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Abstract

In this paper we define exponentially (m,h)-convex functions and make some estimates to the
Hadamard’s inequality for functions whose absolute values of second derivatives are exponentially (m, h)-
convex. Some special cases are also discussed.

1 Introduction

The Hermite-Hadamard inequalities [7, 6] for a convex function F : YW — R on an interval W is defined as:

ll + ZQ 1 b2 F(ll) + F(IQ)
F( 2 )Slz—h /11 Fludu < 2 7 W

for all 11,1, € W with [; < ls. Above inequalities are true in opposite direction if F is concave. We observe
that Hadamard’s inequality can be viewed as an improvement of the notion of convexity and it ensure simply
from Jensens inequality. Hadamard’s inequality for convex functions has acquired additional awareness in
recent years and an outstanding diversity of improvements and refinements have been obtained. For example
see [1, 2, 3,4, 8,9, 10, 11, 12, 13] and the references cited therein.

Dragomir et al. [5] proved the following useful result using Hermite-Hadamard inequalities for convex
function.

Theorem 1 ([5]) Consider a twice differentiable function F : W — R on W° and let —oco < k < F" <
K < oo for all u € [l1,15]. Then we have inequality

k

ol PO r) L [ g, < et @

12 - 2 A 12

Definition 1 ([8]) A function I : W C [0,00) — [0,00) is called s-convex in the second sense, if
F el + (1 =0)l2) < EF () + (1= 0)°F (l2), (3)

for allly,ls € W and ¢ € [0,1], with s € (0,1].

Definition 2 ([19]) Let h: H C R — R be a positive function. A non-negative function F : W — R on an
interval W C (0,00) is called h-convez, if

F oy + (1= 0)le) <h()F () +h(1 = )F (I2), (4)

holds, for allly,la € W and v € [0,1]. If —F is h-convex then F is called h-concave.
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376 On Exponentially (m,h)-Convex Functions

Definition 3 ([18]) Let m € [0,1]. A function F :[0,b] — R is called m-convez, if we have
F(dy +m(1—)la) <oF (I1) +m(1 = o)F (I2), (5)
for allly,ls € [0,b] and ¢ € [0, 1].
Sarikaya et al. [16] and Ozdemir et al. [14] proved Hadamard’s inequalities for h- and m-convex functions,
respectively.

Awan et al. [2], Mehreen and Anwar [12] defined some exponentially convex functions and proved number
of Hadamard’s type inequalities.

Definition 4 ([2]) Let F : W CR — R be a function and o € R. Then F is called exponentially convez, if

F(Lll‘l'(l—b)lg)SL@—F(l_L)LZQ)’ (©)

eall 60412

for all l1,ls € W, v € [0,1]. If the inequality (6) is in opposite direction then F is called exponentially
concave.

Definition 5 ([12]) Let o € R. A function F : W C [0,00) — R is called exponentially s-convez in the
second sense on an interval W, if

F(l)

eOtll

Fly+(1—0)l) <08 : (7)

for all l3,ls € W and ¢ € [0,1] with s € (0,1]. If —F is exponentially s-convex then F is exponentially
s-concave.

Qiang et al. [15] defined the following exponentially convex functions.

Definition 6 ([15]) Consider F : W — R be a function on an interval W C [0,00). Then F is called
exponentially (s, m)-convex in the second sense, if

F(l)

eall

Fdy+m(l—2)lp) <0°

: (8)
for allly,ls € W and ¢ € [0,1] with s € (0,1].
Alomari et al. [1] and Sarikaya et al. [17] gave following useful results.

Lemma 1 ([1]) Consider a twice differentiable function F : W — R on W°. Let l1,la € W with I} <y
and F" € Lq[ly,ls]. Then we have equality:

F (1) + F(I2) 1 L2 (I —11)?
> 712—11/ F(u)duzi2

/1 t(1 =) F"(udy + (1 = 0)lz)de.
0

5

Lemma 2 ([17]) Consider a twice differentiable function F : W — R on W°. Let l1,la € W with I} <y
and F" € Lq[l1,lz]. Then we have equality:

1 L2 i+ 1
du —
1211/ll F(u)du F< 5

= @ Al n(0)(F" (udy + (1= Ol2) + F" (e + (1= o)1) )de,

where
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2 Main Results

First we define exponentially (m, h)-convex functions.
Definition 7 Let h: H C R — R be a positive function and m € [0,1]. A function F :[0,b] — R is called

exponentially (m, h)-convez, if

F (1)

F(dy +m(1 —0)l) < h(e) ool

; 9)

forallly,lo € W, 1 €]0,1] and a € R. If the inequality (9) is in opposite order then F is called exponentially
(m, h)-concave.

