
11 5 3 2, 0, 0 1.220000 1.895000 3.745000
12 6 3 1, 1, 1 1.180556 1.482639 2.211806
13 6 3 1,2,0 1.180556 1.482639 3.190972
14 6 3 1,0,2 1.180556 1.482639 1.940972
15 7 3 0, 2, 2 1.153061 1.345522 1.785998
16 7 3 1, 2, 1 1.153061 1.387347 2.098061
17 5 4 0, 0, 0, 1 1.220000 1.526250 1.990139 2.810972
18 5 4 1, 0, 0, 0 1.220000 1.642222 2.400556 4.417222
19 6 4 1, 0, 1, 0 1.180556 1.482639 1.940972 3.815972
20 7 4 1, 2, 0, 0 1.153061 1.387347 2.098061 4.019490
21 8 4 1,3,0,0 1.132813 1.323785 2.021701 3.917535
22 8 4 2,0,0,2 1.132813 1.365313 1.687188 2.171910
23 8 4 1,1,2,0 1.132813 1.323785 1.641493 3.412326

Table 2: Variances and covariances of progressively Type-II right
censored order statistics from odds generalized exponential-Pareto
distribution

m s r σ
(1,1)
r,s:m:4 σ

(2,1)
r,s:m:5 σ

(1,2)
r,s:m:5 σ

(0,3)
r,s:m:5 σ

(3,0)
r,s:m:5

2 1 1 0.003174 0.002106 0.002106 0.002106 0.002016
2 1 0.002917 0.001981 0.001931 0.002009 0.001811

2 0.012702 0.006832 0.011939 0.004863 0.033986

s r σ
(2,2)
r,s:m:6 σ

(3,2)
r,s:m:7

1 1 0.0015 0.001123
2 1 0.001409 0.001054

2 0.006347 0.006053

m s r σ
(0,0,1)
r,s:m:4 σ

(0,0,2)
r,s:m:5 σ

(0,1,1)
r,s:m:5 σ

(2,0,0)
r,s:m:5 σ

(1,1,1)
r,s:m:6

3 1 1 0.003174 0.002106 0.002106 0.002106 0.0015
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2 1 0.00299 0.002009 0.002009 0.001931 0.001429
2 0.007709 0.004863 0.004863 0.011939 0.004343

3 1 0.00277 0.001898 0.001853 0.00169 0.001317
2 0.007146 0.004597 0.00449 0.010517 0.004006
3 0.015727 0.008928 0.013576 0.038113 0.013215

s r σ
(1,2,0)
r,s:m:6 σ

(1,0,2)
r,s:m:6 σ

(0,2,2)
r,s:m:7 σ

(1,2,1)
r,s:m:7

1 1 0.0015 0.0015 0.001123 0.001123
2 1 0.001429 0.001429 0.001086 0.001079

2 0.004343 0.004343 0.002466 0.003028
3 1 0.001238 0.001349 0.001022 0.000992

2 0.00377 0.004103 0.002323 0.002786
3 0.033957 0.008505 0.006971 0.012284

m s r σ
(0,0,0,1)
r,s:m:5 σ

(1,0,0,0)
r,s:m:5 σ

(1,0,1,0)
r,s:m:6 σ

(1,2,0,0)
r,s:m:7 σ

(1,3,0,0)
r,s:m:8

4 1 1 0.002106 0.002106 0.0015 0.001123 0.000872
2 1 0.002009 0.001981 0.001429 0.001079 0.000843

2 0.004863 0.006832 0.004343 0.003028 0.002241
3 1 0.001893 0.001831 0.001349 0.000992 0.000774

2 0.004597 0.006327 0.004103 0.002786 0.002058
3 0.008928 0.015084 0.008505 0.012284 0.011758

4 1 0.001764 0.001619 0.001183 0.000871 0.000678
2 0.004275 0.005608 0.003603 0.002449 0.001804
3 0.008308 0.013403 0.007479 0.010864 0.010386
4 0.01634 0.038706 0.034963 0.010864 0.037388

s r σ
(1,1,2,0)
r,s:m:8 σ

(2,0,0,2)
r,s:m:8

1 1 0.000872 0.000872
2 1 0.000843 0.000838

2 0.002241 0.002809
3 1 0.000804 0.0008

2 0.002139 0.002683
3 0.00489 0.005382

4 1 0.000699 0.000757
2 0.001861 0.002541
3 0.004264 0.005098
4 0.033455 0.009232

6 BLUEs of µ and σ

Suppose we obtain a progressively Type-II censored data from the location-scale parameter odds generalized
exponential-Pareto distribution with c.d.f. as given in (5).

