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Abstract

A new general class Sk(t3, t2, t1, t0, µ) of analytic functions with negative coeffi cients is introduced.
The main object of this paper is to find necessary and suffi cient conditions for generalized Bessel func-
tions of first kind z(2 − up(z)) to be in the class S0(t3, t2, t1, t0, µ). Furthermore, we give necessary and
suffi cient conditions for I(m, c)f to be in S1(t3, t2, t1, t0, µ) provided that the function f is in the class
Rτ (A,B). Finally, we give conditions for the integral operator G(m, c, z) =

∫ z
0
(2− up(t))dt to be in the

class S1(t3, t2, t1, t0, µ). A number of known or new results are shown to follow upon specializing the
parameters involved in our main results.

1 Introduction

Let A denote the class of the normalized functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, let T be a subclass of A consisting
of functions of the form,

f(z) = z −
∞∑
n=2

|an| zn, z ∈ U. (2)

A function f ∈ A is said to be in the class Rτ (A,B),τ ∈ C\{0}, −1 ≤ B < A ≤ 1, if it satisfies the inequality∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, z ∈ U.

This class was introduced by Dixit and Pal [15].
Let p(n) = t3n

3 + t2n
2 + t1n+ t0 be a polynomial of degree the most three, with real coeffi cients t3, t2, t1

and t0. Then a function f of the form (2) is in Sk(t3, t2, t1, t0, µ), if and only if it satisfies

∞∑
n=2

nkp(n) |an| ≤ µ (k ∈ N0 = N ∪ {0}, µ > 0). (3)

Remark 1 By suitably specializing the real constants t3, t2, t1, t0, k and µ, the class Sk(t3, t2, t1, t0, µ) in-
cludes as its special cases various classes of analytic functions with negative coeffi cients that were considered
in several works. As for illustrations, we present the following examples.

1. Sk(0, λ2, 1− αλ− λ, α(λ− 1), 1− α) ≡ P(λ, α, k) (Aouf and Srivastava [5]);
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2. Sk(0, 1− βλ, βλ− 1, 0, 1− β) ≡ S∗s,kT (α, β) (Aouf et al. [7]);