Remark 1 In Definition 9,

(a) by letting h(L) = 1, one can get inequality (8) of Definition 6.

(b) by letting h(t) = ¢ and m =1, one can get inequality (7) of Definition 5.

(¢) by letting h(t) = ¢ and m =1, one can get inequality (6) of Definition 4.

(d) by letting h(r) = ¢ and a = 0, one can get inequality (5) of Definition 3.

(e) by letting o = 0 and m = 1, one can get inequality (4) of Definition 2.

(f) by letting h(t) =%, a« =0 and m = 1, one can get inequality (3) of Definition 1.
(9) by letting h(v) =1, « =0 and m = 1, one can get the definition of convex function.

We define an interval W C [0, 00) = Ry with interior W° and a positive function h: H CR — R.

Theorem 2 Let m € (0,1] and o € R. Let f : W — R be such that F" exits on W° and F" € Lq[l1,1s],
here ly,la € W and 1y < ly. If |F"|? is exponentially (m, h)-convex function, ¢ > 1, then we have inequality:

F(l) + F () 1 /l2
5 s F(u)du
a-1 q %
(=1 (1) Fr)| rr()
< ~= -7 _ D S m
- 2 6 M) el +mAs(1) 2 ’

where ) )
Ai(r) = / (I =0)h()de and  As(e) = / (1 —o)h(1 —¢)de.
0 0
Proof. First consider the case ¢ = 1. From Lemma 1, we have

FU)+r() 1 /l‘z (I —1)?
2 o=l 2

F(u)du| = /O L= DF" (s + (1 0)l)|de.

Iy

Since | "] is exponentially (m, h)-convex function, we have

" " lo
F7 (y + (1= 0)la) | < h() Fea(lf) +mh(1 - 1) a(g> (10)
e " m

Thus

3 9 1 1 " l72
G 211) /0 i | Fecfllll) +mh(1 1) ea()]
_ 2 " " l72
e (Am |+ man ea(i?)>'
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Thus we get reguired inequality for the case ¢ = 1.
Now consider ¢ > 1. Then using Lemma 1 and power mean inequality, we obtain

! l 1 &
Fl)+F() / I (u)du
2 lo =11 Jy,
a—1 1
(12 — ll)2 ! ¢ ! " q ¢
< — (1 —1)de (1= 0)F"(dy + (1= )la)|%de| .
0 0
Then by using exponentially (m, h)-convexity of |F”|?, we find
F (1) + £ (l2) 1 /12
— F(u)du
2 lo =11 Jy, ()
g—1 1
lo — 11)2 1 e 1 amk (ke 9N\ 7«
< % [/ ((1— L)dL:| / (1T =2) | k() Fea(lll) +mh(l—1) %
0 0 eYm
a=1 a 3
(o — 1) (1Y) * F ()| "(2)
e A1) [ |+ mAz(0) & :
Hence the proof is completed. m
Corollary 1 Consider the similar assumptions of Theorem 2.
(a) If h(t) = ¢, then we have
1
g L
F”(ll) q F”(%) q
F(ll) +F(l2) 1 /lz (l2 _ 11)2 eall o2
— du| <
2 L1 ), W= 2
(0) If h(v) = ¢ and m = 1, then we have
1
() q () a\ q
F(l) + F (la) 1 /lz (o — )2 [ | 7o
— du| <
2 Lot ), W= 2
(¢) If h(1) = °, then we have
1
g L
F(l1)+F(l2) B 1 /lz F(u)du - (12 _11)2 1 Tl eazll +m ea%
2 lo — 1 I - 2 6 (S+2)(S+3)
(d) If h(t) = ¢* and m = 1, then we have
I //(ll) q F ,/(l2) q %

q—1

< (12 — l1)2 1 Ka el eal2
- 2 6 (s+2)(s+3)

5 L L F (u)du

F () + F (o) 1 /b

I

Remark 2 In Corollar 1(a),
(a) by letting o = 0, one can get inequality of Theorem 2 in [14].
(b) by letting a =0, m =1 and if |F"(u)] < K on [l1,12], one can get the right hand inequality of (2).
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Note that, from Corollary 1((b)—(d)), by letting |F”(u)| < K on [l1,l2], we can have more useful inequal-
ities.
Theorem 3 Let m € (0,1] and o € R. Consider a function F : W — R such that F" exists on W° and

F" € Lily,l2], here ly,lo € W and 1y < lo. If |[F"|? is exponentially (m,h)-convex function, q,t > 1 with
1/q+ 1/t = 1. Then we have inequality:

& —1;)2 5 I q milay |4 2
HA ) o [ pan] < 250 (ﬁ((i,i’;))) (hm L0 i1 = | =l ) .