In this section, we make use of means, variances and covariances of progressively Type-II right censored
order statistics as determined by using the recurrence relations given in Sections 3 and 4 for deriving the
BLUEs of the location and scale parameters µ and σ as well as the variances and covariance of these estimates.

Let Y1:m:n ≤ Y2:m:n ≤ ... ≤ Ym:m:n be a progressively Type-II right censored sample from the location-

scale parameter odds generalized exponential-Pareto distribution (5), and let Xi:m:n = (Yi:m:n−µ)
σ

, i =
1, 2, ...,m, be the corresponding progressively Type-II right censored order statistics from the location-scale
parameter odds generalized exponential-Pareto distribution.
Let us denote E(Xi:m:n) by µi, V ar(Xi:m:n) by σi,i and Cov(Xi:m:n , Xj:m:n) by σi,j; furthermore, let

Y = (Y1:m::n , Y2:m:n, ..., Ym:m:n)T ,
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µ = (µ1, µ2, ..., µm)
T

,

1 = (1, 1, ..., 1
︸ ︷︷ ︸

)T

and ∑

= (σi,j) , 1 ≤ i, j ≤ m.

Then, the BLUEs of µ and σ are obtained by minimizing the generalized variance Q(δ) = (Y −Aδ)T
∑T

(Y −

Aδ) with respect to δ, where δ = (µ, σ)T , A is m × 2 matrix (1, µ), 1 is m × 1 vector with components all
1’s, µ is the mean vector of X, and

∑
is the variance-covariance matrix of X. The minimization leads to

the expressions for the BLUE’s of µ and σ as (see Anrold et al. (1992) and Balakrishnan and Cohen (1991))

µ∗ =

{

µT
∑−1

µ1T
∑−1

−µT
∑−1

1µT
∑−1

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

Y =

m∑

r=1

arYr:m:n (20)

and

σ∗ =

{

1T
∑−1

1µT
∑−1

−1T
∑−1

µ1T
∑−1

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

Y =

m∑

r=1

brYr:m:n , (21)

and the variances and covariance of these BLUEs are given by

V ar(µ∗) = σ2

{

µT
∑−1

µ

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

= σ2V1,

V ar(σ∗) = σ2

{

1T
∑−1

1

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

= σ2V2

and

Cov(µ∗, σ∗) = σ2

{

−µT
∑−1

1

(µT
∑−1

µ)(1T
∑−1

1) − (µT
∑−1

1)2

}

= σ2V3.

The coefficients of the BLUEs in (20) and (21) satisfy the conditions
∑m

r=1 ar = 1 and
∑m

r=1 br = 0
respectively.

The coefficients of the BLUEs for µ and σ, and variances and covariance of these estimates are presented
in Tables 3, 4 and 5, respectively, for various sample sizes up to n = 8 and for different choices of m and
progressive censoring schemes.

7 Best Linear Unbiased Predictors (BLUPs)

Based on observations on m progressively Type-II right censored order statistics Y
(R1,...,Rm)
1:m:n , ..., Y

(R1,...,Rm)
m:m:n ,

we discuss the prediction of times to failure of the last Rm(≥ 1) units still surviving at the observation

Y
(R1,...,Rm)
m:m:n . Of course, one can discuss the prediction of other censored failure times in a similar manner

as well. Doganaksoy and Balakrishnan [18] established that the BLUEs remain unchanged if the BLUPs of
future failures are treated as observed values.