3. S1(0, 0, 1 + α,−(α+ β), 1− β) ≡ UCT (α, β) (Bharati [12]);

4. S0(0, 0, 1,−(1 + α), α) ≡ PT (α) (Bharati [12]);

5. S1(0, 0, 1,−(1 + α), α) ≡ CPT (α) (Bharati [12]);

6. S0(0, 0, 2,−(cosα+ β), cosα− β) ≡ SPPT (α, β) (Selvaraj and Geetha [33]);

7. S1(0, 0, 2,−(cosα+ β), cosα− β) ≡ UCSPT (α, β) (Selvaraj and Geetha [33]);

8. S0(0, 0, 1− λα, α(λ− 1), 1− α) ≡ T (λ, α) (Altintaş and Owa [3]);

9. S1(0, 0, 1− λα, α(λ− 1), 1− α) ≡ C(λ, α) (Altintaş and Owa [3]);

10. S0(0, 0, (1 + β)− λ(α+ β), (α+ β)(λ− 1), 1− α) ≡ T Sp(λ, α, β) (Aouf et al. [7]);

11. S1(0, 0, (1 +β)−λ(α+β), (α+β)(λ− 1), 1−α) ≡ UST (λ, α, β) (Murugusundaramoorthy and Magesh
[23]).

12. S0(0, λ, 1− λ− αλ, α(λ− 1), 1− α) ≡ P∗λ(α)(Altintaş et al. [4]);

13. S1(0, λ, 1− λ− αλ, α(λ− 1) ≡ Q∗λ(α)(Altintaş et al. [4]);

14. S0(1,−α, 0, 0, 1− α) ≡M∗(α) (Murugusundaramoorthy et al. [26]);

15. S0(0, 0, 1 + β,−λ(γ + β), 1− γ) ≡ P∗λ(γ, β) (Murugusundaramoorthy et al. [27]);

16. S1(0, 0, 1 + β,−λ(γ + β), 1− γ) ≡ Q∗λ(γ, β)(Murugusundaramoorthy et al. [27]);

17. S0(0, λ, 1− λ,−α, 1− α) ≡ G∗(λ, α) (Murugusundaramoorthy et al. [25]);

18. S1(0, λ, 1− λ,−α, 1− α) ≡ K∗(λ, α) (Murugusundaramoorthy et al. [25]);

19. S0(0, λ(1 + β), 1 + β − λ(2β + α+ 1), (α+ β)(λ− 1), 1− α) ≡ T S(λ, α, β) (Aouf et al. [6]).

20. S0(0, 0, 1 + β,−1 + β(1− 2α), 2α(1− β)) ≡ S∗(α, β) (Gupta and Jain [21]);

21. S1(0, 0, 1 + β,−1 + β(1− 2α), 2α(1− β)) ≡ C∗(α, β) (Gupta and Jain [21]);

22. S0(0, 0, α, 1− α, 1− β) ≡ T (α, β) (Altintaş [1]).

Further, the class Sk(t3, t2, t1, t0, µ) leads to various classes of analytic functions with negative coeffi cients
introduced and studied by several authors (see, for example, [2, 19, 30, 32, 35, 38, 39, 40]).
Let P(C,D) denote the class of analytic function in U which are of the form 1+Cw(z)

1+Dw(z) , where −1 < C <

D ≤ 1 and w(z) is analytic function with w(0) = 0, |w(z)| < 1 in U. Define

S∗(C,D) = {f ∈ A:zf
′(z)

f(z)
∈ P(C,D)}

and
K(C,D) = {f ∈ A:zf ′(z) ∈ S∗(C,D)}.

Goel and Sohi [20](see also, [34]) gave the following necessary and suffi cient conditions for functions f of the
form (2) to be in the classes T ∗(C,D) = S∗(C,D) ∩ T and C(C,D) = K(C,D) ∩ T

∞∑
n=2

(n(1 +D)− (1 + C)) |an| ≤ D − C,
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and
∞∑
n=2

n(n(1 +D)− (1 + C)) |an| ≤ D − C,

respectively.
We observe that

S0(0, 0, 1 +D,−(1 + C), D − C) ≡ T ∗(C,D)

and
S1(0, 0, 1 +D,−(1 + C), D − C) ≡ C(C,D).

For 0 ≤ α < 1 and γ, β ≥ 0, let W(α, γ, β) denote the class of functions f of the form (2) such that

Re{(1− γ + 2β)
f(z)

z
+ (γ − 2β)f ′(z) + βzf ′′(z)} > α, (z ∈ U).

For more details about this class, see [31]. We can easily prove that a function f of the form (1) is in the
class W(α, γ, β) if

∞∑
n=2

[n(n− 1)β + (γ − 2β)n+ (1− γ + 2β)] |an| ≤ 1− α, (4)

and a function f of the form (2) is in the class WT (α, γ, β) = W(α, γ, β) ∩ T if and only if the conditions
(4) is satisfied. We note that

S0(0, β, γ − 3β, 1− γ + 2β, 1− α) =WT (α, γ, β).

The generalized Bessel function wp (see, [8])is defined as a particular solution of the linear differential
equation

zw′′(z) + bzw′(z) + [cz2 − p2 + (1− b)p]w(z) = 0,

where b, p, c ∈ C. The analytic function wp has the form

wp(z) =

∞∑
n=0

(−1)n(c)n

n!Γ(p+ n+ b+1
2 )

.
(z

2

)2n+p
, z ∈ C.

Now, the generalized and normalized Bessel function up is defined with the transformation

up(z) = 2pΓ(p+ n+
b+ 1

2
)z−p/2wp(z

1/2) =

∞∑
n=0

(−c/4)n

(m)nn!
zn,

where m = p+(b+1)/2 6= 0,−1,−2, . . . and (a)n is the well-known Pochhammer (or Appell) symbol, defined
in terms of the Euler Gamma function for a 6= 0,−1,−2, . . . by

(a)n =
Γ(a+ n)

Γ(a)
=

{
1, if n = 0,
a(a+ 1)(a+ 2) . . . (a+ n− 1), if n ∈ N.

The function up is analytic on C and satisfies the second-order linear differential equation

4z2u′′(z) + 2(2p+ b+ 1)zu′(z) + czu(z) = 0.

