An Application Of Generalized Bessel Functions On General Class Of Analytic Functions With Negative Coefficients*

Basem Aref Frasin ${ }^{\dagger}$

Received 8 Jun 2020

Abstract

A new general class $\mathbb{S}^{k}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ of analytic functions with negative coefficients is introduced. The main object of this paper is to find necessary and sufficient conditions for generalized Bessel functions of first kind $z\left(2-u_{p}(z)\right)$ to be in the class $\mathbb{S}^{0}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$. Furthermore, we give necessary and sufficient conditions for $\mathcal{I}(m, c) f$ to be in $\mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ provided that the function f is in the class $\mathcal{R}^{\tau}(A, B)$. Finally, we give conditions for the integral operator $\mathcal{G}(m, c, z)=\int_{0}^{z}\left(2-u_{p}(t)\right) d t$ to be in the class $\mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$. A number of known or new results are shown to follow upon specializing the parameters involved in our main results.

1 Introduction

Let \mathcal{A} denote the class of the normalized functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Further, let \mathcal{T} be a subclass of \mathcal{A} consisting of functions of the form,

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}, \quad z \in \mathbb{U} \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{R}^{\tau}(A, B), \tau \in \mathbb{C} \backslash\{0\},-1 \leq B<A \leq 1$, if it satisfies the inequality

$$
\left|\frac{f^{\prime}(z)-1}{(A-B) \tau-B\left[f^{\prime}(z)-1\right]}\right|<1, \quad z \in \mathbb{U}
$$

This class was introduced by Dixit and Pal [15].
Let $p(n)=t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}$ be a polynomial of degree the most three, with real coefficients t_{3}, t_{2}, t_{1} and t_{0}. Then a function f of the form (2) is in $\mathbb{S}^{k}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$, if and only if it satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{k} p(n)\left|a_{n}\right| \leq \mu \quad\left(k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mu>0\right) \tag{3}
\end{equation*}
$$

Remark 1 By suitably specializing the real constants $t_{3}, t_{2}, t_{1}, t_{0}, k$ and μ, the class $\mathbb{S}^{k}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ includes as its special cases various classes of analytic functions with negative coefficients that were considered in several works. As for illustrations, we present the following examples.

1. $\mathbb{S}^{k}\left(0, \lambda^{2}, 1-\alpha \lambda-\lambda, \alpha(\lambda-1), 1-\alpha\right) \equiv \mathcal{P}(\lambda, \alpha, k)$ (Aouf and Srivastava [5]);

[^0]2. $\mathbb{S}^{k}(0,1-\beta \lambda, \beta \lambda-1,0,1-\beta) \equiv \mathcal{S}_{s, k}^{*} \mathcal{T}(\alpha, \beta)$ (Aouf et al. [7]);
3. $\mathbb{S}^{1}(0,0,1+\alpha,-(\alpha+\beta), 1-\beta) \equiv \mathcal{U C} \mathcal{T}(\alpha, \beta)($ Bharati $[12]) ;$
4. $\mathbb{S}^{0}(0,0,1,-(1+\alpha), \alpha) \equiv \mathcal{P} \mathcal{T}(\alpha)$ (Bharati [12]);
5. $\mathbb{S}^{1}(0,0,1,-(1+\alpha), \alpha) \equiv \mathcal{C} \mathcal{P} \mathcal{T}(\alpha)$ (Bharati [12]);
6. $\mathbb{S}^{0}(0,0,2,-(\cos \alpha+\beta), \cos \alpha-\beta) \equiv \mathcal{S} \mathcal{P}_{P} \mathcal{T}(\alpha, \beta)$ (Selvaraj and Geetha [33]);
7. $\mathbb{S}^{1}(0,0,2,-(\cos \alpha+\beta), \cos \alpha-\beta) \equiv \mathcal{U C S P} \mathcal{T}(\alpha, \beta)$ (Selvaraj and Geetha [33]);
8. $\mathbb{S}^{0}(0,0,1-\lambda \alpha, \alpha(\lambda-1), 1-\alpha) \equiv \mathcal{T}(\lambda, \alpha)$ (Altintaş and Owa [3]);
9. $\mathbb{S}^{1}(0,0,1-\lambda \alpha, \alpha(\lambda-1), 1-\alpha) \equiv \mathcal{C}(\lambda, \alpha)$ (Altintaş and Owa [3]);
10. $\mathbb{S}^{0}(0,0,(1+\beta)-\lambda(\alpha+\beta),(\alpha+\beta)(\lambda-1), 1-\alpha) \equiv \mathcal{T} \mathcal{S}_{p}(\lambda, \alpha, \beta)$ (Aouf et al. [7]);
11. $\mathbb{S}^{1}(0,0,(1+\beta)-\lambda(\alpha+\beta),(\alpha+\beta)(\lambda-1), 1-\alpha) \equiv \mathcal{U S \mathcal { T }}(\lambda, \alpha, \beta)$ (Murugusundaramoorthy and Magesh [23]).
12. $\mathbb{S}^{0}(0, \lambda, 1-\lambda-\alpha \lambda, \alpha(\lambda-1), 1-\alpha) \equiv \mathcal{P}_{\lambda}^{*}(\alpha)$ (Altintaş et al. [4]);
13. $\mathbb{S}^{1}\left(0, \lambda, 1-\lambda-\alpha \lambda, \alpha(\lambda-1) \equiv \mathcal{Q}_{\lambda}^{*}(\alpha)\right.$ (Altintaş et al. [4]);
14. $\mathbb{S}^{0}(1,-\alpha, 0,0,1-\alpha) \equiv \mathcal{M}^{*}(\alpha)$ (Murugusundaramoorthy et al. [26]);
15. $\mathbb{S}^{0}(0,0,1+\beta,-\lambda(\gamma+\beta), 1-\gamma) \equiv \mathcal{P}_{\lambda}^{*}(\gamma, \beta)$ (Murugusundaramoorthy et al. [27]);
16. $\mathbb{S}^{1}(0,0,1+\beta,-\lambda(\gamma+\beta), 1-\gamma) \equiv \mathcal{Q}_{\lambda}^{*}(\gamma, \beta)$ (Murugusundaramoorthy et al. [27]);
17. $\mathbb{S}^{0}(0, \lambda, 1-\lambda,-\alpha, 1-\alpha) \equiv \mathcal{G}^{*}(\lambda, \alpha)$ (Murugusundaramoorthy et al. [25]);
18. $\mathbb{S}^{1}(0, \lambda, 1-\lambda,-\alpha, 1-\alpha) \equiv \mathcal{K}^{*}(\lambda, \alpha)$ (Murugusundaramoorthy et al. [25]);
19. $\mathbb{S}^{0}(0, \lambda(1+\beta), 1+\beta-\lambda(2 \beta+\alpha+1),(\alpha+\beta)(\lambda-1), 1-\alpha) \equiv \mathcal{T} \mathcal{S}(\lambda, \alpha, \beta)$ (Aouf et al. [6]).
20. $\mathbb{S}^{0}(0,0,1+\beta,-1+\beta(1-2 \alpha), 2 \alpha(1-\beta)) \equiv \mathcal{S}^{*}(\alpha, \beta)$ (Gupta and Jain [21]);
21. $\mathbb{S}^{1}(0,0,1+\beta,-1+\beta(1-2 \alpha), 2 \alpha(1-\beta)) \equiv \mathcal{C}^{*}(\alpha, \beta)$ (Gupta and Jain [21]);
22. $\mathbb{S}^{0}(0,0, \alpha, 1-\alpha, 1-\beta) \equiv \mathcal{T}(\alpha, \beta)$ (Altintaş [1]).

