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Abstract
In this paper, by relaxing the hypothesis of well-known Enestrom-Kakeya theorem, we obtain a result
which is applicable to a larger class of polynomials and generalizes several well-known results concerning
the location of zeros of polynomials. In addition to this, we also obtain a similar result for analytic
functions.

1 Introduction

For a polynomial P(z) of degree n, the Fundamental Theorem of Algebra states that P(z) has exactly n zeros
(counting multiplicity) in the complex plane, but it does not provide any information about the location of
zeros. On the other hand, N. H. Abel and E. Galois proved that there is no general method for the exact
computation of zeros of polynomials of degree 5 or greater. In view of this and significant applications of
zero bounds in scientific disciplines such as stability theory, mathematical biology, communication theory
and computer engineering, it became interesting to identify the suitable regions in the complex plane which
contain the zeros of a given polynomial. In this direction, the classical result due to Cauchy [3] states that:

Theorem 1 Let P(z) = 2" +a, 12" "' + -+ a1z + ap be a polynomial of degree n. Then all the zeros of
P(z) lie in the disk |z| < 14 maxo<j<n—1|a;l.

The following result on the location of zeros of a polynomial with restricted coefficients is known as
Enestrom-Kakeya Theorem (see [5], [6]) which states that:

Theorem 2 Let P(z) = apz™ + n_12"" 14+ +a1z+ ag be a polynomial of degree n with real coefficients
satisfying an > an—1 > -+ > a1 > ag > 0. Then all the zeros of P(z) lie in |z| < 1.

Aziz and Zargar [2] relaxed the hypothesis of Theorem 2 by proving the following results:

Theorem 3 Let P(z) = a,2" +a,_ 12" 1 +---+ a1z +ag be a polynomial of degree n with real coefficients
such that for some k > 1, kay, > apn—1 > -+ > ay > ag. Then all the zeros of P(z) lie in

s 4k — 1| < Fan = 0o+ lao]

W. M. Shah and A. Liman [9] extended Theorem 3 to the polynomials with complex coefficients by
proving that:

Theorem 4 Let P(2) = apz"+a, 12" 1+ --+aiz+ag be a polynomial of degree n with complex coefficients
such that for some real 5, |arga; — 3| < a <m/2,j=0,1,2,...,n and k > 1, kla,| > |an—1| > --- > |a1| >
|ao|. Then all the zeros of P(z) lie in

n—1
1
lz4+ k-1 < {(k;|an| — |ao|)(sin & + cos @) + |ag| + QSinaZ |aj|}.

|an| j=0

*Mathematics Subject Classifications: 30A10, 30C15

fDepartment of Mathematics, University of Kashmir, Srinagar-190006, India
fDepartment of Mathematics, University of Kashmir, Srinagar-190006, India
§Department of Mathematics, University of Kashmir, Srinagar-190006, India

525



526 Zero Bounds of Polynomials and Related Analytic Functions

Recently Rather et al. [7] relaxed the hypothesis of Theorem 3 and proved that:

Theorem 5 Let P(z) = an2™ + an_12"" 1 + -+ a1z + ag be a polynomial of degree n with real coefficients
such that for some k; > 1,7 =0,1,2,...,7r where 1 <r <n—1,

koan > klanfl > k2an72 >z kranfr ZUp—p—1 2201 2 ag = 0.

Then all the zeros of P(z) lie in

n— 1
Z-i—ko—l—(/ﬁ—l)a V< = koan — (k1 — Dapn— 1+2Z Dan—;

Qnp Qnp =

Since the results discussed above are applicable to a small class of polynomials, so it is interesting to
look for the results applicable to the larger class of polynomials. In this paper, we extend theorem 5 to the
polynomials with complex coefficients and thereby, obtain a result with relaxed hypothesis that gives zero
bounds of the polynomials with complex coefficients. More precisely, we prove

Theorem 6 Let P(2) = apz"+a, 12" 1+ --+aiz+ag be a polynomial of degree n with complex coefficients
such that for some real B, |arga; — B < o < 7/2, j =0,1,2,...,n and k; > 1, j = 0,1,...,r where
1<r<n—-1,

kO‘an‘ Z k1|an—1| Z k2|an—2| Z 2 kr‘an—r| Z |an—7‘—1‘ Z Z |G,1| Z |G,0|. (1)

Then all the zeros of P(z) lie in

A 1 . . . =
z+koflf(k171)a71 < |a|{(k0|an|ao)(cosa+51na)+231na< g Eilan—;| + 5 |an_j|>
n n j=1 J=r+1