The BLUP of Y
(R1,...,Rm−1,0,Rm−1)

m+1:m+1:n from any location-scale family of distributions is given by

Y
(R1,...,Rm−1,0,Rm−1)∗

m+1:m+1:n = µ∗ + µm+1:m+1:nσ∗ + wT Σ−1 (Y − µ∗1 − σ∗µ)

and its variance is given by

σ2
{
σm+1,m+1:m+1:n − ωT Σ−1ω + λ2

11
T Σ−11 + λ2

2µ
T Σ−1µ + 2λ1λ2µ

T Σ−11
}

,
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Table 3: Coefficients of the BLUEs of location parameter
S.No. n m Censoring Scheme ai, i = 1, 2, ...,m

1 4 2 1, 1 10.805950 -9.805950
2 5 2 1, 2 15.042050 -14.042050
3 5 2 2, 1 10.618040 -9.61804
4 5 2 0, 3 19.44926 -18.44926
5 5 2 3, 0 6.146378 -5.146378
6 6 2 2, 2 14.85344 -13.85344
7 7 2 3, 2 14.71755 -13.71755
8 4 3 0, 0, 1 8.079980 -1.838169 -5.241810
9 5 3 0, 0, 2 10.169140 -1.777174 -7.391970
10 5 3 0, 1, 1 9.996353 -3.848794 -5.147559
11 5 3 2, 0, 0 5.676797 -1.833391 -2.843406
12 6 3 1, 1, 1 9.874548 -3.792754 -5.081794
13 6 3 1, 2, 0 9.488743 -5.667589 -2.821154
14 6 3 1, 0, 2 10.045720 -1.750421 -7.295299
15 7 3 0, 2, 2 14.020600 -5.790736 -7.229864
16 7 3 1, 2, 1 11.777880 -5.739782 -5.038098
17 5 4 0, 0, 0, 1 7.024789 -1.121289 -1.306854 -3.596646
18 5 4 1, 0, 0, 0 5.487852 -1.107954 -1.363946 -2.015953
19 6 4 1, 0, 1, 0 6.786662 -1.075428 -2.729666 -1.981568
20 7 4 1, 2, 0, 0 7.814908 -3.513118 -1.317460 -1.984329
21 8 4 1, 1, 2, 0 9.244409 -2.289104 -4.004055 -1.951251
22 8 4 1, 3, 0, 0 8.955894 -4.677955 -1.303474 -1.974466
23 8 4 2, 0, 0, 2 8.292759 -1.085876 -1.231713 -4.975170

where

Y =
(

Y
(R1,...,Rm−1,0,Rm−1)
1:m+1:n , ..., Y

(R1,...,Rm−1,0,Rm−1)
m:m+1:n

)T

,

E(Y ) = µ1 + σµ = (µ + σµ1:m+1:n , ..., µ+ σµm:m+1:n)
T

V ar(Y ) = σ2Σ = σ2





σ1,1:m+1:n ... σ1,m:m+1:n

... ... ...

σm,1:m+1:n ... σm,m:m+1:n



 ,

E(Y
(R1,...,Rm−1,0,Rm−1)
m+1:m+1:n ) = µ + σµm+1:m+1:n ,

V ar
(

Y
(R1,...,Rm−1,0,Rm−1)
m+1:m+1:n

)

= σ2σm+1,m+1:m+1:n ,

Cov
(

Y
(R1,...,Rm−1,0,Rm−1)
m+1:m+1:n , Y

)

= σ2ω = σ2 (σm+1,1:m+1:n, ..., σm+1,m:m+1:n)
T

,

λ1 =
µT Σ−1µ − µT Σ−1µwT Σ−11 − µm+1:m+1:nµT Σ−11 + µT Σ−11wT Σ−1µ

∆
and

λ2 =
−µT Σ−11 + µT Σ−11wT Σ−11 + µm+1:m+1:n1T Σ−11 + 1T Σ−11wT Σ−1µ

∆

with ∆ =
(
µT Σ−1µ

) (
1T Σ−11

)
−

(
µT Σ−11

)2
. Also, µi:m+1:n and σi,j:m+1:n denote respectively the mean

and covariance of the progressively Type-II right censored order statistics from the standard (µ = 0, σ = 1)
distribution, and µ∗ and σ∗ are the BLUEs of µ and σ based on the progressively Type-II censoed sample Y.
The BLUPs and their variances can therefore be readily computed from the means, variances and covariances
of the progressively Type-II right censoed order statistics produced in Section 5. It is also illustrated in the
next section with two numerical examples one using real data and another one using simulated data set.
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Table 4: Coefficients of the BLUEs of scale parameter
S.No. n m Censoring Scheme bi, i = 1, 2, ...,m