Further, the class $\mathbb{S}^{k}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ leads to various classes of analytic functions with negative coefficients introduced and studied by several authors (see, for example, $[2,19,30,32,35,38,39,40]$).

Let $\mathcal{P}(C, D)$ denote the class of analytic function in \mathbb{U} which are of the form $\frac{1+C w(z)}{1+D w(z)}$, where $-1<C<$ $D \leq 1$ and $w(z)$ is analytic function with $w(0)=0,|w(z)|<1$ in \mathbb{U}. Define

$$
\mathcal{S}^{*}(C, D)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \in \mathcal{P}(C, D)\right\}
$$

and

$$
\mathcal{K}(C, D)=\left\{f \in \mathcal{A}: z f^{\prime}(z) \in \mathcal{S}^{*}(C, D)\right\}
$$

Goel and Sohi [20](see also, [34]) gave the following necessary and sufficient conditions for functions f of the form (2) to be in the classes $\mathcal{T}^{*}(C, D)=\mathcal{S}^{*}(C, D) \cap \mathcal{T}$ and $\mathcal{C}(C, D)=\mathcal{K}(C, D) \cap \mathcal{T}$

$$
\sum_{n=2}^{\infty}(n(1+D)-(1+C))\left|a_{n}\right| \leq D-C
$$

and

$$
\sum_{n=2}^{\infty} n(n(1+D)-(1+C))\left|a_{n}\right| \leq D-C
$$

respectively.
We observe that

$$
\mathbb{S}^{0}(0,0,1+D,-(1+C), D-C) \equiv \mathcal{T}^{*}(C, D)
$$

and

$$
\mathbb{S}^{1}(0,0,1+D,-(1+C), D-C) \equiv \mathcal{C}(C, D) .
$$

For $0 \leq \alpha<1$ and $\gamma, \beta \geq 0$, let $\mathcal{W}(\alpha, \gamma, \beta)$ denote the class of functions f of the form (2) such that

$$
\operatorname{Re}\left\{(1-\gamma+2 \beta) \frac{f(z)}{z}+(\gamma-2 \beta) f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right\}>\alpha, \quad(z \in \mathbb{U}) .
$$

For more details about this class, see [31]. We can easily prove that a function f of the form (1) is in the class $\mathcal{W}(\alpha, \gamma, \beta)$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n(n-1) \beta+(\gamma-2 \beta) n+(1-\gamma+2 \beta)]\left|a_{n}\right| \leq 1-\alpha \tag{4}
\end{equation*}
$$

and a function f of the form (2) is in the class $\mathcal{W} \mathcal{T}(\alpha, \gamma, \beta)=\mathcal{W}(\alpha, \gamma, \beta) \cap \mathcal{T}$ if and only if the conditions (4) is satisfied. We note that

$$
\mathbb{S}^{0}(0, \beta, \gamma-3 \beta, 1-\gamma+2 \beta, 1-\alpha)=\mathcal{W} \mathcal{T}(\alpha, \gamma, \beta)
$$