(k — 1)lan_ 1|+2Z Dlan_ J|+|ao|}

Applying Theorem 6 to the polynomial P(¢z), we obtain the following result:
Corollary 7 Let P(2) = a,2"+a,_12" "1+ - -+aiz+ag be a polynomial of degree n with complex coefficients
such that for some real B, |arga; — | < a <7w/2,j=0,1,2,...,n,t >0 and k; > 1,j=0,1,...,7 where
1<r<n-1,

kOtn‘anl Z kltn71|an—1| 2 thn72‘an_2| Z T Z krtnirlan—” Z tniril|an—r—1| Z e Z t|a1| Z ‘a0|-

Then all the zeros of P(z) lie in

t |ao| . |ao| |an—;|
< kolan 3 3 — k‘ —1
< ( olan| — ) (cosa +sina) + m + ;:1( )

4 (ko — 1)t — (kg — 1) 2=t

Qn

|an] £
~ langl | N~ Janl
—(k1 — 1)|ap—1] + 2sina Zk]% + Z %
Jj=1 Jj=r+1
Taking » = 1 in Theorem 6, we get:

Corollary 8 Let P(2) = apz"+a,_ 12" 1+ -+aiz+ag be a polynomial of degree n with complex coefficients
such that for some real B3, larga; — | < a<7/2,j=0,1,2,...,n and ko, k1 > 1,

kolan| > kilan—1| > |an—2| > |an—g| > -+ > |a1| > |aol|.
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Then all the zeros of P(z) lie in

Gp—1
QAn

Z+I€0—1—(k1—1)

1 : . -
< |a{<k0an — |ag)(cos a + sin «@) —|—2sma<k1|anl| + E |anj|>

(ks — Dlan] + |}

Remark 1 For ki =1, Corollary 8 reduces to Theorem /.

For a = g = 0, Theorem 6 reduces to Theorem 5. Now we turn to the study of the zeros of a class of
analytic functions. The following result was proved by A. Aziz and Shah [1]:

o0 .
Theorem 9 Let f(z) = > a;27 # 0 be analytic in |z| < t. If there exist k > 1 and t > 0 such that
§=0

kaozml2t2c122t3a32...7 aj >0andj=0,1,2,3...,

then f(z) does not vanish in the region

(k-1 kit
2k —1 2k —1°

Shah and Liman [9] generalized Theorem 9 and proved that:

o0 .
Theorem 10 Let f(z) = Y ajz’ # 0 be analytic in |z| < t. If there exist k > 1 and t > 0 such that
§=0

klao| > tlai| > t* |az| > ¢* |as| > ...,

and there exists 3 such that |arga; — B < a < w/2 for j = 0,1,2,..., then f(z) does not vanish in the
TeGION

(k—1)t - Mt
M?—(k—1)2 M2 — (k—1)%’

z —

where

28ina o=
M = k(sina + cos ) + ta;l.
( )+ Tl 2Pl

Here we propose to relax the hypothesis of Theorem 10. More precisely, we prove the following result:

Theorem 11 Let f(z) = > ajz? # 0 be analytic in |z| < t. If there exists k1,k2 > 1 and t > 0 such that
=0

Eilao| > katlar| > t3|ag| > t3|as| > ...

and there exists B such that |arga; — | < a < w/2 for j = 0,1,2,..., then f(z) does not vanish in the
Tegion
(ky — 1)t Bt
z— < )
B? — (k; — 1) B2 — (ky —1)?
where
2 iy o0 )
B = ki(sina + cos ) + 2t (ks — 1)M 4 22me kotlar| + Zt]|aj|

lao| —|aol =
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Remark 2 On setting ko = 1, Theorem 11 reduces to Theorem 10.

For a = 8 =0, Theorem 11 yields the following result which includes Theorem 9 as a special case.

Corollary 12 Let f(z) = > ajz? # 0 be analytic in |z| < t. If there exists ki,k2 > 1 and t > 0 such that
§=0

kiag > kotar > t2as > t3ag > ...,
then f(z) does not vanish in the region

(=Dt | _ B*t
B2 —(ky — 12|~ B2 — (kg — 1)2’

z —

where B* = ky + 2t(ka — 1)ay/ap.

2 Computations and Analysis

In this section, some examples are given to show how the two main theorems are used in practice. First we
give two examples of polynomials not only to show how Theorem 6 is used but also to show that Theorem
6 gives better information about the location of the zeros than Theorem 1. It is worth mentioning that all
existing Enestrom-Kakeya type results are not applicable for these polynomials.