1 4 2 1, 1 -9.258205 9.258205
2 5 2 1, 2 -13.40141 13.40141
3 5 2 2, 1 -9.179234 9.179234
4 5 2 0, 3 -17.60754 17.60754
5 5 2 3, 0 -4.911583 4.911583
6 6 2 2, 2 -13.31918 13.31918
7 7 2 3, 2 -13.25936 13.25936
8 4 3 0, 0, 1 -6.686697 1.739272 4.947425
9 5 3 0, 0, 2 -8.752319 1.698793 7.053526
10 5 3 0, 1, 1 -8.587998 3.676425 4.911573
11 5 3 2, 0, 0 -4.465068 1.752332 2.712736
12 6 3 1, 1, 1 -8.533840 3.648865 4.884975
13 6 3 1, 2, 0 -8.163935 5.423240 2.711611
14 6 3 1, 0, 2 -8.697977 1.684909 7.013068
15 7 3 0, 2, 2 -12.587010 5.599336 6.987674
16 7 3 1, 2, 1 -10.419380 5.550225 4.869155
17 5 4 0, 0, 0, 1 -5.753108 1.073185 1.249299 3.430625
18 5 4 1, 0, 0, 0 -4.286544 1.060581 1.303556 1.922407
19 6 4 1, 0, 1, 0 -5.566479 1.036335 2.626133 1.904011
20 7 4 1, 2, 0, 0 -6.590625 3.398970 1.274528 1.917127
21 8 4 1, 1, 2, 0 -8.004078 2.223580 3.887424 1.893073
22 8 4 1, 3, 0, 0 -7.724730 4.543236 1.265933 1.915561
23 8 4 2, 0, 0, 2 -7.079321 1.055248 1.196429 4.827644

8 Illustrative Examples

Example 1 Consider the data, produced in Nelson [23], giving the log-times to breakdown of an insulating
fluid in an accelerated test at 28kv.

i 1 2 3
yi:m:n 4.2319 4.6848 4.7031

Ri 0 0 2

In this case, we have n = 5, m = 3. The correlation between above censored values and the corresponding
expected values in Table 1 for n = 5, m = 3 with censoring scheme (0, 0, 2) is 0.850108, which indicates
a quite high degree of correlation. Hence assuming the data have come from odds generalized exponential-
Pareto distribution as given in (5), with specific values of parameters, viz. α = 1, λ = 2, θ = 2, based on
the progressively Type-II right censored sample y1:3:5, y2:3:5, y3:3:5 presented above, we find the BLUEs of µ

and σ to be

µ∗ = 4.2319× 10.169140 + 4.6848× (−1.777174) + 4.7031× (−7.391970)

= −0.0560953,

σ∗ = 4.2319× (−8.752319)+ 4.6848× 1.698793 + 4.7031× 7.053526

= 4.093005

respectively, and their standard errors to be

SE(µ∗) = σ∗

√

µT Σ−1µ

(µT Σ−1µ) (1T Σ−11) − (µT Σ−11)
2 = 2.846996,
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Table 5: Variances and covariance of the BLUEs when µ = 0 and σ = 1
S.no. n m Censoring Scheme V ar(µ∗) var(σ∗) Cov(µ∗, σ∗)

