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Abstract
We give a simple generalization of double-sided Shafer-type inequality and sharpen the left one on an

infinite interval. The right inequality is also sharpened on a small finite interval.

1 Introduction and Preliminaries

In 1966, Robert E. Shafer [2] proposed the inequality
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1 + 2
√
1 + x2

<
arctanx

x
; x > 0 (1)

as a problem in the journal American Mathematical Monthly. Here arctan denotes inverse tangent function.
In the subsequent year, 1967, Shafer, Grinstein, Marsh and Konhauser [3] proved inequality (1) independently
by different methods. Shafer, further in 1977-78 [4, 5] proved that, for x > 0 the inequality
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2
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x
. (2)

Of course the inequality (2) is sharper than (1). This inequality (2) was extended to
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3 +
√
25 + 256

π2 x
2
; x > 0 (3)

by L. Zhu [6] in 2008, and named as Shafer-type inequality. In the above inequality (3), author of [6]
pointed that the numbers 80/3 and 256/π2 are the best constants. In this paper, we present generalization
of inequalities listed above by finding necessary and suffi cient conditions. One of the particular cases will
refine the lower bound in (3) on an infinite interval whereas the upper bound on a small finite interval.
For proving our main result we basically employ the same method used in [6] with parameters and we

require following series expansions for this purpose.

cot t =
1

t
−
+∞∑
k=1

22k

(2k)!
|B2k|t2k−1; |t| < π (4)

where B2k are the even indexed Bernoulli numbers. For expansion (4), we refer to [1, 1.411]. From this one
can easily obtain the following:

csc2 t = −d(cot t)
dt

=
1

t2
+

+∞∑
k=1

22k

(2k)!
(2k − 1)|B2k|t2k−2; |t| < π (5)

where csc denotes the cosecant function. And using the identity cot2 t = csc2 t− 1 we have

cot2 t =
1

t2
− 2
3
+

+∞∑
k=2

22k

(2k)!
(2k − 1)|B2k|t2k−2; |t| < π. (6)
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2 Main Results

First of all, it is to be noted that for any function of the type a/(b +
√
c+ dx2) to be sharp bound for

arctanx/x, it’s limit as x tends to 0 should be 1. This forces the equality c = (a − b)2 which enables us to
formulate the following.

Theorem 1 Let a > b > 0, c = (a − b)2 and the function fa,b,c(x) =
( ax
arctan x−b)

2−c
x2 be defined on (0,+∞).

Then

I. fa,b,c(x) is strictly decreasing on (0,+∞) if and only if 3a > 8b and
II. fa,b,c(x) is strictly increasing on (0,+∞) if and only if a 6 2b.

Proof. Let arctanx = t; x > 0. Then x = tan t; t ∈ (0, π/2) and

fa,b,c(x) =

(
ax

arctan x − b
)2 − c

x2
=

(
a tan t
t − b

)2 − c
tan2 t

:= ga,b,c(t).

After simple calculations we have

ga,b,c(t) =
a2 − 2abt cot t+ (b2 − c)t2 cot2 t

t2
.

Making use of (4) and (5), we write g(t) as

ga,b,c(t) =
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+∞∑
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]
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3
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22k

(2k)!

[
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since (a− b)2 − c = 0. It has derivative

g′a,b,c(t) =

+∞∑
k=2

22k

(2k)!
(2k − 2)

[
2ab+ (2k − 1)(b2 − c)

]
|B2k|t2k−3.

Now ga,b,c(t) is strictly decreasing if and only if the derivative g′a,b,c(t) < 0. This means

2ab+ (2k − 1)(b2 − c) < 0 i.e., 2k(2ab− a2) + a2 < 0.

After rearrangement of terms we get
b

a
<
(2k − 1)
4k

:= h(k),

where it is not diffi cult to show that h(k) is increasing for k > 2. Whence

b

a
6 inf {h(k) : k > 2} = 3

8
.

By making similar argument, we can say that g(t) is strictly increasing if and only if

b

a
>
(2k − 1)
4k

= h(k).
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i. e.,
b

a
> sup {h(t) : t > 2} = f(+∞−) = 1

2
.

Thus our assertion is proved.

Corollary 1 If a > b > 0 are such that c = (a− b)2 and 3a > 8b, then for x > 0 the inequalities
a

b+
√
c+ 2a

3 (a− b)x2
<
arctanx

x
<

a

b+
√
c+ 4a2

π2 x
2

(7)

hold with the best possible constants 2a
3 (a− b) and

4a2

π2 .

Proof. By Theorem 1, for 3a > 8b we have

fa,b,c(0
+) > fa,b,c(x) =

(
ax

arctan x − b
)2 − c

x2
> fa,b,c(+∞−).

The limits fa,b,c(0+) = ga,b,c(0
+) = 2a

3 (a− b) and fa,b,c(+∞
−) = ga,b,c(

π
2
−) = 4a2

π2 give inequalities (7).

Corollary 2 If a > b > 0 are such that c = (a− b)2 and a 6 2b, then for x > 0 the inequalities
a

b+
√
c+ 4a2

π2 x
2
<
arctanx

x
<

a

b+
√
c+ 2a

3 (a− b)x2
(8)

hold with the best possible constants 4a2

π2 and 2a
3 (a− b).

Proof. By Theorem 1, for a 6 2b we have

fa,b,c(0
+) < fa,b,c(x) =

(
ax

arctan x − b
)2 − c

x2
< fa,b,c(+∞−).