The generalized Bessel function w_{p} (see, [8])is defined as a particular solution of the linear differential equation

$$
z w^{\prime \prime}(z)+b z w^{\prime}(z)+\left[c z^{2}-p^{2}+(1-b) p\right] w(z)=0,
$$

where $b, p, c \in \mathbb{C}$. The analytic function w_{p} has the form

$$
w_{p}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(c)^{n}}{n!\Gamma\left(p+n+\frac{b+1}{2}\right)} \cdot\left(\frac{z}{2}\right)^{2 n+p}, \quad z \in \mathbb{C}
$$

Now, the generalized and normalized Bessel function u_{p} is defined with the transformation

$$
u_{p}(z)=2^{p} \Gamma\left(p+n+\frac{b+1}{2}\right) z^{-p / 2} w_{p}\left(z^{1 / 2}\right)=\sum_{n=0}^{\infty} \frac{(-c / 4)^{n}}{(m)_{n} n!} z^{n},
$$

where $m=p+(b+1) / 2 \neq 0,-1,-2, \ldots$ and $(a)_{n}$ is the well-known Pochhammer (or Appell) symbol, defined in terms of the Euler Gamma function for $a \neq 0,-1,-2, \ldots$ by

$$
(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}= \begin{cases}1, & \text { if } n=0, \\ a(a+1)(a+2) \ldots(a+n-1), & \text { if } n \in \mathbb{N} .\end{cases}
$$

The function u_{p} is analytic on \mathbb{C} and satisfies the second-order linear differential equation

$$
4 z^{2} u^{\prime \prime}(z)+2(2 p+b+1) z u^{\prime}(z)+c z u(z)=0 .
$$

Using the Hadamard product, we now considered a linear operator $\mathcal{I}(m, c): \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\mathcal{I}(m, c) f=z u_{p}(z) * f(z)=z+\sum_{n=2}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} a_{n} z^{n}
$$

where $*$ denote the convolution or Hadamard product of two series.

The study of the generalized Bessel function is a recent interesting topic in geometric function theory. We refer, in this connection, to the works of $[8,9,10,11,17]$ and others.

Motivated by results on connections between various subclasses of analytic univalent functions by using hypergeometric functions (see, for example, $[14,22,36,37])$) and the generalized Bessel functions (see, for example, $[13,16,24,26,29])$) in this paper we determine necessary and sufficient conditions for $z\left(2-u_{p}(z)\right)$ to be in the class class $\mathbb{S}^{0}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$. Furthermore, we give necessary and sufficient conditions for $\mathcal{I}(m, c) f$ to be in $\mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ provided that the function f is in the class $\mathcal{R}^{\tau}(A, B)$. Finally, we give conditions for the integral operator $\mathcal{G}(m, c, z)=\int_{0}^{z}\left(2-u_{p}(t)\right) d t$ to be in the class $\mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$.

2 The Necessary and Sufficient Conditions

To establish our main results, we shall require the following lemmas.
Lemma 1 ([10]) If $b, p, c \in \mathbb{C}$ and $m \neq 0,-1,-2, \ldots$, then the function u_{p} satisfies the recursive relation

$$
\begin{aligned}
u_{p}^{\prime}(z) & =\frac{(-c / 4)}{m} u_{p+1}(z), u_{p}^{\prime \prime}(z)=\frac{(-c / 4)^{2}}{m(m+1)} u_{p+2}(z), u_{p}^{\prime \prime \prime}(z)=\frac{(-c / 4)^{3}}{m(m+1)(m+2)} u_{p+3}(z) \\
u_{p}^{(4)}(z) & =\frac{(-c / 4)^{4}}{m(m+1)(m+2)(m+3)} u_{p+4}(z)
\end{aligned}
$$

for all $z \in \mathbb{C}$.
Lemma 2 ([15]) If $f \in \mathcal{R}^{\tau}(A, B)$ is of the form, then

$$
\left|a_{n}\right| \leq(A-B) \frac{|\tau|}{n}, \quad n \in \mathbb{N}-\{1\}
$$

The result is sharp.
Unless otherwise mentioned, we shall assume in this paper that $c<0, m>0(m \neq 0,-1,-2, \ldots)$, and $\mu>0$. First we obtain the necessary and sufficient condition for $z\left(2-u_{p}(z)\right)$ to be in the class $\mathbb{S}^{0}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$.