Using the Hadamard product, we now considered a linear operator I(m, c) : A → A defined by

I(m, c)f = zup(z) ∗ f(z) = z +

∞∑
n=2

(−c/4)n−1

(m)n−1(n− 1)!
anz

n,

where ∗ denote the convolution or Hadamard product of two series.
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The study of the generalized Bessel function is a recent interesting topic in geometric function theory.
We refer, in this connection, to the works of [8, 9, 10, 11, 17] and others.
Motivated by results on connections between various subclasses of analytic univalent functions by using

hypergeometric functions (see, for example, [14, 22, 36, 37])) and the generalized Bessel functions (see, for
example, [13, 16, 24, 26, 29])) in this paper we determine necessary and suffi cient conditions for z(2−up(z)) to
be in the class class S0(t3, t2, t1, t0, µ). Furthermore, we give necessary and suffi cient conditions for I(m, c)f
to be in S1(t3, t2, t1, t0, µ) provided that the function f is in the class Rτ (A,B). Finally, we give conditions
for the integral operator G(m, c, z) =

∫ z
0

(2− up(t))dt to be in the class S1(t3, t2, t1, t0, µ).

2 The Necessary and Suffi cient Conditions

To establish our main results, we shall require the following lemmas.

Lemma 1 ([10]) If b, p, c ∈ C and m 6= 0,−1,−2, . . . , then the function up satisfies the recursive relation

u′p(z) =
(−c/4)

m
up+1(z), u

′′
p(z) =

(−c/4)2

m(m+ 1)
up+2(z), u

′′′

p (z) =
(−c/4)3

m(m+ 1)(m+ 2)
up+3(z),

u
(4)

p (z) =
(−c/4)4

m(m+ 1)(m+ 2)(m+ 3)
up+4(z),

for all z ∈ C.

Lemma 2 ([15]) If f ∈ Rτ (A,B) is of the form, then

|an| ≤ (A−B)
|τ |
n
, n ∈ N− {1}.

The result is sharp.

Unless otherwise mentioned, we shall assume in this paper that c < 0, m > 0(m 6= 0,−1,−2, . . .),
and µ > 0. First we obtain the necessary and suffi cient condition for z(2 − up(z)) to be in the class
S0(t3, t2, t1, t0, µ).

Theorem 1 z(2− up(z)) ∈ S0(t3, t2, t1, t0, µ) if and only if

t3u
′′′
p (1) + (t2 + 6t3)u

′′
p(1) + (t1 + 3t2 + 7t3)u

′
p(1) + (t0 + t1 + t2 + t3)(up(1)− 1) ≤ µ. (5)

Proof. Since

z(2− up(z)) = z −
∞∑
n=2

(−c/4)n−1

(m)n−1(n− 1)!
zn, (6)

according to (3), we must show that

∞∑
n=2

(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1(n− 1)!
≤ µ. (7)

Writing
n = (n− 1) + 1, (8)

n2 = (n− 1)(n− 2) + 3(n− 1) + 1, (9)

and
n3 = (n− 1)(n− 2)(n− 3) + 6(n− 1)(n− 2) + 7(n− 1) + 1, (10)
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we have
∞∑
n=2

(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1(n− 1)!

= t3

∞∑
n=2

(n− 1)(n− 2)(n− 3)
(−c/4)n−1

(m)n−1(n− 1)!

+(t2 + 6t3)

∞∑
n=2

(n− 1)(n− 2)
(−c/4)n−1

(m)n−1(n− 1)!

+(t1 + 3t2 + 7t3)

∞∑
n=2

(n− 1)
(−c/4)n−1

(m)n−1(n− 1)!
+ (t1 + t2 + t3 + t0)

∞∑
n=2

(−c/4)n−1

(m)n−1(n− 1)!

= t3

∞∑
n=4

(−c/4)n−1

(m)n−1(n− 4)!
+ (t2 + 6t3)

∞∑
n=3

(−c/4)n−1

(m)n−1(n− 3)!
+ (t1 + 3t2 + 7t3)

∞∑
n=2

(−c/4)n−1

(m)n−1(n− 2)!

+(t1 + t2 + t3 + t0)

∞∑
n=2

(−c/4)n−1

(m)n−1(n− 1)!