Proof. From Lemma 1 and using Holder’s inequality, we find

l2
F (L) + F () _ 1 / F(u)du
2 lo =11 Jy,

1

<bf ]/ . ﬂ)lfca]1 | F - gl "

1 o}
Blu,w) = / YA - Dv Tl w,w >0, T(u) = / e w" tdw, u >0,
0 0

Since we know,

also, we have

/l(b — A = /1 FA—)de= Bt +1,t+1).
Furthermore, ’ ’

Blw,w) = 21*2“’5(%,10), Bu,w) = =———=.
Therefore, we have

o120 LETE+1)

1
t+1,6+1)=2"20F08(2 ¢t 41) =

Then by using exponentially (m, h)-convexity of |F”|? along with above calculations and the fact I'(3) =
VT < 2, we get
1 &
F(l)+F () / F (w)dudu
2 -1 )i,
(l l )2 1 3 ”(l ) q //(lz) a %
- ‘ I Fr(l
< % [/O (L— ﬁ%u} (h(L) 711 +mh(1 - 1) | — 2= )
e m
1 q %
(l2 - 11)2 |:21—2(t+1) (%) (t + 1):| h(L) ‘F”(Zl) + mh(l _ L) FN(%)
BER S Gl e o
a\ o
(=1 (TA+D\E(, [ Fr)
h h(l—1) | —2= .
= 75 \ngen) VO] om0 TR
[
Corollary 2 Consider the similar assumptions of Theorem 3.
(a) If h(t) = ¢, then we have
1
g L
F) | e\
) [ ] < 0 (K00 HE e
2 lo — 14 I - 8 F(% -l—t) 2




380

(0) If h(¢t) = ¢ and m = 1, then we have
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. ) 1 f”(ll) q /‘”(12) q %
FU)+F) 1 /’-’F(u)du SRR (r(1+t)>t ealt eals
2 lb—1U Ji, - 8 L2 +1) 2
(¢) If h(t) = ¢*, then we have
1
a\ ¢
. f//(ll) q+m r//(%)
LI L [ i < o (R0 L e
2 lb—1U Ji, - 8 I3+t (s +2)(s+3)
(d) If h(t) = ¢* and m = 1, then we have
1
1 f//(l)q f//(l)q q
Fll)+F0) 1 /le(u)du _ (=) (r(1+t)>t
2 b—1 ), - 8 2+t (s+2)(s+3)

Remark 3 In Corollar 2(a),

(a) by letting a = 0, one can get inequality of Theorem 3 in [1]].
(b) by letting o = 0 and |F"(u)] < K on [l1,l2], one can get the inequality of Corollary 1 in [14].

Remark 4 From Corollar 1(a) and Corollar 2(a), we can have the inequality of Corollary 2 in [14].

Note that, from Corollary 2((b)—(d)), by letting |F"(u)| < K on [l1,l3], we can have more useful inequal-

ities.

Theorem 4 Let m € (0,1] and o € R. Consider a function F : W — R such that F" exists on W° and

F" e Ll[lhlg], here ll,lz eWand ly < ls.
1/q+ 1/t =1. Then we have inequality:

If |[F"|* is exponentially (m,h)-convex function, q,t > 1 with

F)+r) 1 /12
5 b—11 ), F(u)du
o — 11)? ()| P |\
< b 21) (BI(L) Fea(lj) +mBs(1) a(g) , (11)
e m

where

Bi(¢)

/0(1—L)Qh<4)dL and BQ(L)Z/O (1= 0)7h(1 — 1)ds.