Theorem $1 z\left(2-u_{p}(z)\right) \in \mathbb{S}^{0}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ if and only if

$$
\begin{equation*}
t_{3} u_{p}^{\prime \prime \prime}(1)+\left(t_{2}+6 t_{3}\right) u_{p}^{\prime \prime}(1)+\left(t_{1}+3 t_{2}+7 t_{3}\right) u_{p}^{\prime}(1)+\left(t_{0}+t_{1}+t_{2}+t_{3}\right)\left(u_{p}(1)-1\right) \leq \mu \tag{5}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
z\left(2-u_{p}(z)\right)=z-\sum_{n=2}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} z^{n} \tag{6}
\end{equation*}
$$

according to (3), we must show that

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \leq \mu \tag{7}
\end{equation*}
$$

Writing

$$
\begin{gather*}
n=(n-1)+1 \tag{8}\\
n^{2}=(n-1)(n-2)+3(n-1)+1 \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
n^{3}=(n-1)(n-2)(n-3)+6(n-1)(n-2)+7(n-1)+1 \tag{10}
\end{equation*}
$$

we have

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \\
= & t_{3} \sum_{n=2}^{\infty}(n-1)(n-2)(n-3) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \\
& +\left(t_{2}+6 t_{3}\right) \sum_{n=2}^{\infty}(n-1)(n-2) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \\
& +\left(t_{1}+3 t_{2}+7 t_{3}\right) \sum_{n=2}^{\infty}(n-1) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!}+\left(t_{1}+t_{2}+t_{3}+t_{0}\right) \sum_{n=2}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \\
= & t_{3} \sum_{n=4}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-4)!}+\left(t_{2}+6 t_{3}\right) \sum_{n=3}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-3)!}+\left(t_{1}+3 t_{2}+7 t_{3}\right) \sum_{n=2}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-2)!} \\
& +\left(t_{1}+t_{2}+t_{3}+t_{0}\right) \sum_{n=2}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \\
= & t_{3} \sum_{n=0}^{\infty} \frac{(-c / 4)^{n+3}}{(m)_{n+3} n!}+\left(t_{2}+6 t_{3}\right) \sum_{n=0}^{\infty} \frac{(-c / 4)^{n+2}}{(m)_{n+2} n!}+\left(t_{1}+3 t_{2}+7 t_{3}\right) \sum_{n=0}^{\infty} \frac{(-c / 4)^{n+1}}{(m)_{n+1} n!} \\
& +\left(t_{1}+t_{2}+t_{3}+t_{0}\right) \sum_{n=0}^{\infty} \frac{(-c / 4)^{n+1}}{(m)_{n+1}(n+1)!} \\
= & t_{3} \frac{(-c / 4)^{3}}{m(m+1)(m+2)} \sum_{n=0}^{\infty} \frac{(-c / 4)^{n}}{(m+3)_{n} n!}+\left(t_{2}+6 t_{3}\right) \frac{(-c / 4)^{2}}{m(m+1)} \sum_{n=0}^{\infty} \frac{(-c / 4)^{n}}{(m+2)_{n} n!} \\
& +\left(t_{1}+3 t_{2}+7 t_{3}\right) \frac{(-c / 4)}{m} \sum_{n=0}^{\infty} \frac{(-c / 4)^{n}}{(m+1)_{n} n!}+\left(t_{1}+t_{2}+t_{3}+t_{0}\right) \sum_{n=0}^{\infty} \frac{(-c / 4)^{n+1}}{(m)_{n+1}(n+1)!} \\
= & t_{3} \frac{(-c / 4)^{3}}{m(m+1)(m+2)} u_{p+3}(1)+\left(t_{2}+6 t_{3}\right) \frac{(-c / 4)^{2}}{m(m+1)} u_{p+2}(1) \\
& +\left(t_{1}+3 t_{2}+7 t_{3}\right) \frac{(-c / 4)}{m} u_{p+1}(1)+\left(t_{1}+t_{2}+t_{3}+t_{0}\right)\left(u_{p}(1)-1\right) \\
= & t_{3} u_{p}^{\prime \prime \prime}(1)+\left(t_{2}+6 t_{3}\right) u_{p}^{\prime \prime}(1)+\left(t_{1}+3 t_{2}+7 t_{3}\right) u_{p}^{\prime}(1)+\left(t_{1}+t_{2}+t_{3}+t_{0}\right)\left(u_{p}(1)-1\right) . \tag{11}
\end{align*}
$$

But this last expression is bounded above by μ if (5) holds.
Theorem $2 z\left(2-u_{p}(z)\right) \in \mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ if and only if

$$
\begin{align*}
& t_{3} u_{p}^{(4)}(1)+\left(10 t_{3}+t_{2}\right) u_{p}^{\prime \prime \prime}(1)+\left(25 t_{3}+6 t_{2}+t_{1}\right) u_{p}^{\prime \prime}(1)+\left(15 t_{3}+7 t_{2}+3 t_{1}+t_{0}\right) u_{p}^{\prime}(1) \\
& +\left(t_{3}+t_{2}+t_{1}+t_{0}\right)\left(u_{p}(1)-1\right) \leq \mu \tag{12}
\end{align*}
$$

Proof. In view of (3), we must show that

$$
\sum_{n=2}^{\infty} n\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \leq \mu
$$

or, equivalently

$$
\sum_{n=2}^{\infty}\left(t_{3} n^{4}+t_{2} n^{3}+t_{1} n^{2}+t_{0} n\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \leq \mu
$$