Example 1 Let P(z) = 32% +2.82% + 2.622 + 3.2z + 1. By taking 8 = a = 0 and r = 2 with ko = 16/15,
k1 =8/7 and ky = 16/13 in Theorem 6, it follows that all the zeros of P(z) lie in the disc |z — 1/15| < 1.6.
Whereas, if we use Theorem 1, it follows that all the zeros of P(z) lie in the disc |z| < 2.06. Thus, Theorem
6 gives better bound, with 40% improvement in the area over Theorem 1.

Example 2 Let

P(z) = 2V2(140)2° + 1.9vV2(1 +i)z* + 3.5(1/vV2 + i/v2)2 + 2v2(1 + 1) 2>
+V2(1+ i)z +1/V2 +i/V2.
By taking f =7/4,a =0 and r = 2 with kg = 1, k1 = 20/19 and ke = 8/7 in Theorem 6, it follows that all
the zeros of P(z) lie in the disc |z — 1/20| < 1.3. Whereas, if we use Theorem 1, it follows that all the zeros

of P(z) lie in the disc |z| < 2. Thus, Theorem 6 gives better bound, with 58% improvement in the area over
Theorem 1.

Next, we give an example to demonstrate how Theorem 11 is used in practice for obtaining the zero-free
region of the given analytic function.

Example 3 Consider the function

B 11 1 1\, (1 1Y\, 1 1 1

Clearly f(z) is analytic in |z| < 1. Therefore, by takingt =1, ky =2, ka =1 and o« = 8 =0 in Theorem 11,
it follows that f(z) does not vanish in the region |z — 1/3| < 2/3, which is true as f(z) has only one zero in
the whole complex plane which is z = —1 and it lies outside the disc |z —1/3| < 2/3.




Rather et al. 529

3 Lemma

For the proof of these theorems, we require the following lemma which is due to Govil and Rahman [4].
Lemma 13 If for some real 3,

larga; — Bl <a<w/2,  a; #0,
then, for any positive real numbers t1 and to,

|t1(1j — tgaj,1| S \t1|aj| — tQ‘aj,1H Ccos & + (t1|a]—| + fz‘aj,ﬂ) sin .

4 Proof of the Theorems

Proof of Theorem 6. Consider the polynomial
F(z) = (1-2)P(2)
= —an 2" (ay — 1)+ F (A — A 1)2" T F -+ (a1 — ag)z + ag
= —a, 2" — (ko — Danz" + (koan — kran_1)2" 4+ (k1 — Dan_12" + (kyan_1 — ko _2)2"
— (k1 = Dap_12" " 4 (ky — Dan_22"" 4 -4 (kr_1Gn_py1 — kpn_) 2" "
—(kp1 = Dan_ry 12" 7" (B — Dap_r 2" " 4+ (kptn—p — app1)2" "
—(kp = D)an 2" " (np1 — Anp2)2" " (ay — ag)z + ag,
which implies

|k1an—1 - k2an—2\

[F()l = (2" |1(z 4 ko = Dan — (k1 — Dan| - (Ikoan —kian_1] +

- ]
+ |k1 - 1Han71‘ + |k2 - 1Han72| . ‘krflanfwkl - kra/n77‘|
E || |21
+ |k7'—1 - 1||an—7'+1‘ |k7 - 1||an—7'| |k7'a7L—7' - an—7'—1|
|21 2| 2]
+|kr *1||an7r| |an7r71 *an7r72| 4t ‘al *a0| |a0|
|Z|7' |Z|7'+1 |Z|"_1 |Z|”

Let |z] > 1 so that 1/|z| < 1. Then we have
[F(2)] = [2" [|(Z + ko — Dan — (k1 — Dap—1] — (|]€00«n —kian_1| + |k1an—1 — kaa, 2|

+|k1 - 1||an—l‘ + |k2 - ]-Han—2| + -+ ‘kr—lan—r+l - kran—r|
+|k7'—1 - 1||an—r+1‘ + |k7 - 1||an—7'| + |kran—7' - an—r—1|

+|kr - 1||an—r| + |an—r—1 - an—r—2| + -+ ‘al - a0| + |CL0|):| .

Applying Lemma 13, we have for |z| > 1,

Ay 1
F@| = Janlla]” | |24 ko = 1= (b = )= - w{(\kom ~ Ftlan-1l| + [F1lan—1| = alan|
+---+ kr71|an7r+1| - kr|an7r| + kf‘r‘anfr| - |an7r71|‘ + ‘|an7r71| - |an7r72|’

-+ [Jat] = laol ) cos @+ (Kolan| + kalan-—1| + Krlan-1] + kaln-2] + -+ br-1lan—rs1

+kr|an7'r‘ + kr|anfr| + ‘an7r71| + ‘an77'71| + ‘an77‘72| + -+ |(L1| + |a0|) sin o

)