= t3

∞∑
n=0

(−c/4)n+3

(m)n+3n!
+ (t2 + 6t3)

∞∑
n=0

(−c/4)n+2

(m)n+2n!
+ (t1 + 3t2 + 7t3)

∞∑
n=0

(−c/4)n+1

(m)n+1n!

+(t1 + t2 + t3 + t0)

∞∑
n=0

(−c/4)n+1

(m)n+1(n+ 1)!

= t3
(−c/4)3

m(m+ 1)(m+ 2)

∞∑
n=0

(−c/4)n

(m+ 3)nn!
+ (t2 + 6t3)

(−c/4)2

m(m+ 1)

∞∑
n=0

(−c/4)n

(m+ 2)nn!

+(t1 + 3t2 + 7t3)
(−c/4)

m

∞∑
n=0

(−c/4)n

(m+ 1)nn!
+ (t1 + t2 + t3 + t0)

∞∑
n=0

(−c/4)n+1

(m)n+1(n+ 1)!

= t3
(−c/4)3

m(m+ 1)(m+ 2)
up+3(1) + (t2 + 6t3)

(−c/4)2

m(m+ 1)
up+2(1)

+(t1 + 3t2 + 7t3)
(−c/4)

m
up+1(1) + (t1 + t2 + t3 + t0)(up(1)− 1)

= t3u
′′′
p (1) + (t2 + 6t3)u

′′
p(1) + (t1 + 3t2 + 7t3)u

′
p(1) + (t1 + t2 + t3 + t0)(up(1)− 1). (11)

But this last expression is bounded above by µ if (5) holds.

Theorem 2 z(2− up(z)) ∈ S1(t3, t2, t1, t0, µ) if and only if

t3u
(4)
p (1) + (10t3 + t2)u

′′′
p (1) + (25t3 + 6t2 + t1)u

′′
p(1) + (15t3 + 7t2 + 3t1 + t0)u

′
p(1)

+(t3 + t2 + t1 + t0)(up(1)− 1) ≤ µ. (12)

Proof. In view of (3), we must show that
∞∑
n=2

n(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1(n− 1)!
≤ µ,

or, equivalently
∞∑
n=2

(t3n
4 + t2n

3 + t1n
2 + t0n)

(−c/4)n−1

(m)n−1(n− 1)!
≤ µ.

Making use of (8)—(9) and writing

n4 = (n− 1)(n− 2)(n− 3)(n− 4) + 10(n− 1)(n− 2)(n− 3) + 25(n− 1)(n− 2) + 15(n− 1) + 1,
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we have

∞∑
n=2

(t3n
4 + t2n

3 + t1n
2 + t0n)

(−c/4)n−1

(m)n−1(n− 1)!

= t3

∞∑
n=5

(−c/4)n−1

(m)n−1(n− 5)!
+ (10t3 + t2)

∞∑
n=4

(−c/4)n−1

(m)n−1(n− 4)!
+ (25t3 + 6t2 + t1)

∞∑
n=3

(−c/4)n−1

(m)n−1(n− 3)!

+(15t3 + 7t2 + 3t1 + t0)

∞∑
n=2

(−c/4)n−1

(m)n−1(n− 2)!
+ (t3 + t2 + t1 + t0)

∞∑
n=2

(−c/4)n−1

(m)n−1(n− 1)!

= t3
(−c/4)4

m(m+ 1)(m+ 2)(m+ 3)

∞∑
n=0

(−c/4)n

(m+ 4)nn!
+ (10t3 + t2)

(−c/4)3

m(m+ 1)(m+ 2)

∞∑
n=0

(−c/4)n

(m+ 3)nn!

+(25t3 + 6t2 + t1)
(−c/4)2

m(m+ 1)

∞∑
n=0

(−c/4)n

(m+ 2)nn!
+ (15t3 + 7t2 + 3t1 + t0)

(−c/4)

m

∞∑
n=0

(−c/4)n

(m+ 1)nn!

(t3 + t2 + t1 + t0)

∞∑
n=0

(−c/4)n+1

(m)n+1(n+ 1)!

= t3u
(4)
p (1) + (10t3 + t2)u

′′′
p (1) + (25t3 + 6t2 + t1)u

′′
p(1) + (15t3 + 7t2 + 3t1 + t0)u

′
p(1)

+(t3 + t2 + t1 + t0)(up(1)− 1).

But this last expression is bounded above by µ if (12) holds.