Making use of (8)-(9) and writing

$$
n^{4}=(n-1)(n-2)(n-3)(n-4)+10(n-1)(n-2)(n-3)+25(n-1)(n-2)+15(n-1)+1,
$$

we have

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(t_{3} n^{4}+t_{2} n^{3}+t_{1} n^{2}+t_{0} n\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \\
= & t_{3} \sum_{n=5}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-5)!}+\left(10 t_{3}+t_{2}\right) \sum_{n=4}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-4)!}+\left(25 t_{3}+6 t_{2}+t_{1}\right) \sum_{n=3}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-3)!} \\
& +\left(15 t_{3}+7 t_{2}+3 t_{1}+t_{0}\right) \sum_{n=2}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-2)!}+\left(t_{3}+t_{2}+t_{1}+t_{0}\right) \sum_{n=2}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \\
= & t_{3} \frac{(-c / 4)^{4}}{m(m+1)(m+2)(m+3)} \sum_{n=0}^{\infty} \frac{(-c / 4)^{n}}{(m+4)_{n} n!}+\left(10 t_{3}+t_{2}\right) \frac{(-c / 4)^{3}}{m(m+1)(m+2)} \sum_{n=0}^{\infty} \frac{(-c / 4)^{n}}{(m+3)_{n} n!} \\
& +\left(25 t_{3}+6 t_{2}+t_{1}\right) \frac{(-c / 4)^{2}}{m(m+1)} \sum_{n=0}^{\infty} \frac{(-c / 4)^{n}}{(m+2)_{n} n!}+\left(15 t_{3}+7 t_{2}+3 t_{1}+t_{0}\right) \frac{(-c / 4)}{m} \sum_{n=0}^{\infty} \frac{(-c / 4)^{n}}{(m+1)_{n} n!} \\
& \left(t_{3}+t_{2}+t_{1}+t_{0}\right) \sum_{n=0}^{\infty} \frac{(-c / 4)^{n+1}}{(m)_{n+1}(n+1)!} \\
= & t_{3} u_{p}^{(4)}(1)+\left(10 t_{3}+t_{2}\right) u_{p}^{\prime \prime \prime}(1)+\left(25 t_{3}+6 t_{2}+t_{1}\right) u_{p}^{\prime \prime}(1)+\left(15 t_{3}+7 t_{2}+3 t_{1}+t_{0}\right) u_{p}^{\prime}(1) \\
& +\left(t_{3}+t_{2}+t_{1}+t_{0}\right)\left(u_{p}(1)-1\right) .
\end{aligned}
$$

But this last expression is bounded above by μ if (12) holds.
Theorem $3 z\left(2-u_{p}(z)\right) \in \mathbb{S}^{0}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ if and only if

$$
\begin{equation*}
e^{\left(\frac{-c}{4 m}\right)}\left[t_{3}\left(\frac{-c}{4 m}\right)^{3}+\left(t_{2}+6 t_{3}\right)\left(\frac{-c}{4 m}\right)^{2}+\left(t_{1}+3 t_{2}+7 t_{3}\right)\left(\frac{-c}{4 m}\right)+\left(t_{1}+t_{2}+t_{3}+t_{0}\right)\left(1-e^{\left(\frac{c}{4 m}\right)}\right)\right] \leq \mu . \tag{13}
\end{equation*}
$$

Proof. We note that $(m)_{n-1}=m(m+1)(m+2) \cdots(m+n-2) \geq m(m+1)^{n-2} \geq m^{n-1}, \quad(n \in \mathbb{N})$. From (11), we get

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \\
\leq & t_{3} \sum_{n=2}^{\infty}(n-1)(n-2)(n-3) \frac{(-c / 4 m)^{n-1}}{(n-1)!}+\left(t_{2}+6 t_{3}\right) \sum_{n=2}^{\infty}(n-1)(n-2) \frac{(-c / 4 m)^{n-1}}{(n-1)!} \\
& +\left(t_{1}+3 t_{2}+7 t_{3}\right) \sum_{n=2}^{\infty}(n-1) \frac{(-c / 4 m)^{n-1}}{(n-1)!}+\left(t_{1}+t_{2}+t_{3}+t_{0}\right) \sum_{n=2}^{\infty} \frac{(-c / 4 m)^{n-1}}{(n-1)!} \\
= & t_{3} \sum_{n=4}^{\infty} \frac{(-c / 4 m)^{n-1}}{(n-4)!}+\left(t_{2}+6 t_{3}\right) \sum_{n=3}^{\infty} \frac{(-c / 4 m)^{n-1}}{(n-3)!}+\left(t_{1}+3 t_{2}+7 t_{3}\right) \sum_{n=2}^{\infty} \frac{(-c / 4 m)^{n-1}}{(n-2)!} \\
& +\left(t_{1}+t_{2}+t_{3}+t_{0}\right) \sum_{n=2}^{\infty} \frac{(-c / 4 m)^{n-1}}{(n-1)!} \\
= & t_{3}(-c / 4 m)^{3} e^{-c / 4 m}+\left(t_{2}+6 t_{3}\right)(-c / 4 m)^{2} e^{-c / 4 m}+\left(t_{1}+3 t_{2}+7 t_{3}\right)(-c / 4 m) e^{-c / 4 m} \\
& +\left(t_{1}+t_{2}+t_{3}+t_{0}\right)\left(e^{-c / 4 m}-1\right) .
\end{aligned}
$$

Therefore, we see that the last expression is bounded above by μ if (13) is satisfied.
The proof of Theorem 4 (below) is much akin to that of Theorem 3, and so the details may be omitted.