1 4 2 1, 1 0.973789 0.860719 -0.914020
2 5 2 1, 2 0.986913 0.893795 -0.938200
3 5 2 2, 1 0.947471 0.858004 -0.900628
4 5 2 0, 3 1.010458 0.915163 -0.960630
5 5 2 3, 0 0.865161 0.783330 -0.822228
6 6 2 2, 2 0.969164 0.892138 -0.929135
7 7 2 3, 2 0.956628 0.890970 -0.922674
8 4 3 0, 0, 1 0.479645 0.420352 -0.447539
9 5 3 0, 0, 2 0.483826 0.435652 -0.458110
10 5 3 0, 1, 1 0.474829 0.427520 -0.449555
11 5 3 2, 0, 0 0.431041 0.387949 -0.407930
12 6 3 1, 1, 1 0.465223 0.426427 -0.444686
13 6 3 1, 2, 0 0.445339 0.408157 -0.425625
14 6 3 1, 0, 2 0.474093 0.434579 -0.453189
15 7 3 0, 2, 2 0.478834 0.444566 -0.460841
16 7 3 1, 2, 1 0.464892 0.431595 -0.447394
17 5 4 0, 0, 0, 1 0.307085 0.274851 -0.289527
18 5 4 1, 0, 0, 0 0.287728 0.257431 -0.271164
19 6 4 1, 0, 1, 0 0.292460 0.266886 -0.278665
20 7 4 1, 2, 0, 0 0.285009 0.263689 -0.273603
21 8 4 1, 1, 2, 0 0.294093 0.274922 -0.283944
22 8 4 1, 3, 0, 0 0.283963 0.265431 -0.274119
23 8 4 2, 0, 0, 2 0.303245 0.283494 -0.292782

SE(σ∗) = σ∗

√

1T Σ−11

(µT Σ−1µ) (1T Σ−11) − (µT Σ−11)
2 = 2.701575.

We obtain the BLUP of y
(0,0,0,1)
4:4:5 to be y

(0,0,0,1)∗

4:4:5 = 5.111442 (by taking w = (σm+1,1:m+1:n , ..., σm+1,m:m+1:n)T

and progressive censoring scheme (R1, ..., Rm−1, 0, Rm − 1)).

Example 2 The following progressively Type-II right censored sample from the odds generalized exponential-
Pareto distribution, with parameters, viz. α = 1, λ = 2, θ = 2, is simulated with m = 2, n = 5, location
parameter µ = 0, scale parameter σ = 1 and censoring scheme (0, 3) : 1.019693, 1.074034. We find BLUEs
of µ and σ to be

µ∗ = 1.019693× 19.44926 + 1.074034× (−18.44926)

= 0.01714176,

σ∗ = 1.019693× (−17.60754) + 1.074034× 17.60754

= 0.9568113

respectively, and their standard errors to be SE(µ∗) = 0.961801 and SE(σ∗) = 0.915325. We obtain the

BLUP of y
(0,0,2)
3:3:5 to be y

(0,0,2)∗

3:3:5 = 1.142256 (by taking w = (σm+1,1:m+1:n, ..., σm+1,m:m+1:n)T and progres-
sive censoring scheme (R1, ..., Rm−1, 0, Rm − 1)). As established by Doganaksoy and Balakrishnan [18] this
prediction value, now, can be used as observed value and we can predict further future values. So, by taking
w = (σm+2,1:m+2:n, ..., σm+2,m+1:m+2:n)T , µm+2:m+2:n in place of µm+1:m+1:n and the progressive censoring

scheme as (R1, ..., Rm−1, 0, 0, Rm − 2), we can predict the second failure time i.e. BLUP of y
(0,0,0,1)
4:4:5 to be

y
(0,0,0,1)∗

4:4:5 = 1.236965.
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9 Conclusion

In this paper, we have established several recurrence relations for the single and product moments of progres-
sively Type-II right censored order statistics from odds generalized exponential-Pareto distribution. With
the help of these relations and using R software, we have computed all the means, variances and covariances
of progressively Type-II right censored order statistics for different sample sizes and all possible censoring
schemes. These moments have then been used to obtain the best linear unbiased estimators (BLUEs) of lo-
cation and scale parameters of location-scale odds generalized exponential-Pareto distribution (5), as well as
the best linear unbiased predictors (BLUPs) of the times to failure of the surviving units in the experiment.
Finally, two numerical examples, one with real data and another with simulated data, have been presented
to illustrate the estimation and prediction methods discussed in this paper.

Acknowledgements. Authors are grateful to the learned referee for giving valuable comments, which
led to significant improvement in the presentation of the paper.
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