Theorem 3 z(2− up(z)) ∈ S0(t3, t2, t1, t0, µ) if and only if

e(
−c
4m )[t3(

−c
4m

)3 + (t2 + 6t3)(
−c
4m

)2 + (t1 + 3t2 + 7t3)(
−c
4m

) + (t1 + t2 + t3 + t0)(1− e(
c
4m ))] ≤ µ. (13)

Proof. We note that (m)n−1 = m(m+ 1)(m+ 2) · · · (m+ n− 2) ≥ m(m+ 1)n−2 ≥ mn−1, (n ∈ N). From
(11), we get

∞∑
n=2

(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1(n− 1)!

≤ t3

∞∑
n=2

(n− 1)(n− 2)(n− 3)
(−c/4m)n−1

(n− 1)!
+ (t2 + 6t3)

∞∑
n=2

(n− 1)(n− 2)
(−c/4m)n−1

(n− 1)!

+(t1 + 3t2 + 7t3)

∞∑
n=2

(n− 1)
(−c/4m)n−1

(n− 1)!
+ (t1 + t2 + t3 + t0)

∞∑
n=2

(−c/4m)n−1

(n− 1)!

= t3

∞∑
n=4

(−c/4m)n−1

(n− 4)!
+ (t2 + 6t3)

∞∑
n=3

(−c/4m)n−1

(n− 3)!
+ (t1 + 3t2 + 7t3)

∞∑
n=2

(−c/4m)n−1

(n− 2)!

+(t1 + t2 + t3 + t0)

∞∑
n=2

(−c/4m)n−1

(n− 1)!

= t3(−c/4m)3e−c/4m + (t2 + 6t3)(−c/4m)2e−c/4m + (t1 + 3t2 + 7t3)(−c/4m)e−c/4m

+(t1 + t2 + t3 + t0)(e
−c/4m − 1).

Therefore, we see that the last expression is bounded above by µ if (13) is satisfied.

The proof of Theorem 4 (below) is much akin to that of Theorem 3, and so the details may be omitted.
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Theorem 4 z(2− up(z)) ∈ S1(t3, t2, t1, t0, µ) if and only if

e(
−c
4m )[t3(

−c
4m

)4 + (10t3 + t2)(
−c
4m

)3 + (25t3 + 6t2 + t1)(
−c
4m

)2

+(15t3 + 7t2 + 3t1 + t0)(
−c
4m

) + (t1 + t2 + t3 + t0)(1− e(
c
4m ))] ≤ µ. (14)

3 Inclusion Properties

Making use of Lemma 2, we have.

Theorem 5 Let f ∈ Rτ (A,B). Then I(m, c)f ∈ S1(t3, t2, t1, t0, µ) if

(A−B) |τ |
[
t3u
′′′
p (1) + (t2 + 6t3)u

′′
p(1) + (t1 + 3t2 + 7t3)u

′
p(1)

+(t1 + t2 + t3 + t0)(up(1)− 1)] ≤ µ. (15)

Proof. In view of (3), it suffi ces to show that

∞∑
n=2

n(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1(n− 1)!
|an| ≤ µ.

Since f ∈ Rτ (A,B), then by Lemma 2, we get

|an| ≤
(A−B) |τ |

n
. (16)

Thus, we must show that

∞∑
n=2

n(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1(n− 1)!
|an|

≤ (A−B) |τ |
[ ∞∑
n=2

(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1(n− 1)!

]
≤ µ.

The remaining part of the proof of Theorem 5 is similar to that of Theorem 1, and so we omit the details.

4 An Integral Operator

In this section, we obtain the necessary and suffi cient conditions for the integral operator G(m, c, z) defined
by

G(m, c, z) =

∫ z

0

(2− up(t))dt (17)

to be in S1(t3, t2, t1, t0, µ).

Theorem 6 The integral operator G(m, c, z) ∈ S1(t3, t2, t1, t0, µ)if and only if the condition (5) is satisfied.

Proof. Since

G(m, c, z) = z −
∞∑
n=2

(−c/4)n−1

(m)n−1

zn

n!
,

in view of (3), we need only to show that

∞∑
n=2

n(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1n!
≤ µ
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or, equivalently
∞∑
n=2

(t3n
3 + t2n

2 + t1n+ t0)
(−c/4)n−1

(m)n−1(n− 1)!
≤ µ.