Theorem $4 z\left(2-u_{p}(z)\right) \in \mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ if and only if

$$
\begin{align*}
& e^{\left(\frac{-c}{4 m}\right)}\left[t_{3}\left(\frac{-c}{4 m}\right)^{4}+\left(10 t_{3}+t_{2}\right)\left(\frac{-c}{4 m}\right)^{3}+\left(25 t_{3}+6 t_{2}+t_{1}\right)\left(\frac{-c}{4 m}\right)^{2}\right. \\
& \left.+\left(15 t_{3}+7 t_{2}+3 t_{1}+t_{0}\right)\left(\frac{-c}{4 m}\right)+\left(t_{1}+t_{2}+t_{3}+t_{0}\right)\left(1-e^{\left(\frac{c}{4 m}\right)}\right)\right] \leq \mu \tag{14}
\end{align*}
$$

3 Inclusion Properties

Making use of Lemma 2, we have.
Theorem 5 Let $f \in \mathcal{R}^{\tau}(A, B)$. Then $\mathcal{I}(m, c) f \in \mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ if

$$
\begin{align*}
& (A-B)|\tau|\left[t_{3} u_{p}^{\prime \prime \prime}(1)+\left(t_{2}+6 t_{3}\right) u_{p}^{\prime \prime}(1)+\left(t_{1}+3 t_{2}+7 t_{3}\right) u_{p}^{\prime}(1)\right. \\
& \left.+\left(t_{1}+t_{2}+t_{3}+t_{0}\right)\left(u_{p}(1)-1\right)\right] \leq \mu \tag{15}
\end{align*}
$$

Proof. In view of (3), it suffices to show that

$$
\sum_{n=2}^{\infty} n\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!}\left|a_{n}\right| \leq \mu
$$

Since $f \in \mathcal{R}^{\tau}(A, B)$, then by Lemma 2 , we get

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(A-B)|\tau|}{n} \tag{16}
\end{equation*}
$$

Thus, we must show that

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!}\left|a_{n}\right| \\
\leq & (A-B)|\tau|\left[\sum_{n=2}^{\infty}\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!}\right] \leq \mu
\end{aligned}
$$

The remaining part of the proof of Theorem 5 is similar to that of Theorem 1 , and so we omit the details.

4 An Integral Operator

In this section, we obtain the necessary and sufficient conditions for the integral operator $\mathcal{G}(m, c, z)$ defined by

$$
\begin{equation*}
\mathcal{G}(m, c, z)=\int_{0}^{z}\left(2-u_{p}(t)\right) d t \tag{17}
\end{equation*}
$$

to be in $\mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$.
Theorem 6 The integral operator $\mathcal{G}(m, c, z) \in \mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ if and only if the condition (5) is satisfied.
Proof. Since

$$
\mathcal{G}(m, c, z)=z-\sum_{n=2}^{\infty} \frac{(-c / 4)^{n-1}}{(m)_{n-1}} \frac{z^{n}}{n!},
$$

in view of (3), we need only to show that

$$
\sum_{n=2}^{\infty} n\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1} n!} \leq \mu
$$

or, equivalently

$$
\sum_{n=2}^{\infty}\left(t_{3} n^{3}+t_{2} n^{2}+t_{1} n+t_{0}\right) \frac{(-c / 4)^{n-1}}{(m)_{n-1}(n-1)!} \leq \mu .
$$

The remaining part of the proof is similar to that of Theorem 1, and so we omit the details.
The proof of Theorem 7 and Theorem 8 (below) are much akin to that of Theorem 3, and so the details may be omitted.

Theorem 7 Let $f \in \mathcal{R}^{\tau}(A, B)$. Then $\mathcal{I}(m, c) f \in \mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ if

$$
(A-B)|\tau| e^{\left(\frac{-c}{4 m}\right)}\left[t_{3}\left(\frac{-c}{4 m}\right)^{3}+\left(t_{2}+6 t_{3}\right)\left(\frac{-c}{4 m}\right)^{2}+\left(t_{1}+3 t_{2}+7 t_{3}\right)\left(\frac{-c}{4 m}\right)+\left(t_{1}+t_{2}+t_{3}+t_{0}\right)\left(1-e^{\left(\frac{c}{4 m}\right)}\right)\right] \leq \mu .
$$

Theorem 8 The integral operator $\mathcal{G}(m, c, z) \in \mathbb{S}^{1}\left(t_{3}, t_{2}, t_{1}, t_{0}, \mu\right)$ if and only if the condition (14) is satisfied.
Remark 2 By setting $t_{1}=2, t_{0}=-(\cos \alpha+\beta)$ and $\mu=\cos \alpha-\beta$ in the above theorems, we obtain the corresponding results for the class $\mathcal{S P}_{P} \mathcal{T}(\alpha, \beta)($ for $k=0)$ and for the class $\mathcal{U C S P T}(\alpha, \beta)($ for $k=1)$ obtained by Frasin and Aldawish [18].

5 Corollaries and Consequences

In this section, we apply our main results in order to deduce each of the following new corollaries and consequences for the classes $\mathcal{T}^{*}(C, D), \mathcal{C}(C, D),-1<C<D \leq 1$ and $\mathcal{W} \mathcal{T}(\alpha, \gamma, \beta), 0 \leq \alpha<1, \gamma, \beta \geq 0$.