—(k1 = Dlan—1| +2> (kj — Dlan—;| + |ao}
j=1
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which in view of (1), yields

Z+k0717(k1 71)01271

+251n0z(2k lan—j| + Z |an— J|> (k1 — 1D)|an— 1|+22 1)|an— j|+|a0|}]

j=r+1 j=1

F)| > |an|z|"[

1
- H{(k0|an| — lag])(cos a + sin )

> 0
if

1 ) ) T n
{(k0|a”| — lag])(cos @ + sin &) + 2smo¢<2kjan_j| + Z |an_j|>

| 'ﬂ| j=1 J=r+1

Ap—1
Qp,

Z+l€o—1—(k1—1)

(k1 — Dl 1|+2Z 1l J|+|ao}

This shows that those zeros of F(z) whose modulus is greater than 1 lie in

ko —1— (ky —1)2n—t

Qn

1 ) ) T n
a{(k;0|an| — lag])(cos a + sin ax) + 2smo¢<2kjan_j| + Z |an_j|)

| n| j=1 j=r+1

(k1 — Dl 1|+2Z 1l ]|+|ao}

But those zeros of F(z) whose modulus is less than or equal to 1 already lie in this region. Hence it follows
that all the zeros of F'(z) and therefore of P(z) lie in

n

1 . . -
< a{(k0|an|—ao)(cosa—|—smo¢)—|—281noz<2k:jan_j|—|— > |an_j|>

| 'ﬂ| j=1 Jj=r+1

(k1 — Dl 1|+2Z 1lan J|+|ao}

ko —1— (ky —1)2n=t

Qn

This completes the proof of Theorem 6. =
Proof of Theorem 11. Since f(z) =

M8

ajz? is analytic in |z| < ¢ and it is easy to observe that
0

J
lim t/a; = 0. Now consider the function

F(z) = (z=1)f(2)
= —tap + (ap — ta1)z + (a1 — taz)z® + (ay — taz)z® + ...
—tao + (k1ag — thea1)z — (k1 — Dag — (k2 — 1)tay)z
+((kaay — tag) — (ko — 1)ay)2* + (ag — tas)z® + ...
= —tag — ((k1 — Dag — (k2 — Dtar)z + ¢(2), (2)
where

#(2) = (krag — thaar)z + ((k2ay — tag) — (ky — 1)a1)2? + Z(aj,l — taj)2’
=3
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Since |arga; — 3| < a <wm/2,j=0,1,2,..., and by applying Lemma 13, we have, for |z| =t,

IN

o
|krag — katay||2] + [kaar — tas||2|” + (ks — Dlaa|[z[* + D laj 1 — ta,]|z

j=3
(k1lao| + kot|ay|)tsin o + |ky|ao| — kat|ay||t cos a + (ka|ai| + t|az|)t? sin a
+ka|ar| — tlas||t? cos a + (ko — 1)t%|ar| + (|as| + tlas|)t® sina + ||az| — t|as|[t® cosa + ...
= (ki]ao| + kat|ar|)tsin o + (ki|ag| — kot|a1|)t cos o 4 (kz|a1| + tlag|)t? sina
+(k2|ay| — tlag|)t? cosa + (ko — 1)t2|ar| + (laz| + tlas|)t® sina + (Jag| — tlas|)t3 cosa + . ..
(By hypothesis)

. a 2sin o N
= t|a0|{k1(s1na—|—cosa)+t(k2—1):@1: +|a|<kzt|al|+zt]|aj|>}-
0 0

|6(2)l

IN

=2

Clearly ¢(z) is analytic for |z| <t with ¢(0) = 0. Hence, by the Schwarz Lemma,

. a 2sina =
lo(2)| < laol|z| kl(sma+cosa)+t(k21):aél+ ao] k2t|a1|+2tﬂ|aj| for |z| < 't.
j=2
Therefore from (2) we have for |z] <,
2 . oo )
|F(z)] > aollt + (k1 — 1)z] — |aol|z] { k1(sina + cos ) + 2t (ks — 1)@ 2oma kotlar| + )y #|ay]
laol ~ aol !
j=2
= |a()||t+(k1—1)z|—|a0||z\B>0
if
|| B < [t+ (k1 —1)z]
where
. a 2sina =
B = ki (sina + cosa) + 2t(ke — 1):(1(1): + ol kotlar| + Ztﬂ|aj| , (3)
=2

that is, F'(z) and therefore f(z) does not vanish in
|z|B < |(k1 — 1)z + ¢,

which is precisely the region
(k1 — 1)t < Bt
B2 — (k; — 1) B? — (k; —1)%’

where B is defined in (3). That completes the proof of Theorem 11. m

z —
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