The remaining part of the proof is similar to that of Theorem 1, and so we omit the details.

The proof of Theorem 7 and Theorem 8 (below) are much akin to that of Theorem 3, and so the details
may be omitted.

Theorem 7 Let f ∈ Rτ (A,B). Then I(m, c)f ∈ S1(t3, t2, t1, t0, µ) if

(A−B) |τ | e(
−c
4m )[t3(

−c
4m

)3 + (t2 + 6t3)(
−c
4m

)2 + (t1 + 3t2 + 7t3)(
−c
4m

) + (t1 + t2 + t3 + t0)(1− e(
c
4m ))] ≤ µ.

Theorem 8 The integral operator G(m, c, z) ∈ S1(t3, t2, t1, t0, µ) if and only if the condition (14) is satisfied.

Remark 2 By setting t1 = 2, t0 = −(cosα + β) and µ = cosα − β in the above theorems, we obtain
the corresponding results for the class SPPT (α, β)(for k = 0) and for the class UCSPT (α, β) (for k = 1)
obtained by Frasin and Aldawish [18].

5 Corollaries and Consequences

In this section, we apply our main results in order to deduce each of the following new corollaries and
consequences for the classes T ∗(C,D), C(C,D), −1 < C < D ≤ 1 and WT (α, γ, β), 0 ≤ α < 1, γ, β ≥ 0.

Corollary 1 z(2− up(z)) ∈ T ∗(C,D) if and only if

(1 +D)u′p(1) + (D − C)up(1) ≤ 2(D − C). (18)

Corollary 2 z(2− up(z)) ∈ C(C,D) if and only if

(1 +D)u′′p(1) + (2 + 3D − C)u′p(1) + (D − C)up(1) ≤ 2(D − C).

Corollary 3 z(2− up(z)) ∈ T ∗(C,D) if and only if

e(
−c
4m )[(1 +D)(

−c
4m

) + (D − C)(1− e( c
4m ))] ≤ D − C.

Corollary 4 z(2− up(z)) ∈ C(C,D) if and only if

e(
−c
4m )[(1 +D)(

−c
4m

)2 + (2 + 3D − C)(
−c
4m

) + (D − C)(1− e( c
4m ))] ≤ (D − C). (19)

Corollary 5 Let f ∈ Rτ (A,B).Then I(m, c)f ∈ C(C,D) if

(A−B) |τ | [(1 +D)u′p(1) + (D − C)(up(1)− 1)] ≤ D − C.

Corollary 6 Let f ∈ Rτ (A,B).Then I(m, c)f is in C(C,D) if

(A−B) |τ | e(
−c
4m )[(1 +D)(

−c
4m

) + (D − C)(1− e( c
4m ))] ≤ D − C.

Corollary 7 The integral operator G(m, c, z) is in C(C,D) if and only if the condition (18) is satisfied.

Corollary 8 The integral operator G(m, c, z) is in C(C,D)if and only if the condition (19) is satisfied.
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Corollary 9 z(2− up(z)) ∈ WT (α, γ, β) if and only if

βu′′p(1) + γu′p(1) + (up(1)− 1) ≤ 1− α.

Corollary 10 z(2− up(z)) ∈ WT (α, γ, β) if and only if

e(
−c
4m )[β(

−c
4m

)2 + γ(
−c
4m

) + (1− e( c
4m ))] ≤ 1− α.

Concluding Remark. By suitably specializing the real constants t3, t2, t1, t0, k and µ in Theorems 1,
2, 5 and 6, as stated in Remark 1, we determined necessary and suffi cient conditions for z(2− up(z)) to be
in the classes SPT (α, β), UCT (α, β), PT (α), CPT (α) (see, [13]), T (λ, α), C(λ, α) (see, [29]),P∗λ(α),Q∗λ(α),
M∗(α) (see, [26]), T S(λ, α, β) (see, [16]), T Sp(λ, α, β) and UCT (λ, α, β)(see, [24]). Further, our main results
can lead to several additional new results by suitably specializing the real constants t3, t2, t1, t0, k and µ in
other subclasses of analytic functions with negative coeffi cients introduced and studied by several authors
as stated in Remark 1.
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