Corollary $1 z\left(2-u_{p}(z)\right) \in \mathcal{T}^{*}(C, D)$ if and only if

$$
\begin{equation*}
(1+D) u_{p}^{\prime}(1)+(D-C) u_{p}(1) \leq 2(D-C) . \tag{18}
\end{equation*}
$$

Corollary $2 z\left(2-u_{p}(z)\right) \in \mathcal{C}(C, D)$ if and only if

$$
(1+D) u_{p}^{\prime \prime}(1)+(2+3 D-C) u_{p}^{\prime}(1)+(D-C) u_{p}(1) \leq 2(D-C) .
$$

Corollary $3 z\left(2-u_{p}(z)\right) \in \mathcal{T}^{*}(C, D)$ if and only if

$$
e^{\left(\frac{-c}{4 m}\right)}\left[(1+D)\left(\frac{-c}{4 m}\right)+(D-C)\left(1-e^{\left(\frac{c}{4 m}\right)}\right)\right] \leq D-C .
$$

Corollary $4 z\left(2-u_{p}(z)\right) \in \mathcal{C}(C, D)$ if and only if

$$
\begin{equation*}
e^{\left(\frac{-c}{4 m}\right)}\left[(1+D)\left(\frac{-c}{4 m}\right)^{2}+(2+3 D-C)\left(\frac{-c}{4 m}\right)+(D-C)\left(1-e^{\left(\frac{c}{4 m}\right)}\right)\right] \leq(D-C) . \tag{19}
\end{equation*}
$$

Corollary 5 Let $f \in \mathcal{R}^{\tau}(A, B)$. Then $\mathcal{I}(m, c) f \in \mathcal{C}(C, D)$ if

$$
(A-B)|\tau|\left[(1+D) u_{p}^{\prime}(1)+(D-C)\left(u_{p}(1)-1\right)\right] \leq D-C .
$$

Corollary 6 Let $f \in \mathcal{R}^{\tau}(A, B)$. Then $\mathcal{I}(m, c) f$ is in $\mathcal{C}(C, D)$ if

$$
(A-B)|\tau| e^{\left(\frac{-c}{4 m}\right)}\left[(1+D)\left(\frac{-c}{4 m}\right)+(D-C)\left(1-e^{\left(\frac{c}{4 m}\right)}\right)\right] \leq D-C .
$$

Corollary $\mathbf{7}$ The integral operator $\mathcal{G}(m, c, z)$ is in $\mathcal{C}(C, D)$ if and only if the condition (18) is satisfied.
Corollary 8 The integral operator $\mathcal{G}(m, c, z)$ is in $\mathcal{C}(C, D)$ if and only if the condition (19) is satisfied.

Corollary $9 z\left(2-u_{p}(z)\right) \in \mathcal{W} \mathcal{T}(\alpha, \gamma, \beta)$ if and only if

$$
\beta u_{p}^{\prime \prime}(1)+\gamma u_{p}^{\prime}(1)+\left(u_{p}(1)-1\right) \leq 1-\alpha
$$

Corollary $10 z\left(2-u_{p}(z)\right) \in \mathcal{W} \mathcal{T}(\alpha, \gamma, \beta)$ if and only if

$$
e^{\left(\frac{-c}{4 m}\right)}\left[\beta\left(\frac{-c}{4 m}\right)^{2}+\gamma\left(\frac{-c}{4 m}\right)+\left(1-e^{\left(\frac{c}{4 m}\right)}\right)\right] \leq 1-\alpha .
$$

Concluding Remark. By suitably specializing the real constants $t_{3}, t_{2}, t_{1}, t_{0}, k$ and μ in Theorems 1 , 2,5 and 6 , as stated in Remark 1, we determined necessary and sufficient conditions for $z\left(2-u_{p}(z)\right)$ to be in the classes $\mathcal{S}_{\mathcal{P}} \mathcal{T}(\alpha, \beta), \mathcal{U C \mathcal { T }}(\alpha, \beta), \mathcal{P} \mathcal{T}(\alpha), \mathcal{C P} \mathcal{T}(\alpha)$ (see, [13]), $\mathcal{T}(\lambda, \alpha), \mathcal{C}(\lambda, \alpha)$ (see, $\left.[29]\right), \mathcal{P}_{\lambda}^{*}(\alpha), \mathcal{Q}_{\lambda}^{*}(\alpha)$, $\mathcal{M}^{*}(\alpha)($ see,$[26]), \mathcal{T} \mathcal{S}(\lambda, \alpha, \beta)$ (see, [16]), $\mathcal{T} \mathcal{S}_{p}(\lambda, \alpha, \beta)$ and $\mathcal{U C \mathcal { T }}(\lambda, \alpha, \beta)$ (see, [24]). Further, our main results can lead to several additional new results by suitably specializing the real constants $t_{3}, t_{2}, t_{1}, t_{0}, k$ and μ in other subclasses of analytic functions with negative coefficients introduced and studied by several authors as stated in Remark 1.