Proof. From Lemma 1 and using Holder’s inequality, we find

al ; r) Iy ill /11l2 F(u)du
et I 1 mr I L+ (1 nzzwr
_ “2‘2“)2 [/01 ﬁf@t {/01(1—L)q|r“(Lzl+(1—L)z2)qdb}q

Then by using exponentially (m, h)-convexity of |F”|? and the fact that (

inequality (11). m

1

1+t)% < 1, we get the required
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Corollary 3 Consider the similar assumptions of Theorem 4.
(a) If h(t) = ¢, then we have

g L
Fr) | nlEeE
M /12 Fdu| < 2= [ rmlar DR (12)
2 Iy =1y Jy, R (¢+1)(g+2)
(0) If h(v) = ¢ and m = 1, then we have
F”(ll) q F”(lz) q %
la — 2 aly ext2
Fl)+F() 1 / F(u)du| < (Il —Iy) el J
2 lb—U Ji, 2 (¢+1)(g+2)

Remark 5 By letting o = 0 in (12), one can get inequality of Theorem 4 in [14].

Theorem 5 Let m € (0,1] and o € R. Consider a function F : W — R such that F" exists on W° and
F" € Li[ly,ls], here l1,lo € W and Iy < la. If |F"| is exponentially (m, h)-convex function, then we have

inequality:
1 12 _ 2 1"(la
[ rwa-r (t55)| < 5w e, (13)
lo—11 /i, 2 2

m

F”(ll)

eall

Iz
Xy

€

where

with n(L) is as given in Lemma 2.

Proof. Using Lemma 2 and exponentially (m, h)-convexity of |F"”|, we have

1 b2 1+ 1
L1 /11 F(u)du—F<2 )

_ 2 1 1
< (lzfll) {/0 In()||F" (edy + (1 = 0)lo)|de +/O In()||F" (o + (1 - L)ll)|db}

B B 1 1 ! lfQ
< DL o | |82 v - o | ]db
1 " " lil
+ [ [n()] [h(‘)‘Fea(llj) mh(l =) Fa(ﬁ) ] db}
0 catt
I —1h)? ()| | F G
(2 5 1) C(L) ( Fea(lll) ea(gb) ) '

Corollary 4 Consider the similar assumptions of Theorem 5. If h(t) = v and m = 1, then we have

1 L2 i +1
du —
l2_l1/l1 F(u)du F< 5

From inequality (13) one can get several other refinements for some exponentially convex functions.

I’ //(ll)
Teall

F"(l2)
ealg

7\2 +
PR
- 2 24

(14)
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Remark 6 By letting o = 0 in (14), one can get inequality (7) of Theorem 5 in [17].

Theorem 6 Let m € (0,1] and a € R. Consider a function F : W — R such that F" exists on W° and

F" € Lyl1,l2], here l1,lo € W and 1y < ly. If |[F"|? is exponentially (m, h)-convex function, q,t > 1 with
1/q+ 1/t =1. Then we have inequality:

1 b2 (11+12>
F(uw)du — F
12—11/11 @ 2

o=t [ ()
W{ (/0 h(L) oals +mh(1 L) ea% ] dL)
1 " lg q F,, % q %
+ (/O lh(L) FCTSQ) +mh(1—1) ea(ii) ] dL) } (15)

Proof. Using Lemma 2 and Holder’s inequality, we have

1 b2 1+ 1o
12—ll/z1 F(u)du—F( 2 )

< Loh) (/ 1 |n<L>|’de)1 {( / (- L>z2>|qdb>‘1’
+ </01 [F" (e + (1 — L)l1)|qu) ! }

Since |F"|? is exponentially (m, h)-convex, we get

1

l
2 1+ 1o
du — a2
12—11/11 F(u)du F< 5 >‘

o 02 den) (ol oo )

1 F”(lz) q F//(%) q 7
+ (/0 h(v) ol +mh(l —1) gt ]dL) }

Since fol In()|tde = m. This completes the proof. m
Corollary 5 Consider the similar assumptions of Theorem 6. If h(t) = v and m = 1, then we have

r //(ll) q n r N(ZQ) q é

1 L2 1+ lg) (l2 - l1)2 el el2
F(u)du — F < I . 16
zzzl/ll “ ( 2 |7 8@ttt 2 "

From inequality (15) one can get several other refinements for some exponentially convex functions.

Remark 7 By letting o = 0 in (16), one can get inequality (11) of Theorem 6 in [17].
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Conclusion

In this article, we find new Hadamard’s inequalities for exponentially (m,h)-convex functions defined in
a new way. With the help of these inequalities we find new Hadamard’s inequalities for exponentially h-
convex, exponentially (m, s)-convex, exponentially m-convex and exponentially convex functions. Our work
may open new doors to more useful results for above parameters. For instance, we may find new inequalities
for exponentially (m, h)-convex functions via fractional integrals (including Riemann-Liouville, Hadamard,
Katugampola, conformable and new fractional conformable integrals etc.).
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