The limits as in the proof of Corollary 1 give inequalities (8).

Remark 1 Shafer’s inequality (1) is a particular case of Corollary 1 where a = 3 and b = 1. Shafer-type
inequality (3) is also a particular case of Corollary 1 where a = 8 and b = 3.

All the inequalities in Corollaries 1 and 2 are sharp enough to satisfy our needs. It is observed that
among all the inequalities of type (7) the sharpest one is obtained by taking 3a = 8b. Thus the Shafer-type
inequality (3) is sharpest of type (7). Similarly the sharpest inequality of type (8)(obtained by taking a = 2b)
is given by

2

1 +
√
1 + 16

π2x
2
<
arctanx

x
<

2

1 +
√
1 + 4

3x
2
; x > 0. (9)

Now it becomes important to compare inequalities (3) and (9). We compare them in the following proposi-
tions. First we compare lower bounds.

Proposition 1 For λ = π
√
180−15π2
5π2−48 ≈ 13.174333, the inequalities
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√
1 + 16

π2x
2
6 8

3 +
√
25 + 80

3 x
2
; x ∈ (0, λ] (10)

and
8
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3 x
2
6 2

1 +
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1 + 16

π2x
2
; x ∈ [λ,+∞) (11)

are true with equalities at x = λ.
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Proof. Let

F (x) =

√
25 +

80

3
x2 −

√
16 +

256

π2
x2 − 1.

The derivative of F (x) is

F ′(x) = 16x
5π2
√
16 + 256

π2 x
2 − 48

√
25 + 80

3 x
2

3π2
√
16 + 256

π2 x
2
√
25 + 80

3 x
2

.

From this, F ′(x) > 0 implies

25π4
(
16 +

256

π2
x2
)
> 2304

(
25 +

80

3
x2
)

i.e.,

x >

√
57600− 400π4
6400π2 − 61440 ≈ 3.286451 = µ(say),

whereas F ′(x) < 0 implies x < µ which help us to conclude that F (x) is decreasing in (0, µ) and increasing
in (µ,+∞). Since F (x) is negative in (0, µ) as F (0+) = 0 > F (x); x ∈ (0, µ), increasing in (µ,+∞) and
F (+∞−) = +∞, there exists a unique solution of F (x) = 0 in (µ,+∞). This solution can be found with the
help of Maple as λ = π

√
180− 15π2/(5π2− 48) ≈ 13.174333. It is now clear that F (x) is decreasing in (0, µ)

and increasing in (µ, λ) and we have F (x) < F (λ−) = 0; x ∈ (µ, λ) too. Thus F (x) < 0; x ∈ (0, λ) gives
first inequality (10). Similarly F (x) being increasing in (λ,+∞) ⊂ (µ,+∞) we have F (x) > F (λ) = 0. This
gives second inequality (11) and the proof is complete.
Next we compare upper bounds of (3) and (9).

Proposition 2 For ξ = π
√
15π2−144
48−4π2 ≈ 0.741376, the inequalities

2

1 +
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3x
2
6 8

3 +
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25 + 256

π2 x
2
; x ∈ (0, ξ] (12)

and

8

3 +
√
25 + 256

π2 x
2
6 2

1 +
√
1 + 4

3x
2
; x ∈ [ξ,+∞) (13)

are true with equalities at x = ξ.

Proof. Let

G(x) =

√
25 +
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π2
x2 −

√
16 +

64

3
x2 − 1.

The derivative of G(x) is

G′(x) = 16x
48
√
1 + 4

3x
2 − π2

√
25 + 256

π2 x
2

3π2
√
1 + 4

3x
2
√
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.

Now G′(x) > 0 implies

2304

(
1 +

4

3
x2
)
> π4

(
25 +

256

π2
x2
)

i.e.,

x >

√
25π4 − 2304
3072− 256π2 ≈ 0.490526 := ρ,
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whereas G′(x) < 0 implies x < ρ. Hence we conclude that G(x) is decreasing in (0, ρ) and increasing in
(ρ,+∞). Since G(x) is negative in (0, ρ) as G(0+) = 0 > G(x); x ∈ (0, ρ), increasing in (ρ,+∞) and
G(+∞−) = +∞, there exists a unique solution of G(x) = 0 in (ρ,+∞). This solution can be found with the
help of Maple as ξ = π

√
15π2 − 144/(48− 4π2) ≈ 0.741376. From this it is clear that G(x) is decreasing in

(0, ρ) and increasing in (ρ, ξ) and we have G(x) < G(ξ−) = 0; x ∈ (ρ, ξ) too. Thus G(x) < 0; x ∈ (0, ξ)
gives first inequality (12). Similarly G(x) being increasing in (ξ,+∞) ⊂ (ρ,+∞) we have G(x) > G(ξ) = 0.
This gives second inequality (13).

2.1 Figures

A graphical comparison of lower bounds, as well as upper bounds of (3) and (9), can be seen in the following
figures. Considering the sharpness of both the types of bounds and limitations for taking infinite intervals,
comparison is done only in the small intervals where the points of intersections of corresponding bounds lie.
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Figure 1: Graphs of lower bounds of
(3) and (9) for x ∈ (12, 15).

0.5 0.6 0.7 0.8 0.9

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

atan(x) x
2 (1 + 1 + (4 3)x2)
8 (3 + 25+ (256 π2)x2)

Figure 2: Graphs of upper bounds of
(3) and (9) for x ∈ (0.5, 0.9).
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