References

[1] O. Altintaş, A subclass of analytic functions with negative coefficients, Bull. Sci. Eng. Hacet. Univ., 19(1990), 15-24.
[2] O. Altintaş and Y. Ertekin, A new subclass of analytic functions with negative coefficients, Curr. Top. Anal. Funct. Theory, (1992), 36-47.
[3] O. Altintas and S. Owa, On subclasses of univalent functions with negative coefficients, Pusan Kyongnam Mathematical Journal, 4(1988), 41-56.
[4] O. Altintaş, Ö. Özkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13(2000), 63-67.
[5] M. K. Aouf and H. M. Srivastava, Some families of starlike functions with negative coefficients, J. Math. Aanl. Appl., 203(1996), 762-790.
[6] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Certain subclasses of uniformly starlike and convex functions defined by convolution, Acta Math. Acad. Paedeg. Nyr., 26(2010), 55-70.
[7] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Certain classes of univalent functions with negative coefficients and n-starlike with respect to certain points, Mat. Vesnik, 62(2010), 215-226.
[8] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen, 73(2008), 155178.
[9] A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica, 48(2006), 13-18.
[10] A. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Math., Vol. 1994 , SpringerVerlag (2010).
[11] A. Baricz and B. A. Frasin, Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23(2010), 371-376.
[12] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 26(1997), 17-32.
[13] N. E. Cho, H. J. Lee and R. Srivastava, Characterizations for certain subclasses of starlike and convex functions associated with bessel functions, Filomat, 30(2016), 1911-1917.
[14] N. E. Cho, S. Y. Woo and S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Cal. Appl. Anal., 5(2002), 303-313.
[15] K. K. Dixit and S. K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26(1995), 889-896.
[16] R. M. El-Ashwah and A. H. Hassan, Some characterizations for a certain generalized bessel function of the first kind to be in certain subclasses of analytic functions, Int. J. Open Problems Complex Analysis, $9(2017), 14-37$.
[17] B. A. Frasin, Sufficient conditions for integral operators defined by Bessel functions, J. Math. Inequal., 4(2010), 301-306.
[18] B. A. Frasin and I. Aldawish, On subclasses of uniformly spiral-like functions associated with generalized Bessel functions, J. Funct. Spaces 2019, Art. ID 1329462, 6 pp.
[19] B. A. Frasin, T. Al-Hawary and F. Yousef, Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afr. Mat., 30(2019), 223-230.
[20] R. M. Goel and N. S. Sohi, Multivalent functions with negative coefficients, Indian J. Pure Appl. Math., 12(1981), 844-853.
[21] V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients, Bull. Aust. Math. Soc., 14(1976), 409-416.
[22] E. Merkes and B. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc., 12(1961), 885888.
[23] G. Murugusundaramoorthy and N. Magesh, On certain subclasses of analytic functions associated with hypergeometric functions, Appl. Math. Lett., 24(2011), 494-500.
[24] G. Murugusundaramoorthy and T. Janani, An application of generalized Bessel functions on certain subclasses of analytic functions, Turkish Journal of Analysis and Number Theory, 3(2015), 1-6.
[25] G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat., 45(2016), 11011107.
[26] G. Murugusundaramoorthy, K. Vijaya and M. Kasthuri, A note on subclasses of starlike and convex functions, associated with Bessel functions, J. Nonlinear Funct. Anal., 2014(2014), Article ID 11.
[27] G. Murugusundaramoorthy, K. Vijaya, and K. Uma, Subordination results for a class of analytic functions involving the Hurwitz-Lerch zeta function, International Journal of Nonlinear Science, 10(2010), 430-437.
[28] S. Porwal, Mapping properties of generalized Bessel functions on some subclasses of univalent functions, Anal. Univ. Oradea Fasc. Matematica, 20(2013), 51-60.
[29] S. Porwal and K. K. Dixit, An application of generalized Bessel functions on certain analytic functions, Acta Univ. M. Belii Ser. Math., 21(2013), 55-61.
[30] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27(2016), 1021-1027.
[31] C. Ramachandran and L. Vanitha, Certain Aspect of Subordination for a class of analytic function, International Journal of Mathematical Analysis, 9(2015), 979-984.
[32] T. Rosy, B. A. Stephen, K. G. Subramanian and H. Silverman, Classes of convex functions, Internat. J. Math. Math. Sci., 23(2000), 819-825.
[33] C. Selvaraj and R. Geetha, On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions, International Journal of Contemporary Mathematical Sciences, 5(2010), $37-40$.
[34] N. Shukla and P. Shukla, Mapping properties of analytic function defined by hypergeometric function, II, Soochow Journal of Mathematics, 25(1999), 29-36.
[35] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.
[36] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl., 172(1993), 574-581.
[37] H. M. Srivastava, G. Murugusundaramoorthy and S. Sivasubramanian, Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integr. Transf. Spec. Func., 18(2007), 511-520.
[38] H. M. Srivastava, T. N. Shanmugam, C. Ramachandran and S. Sivasubramanian, A new subclass of k-uniformly convex functions with negative coefficients, JIPAM. J. Inequal. Pure Appl. Math., 8(2007), 14 pp .
[39] K. G. Subramanian, T. V. Sudharsan, P. Balasubrahmanyam and H. Silverman, Classes of uniformly starlike functions, Publ. Math. Debrecen, 53(1998), 309-315.
[40] K. G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japonica, 42(1995), 517-522.

[^0]: *Mathematics Subject Classifications: 30C45.
 \dagger Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan

