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Abstract

In this paper, we establish necessary and sufficient invariants conditions for the affine equivalence of
some classes of planar cubic differential systems with respect to affine group SL(2,R) via invariant theory.
Moreover, we deduce the minimal rational base for each one of these classes after having constructed
normal forms.

1 Introduction

The algebraic invariant theory of differential equations plays a major role in the qualitative theory of poly-
nomial differential systems. A great contribution in the development of this theory is due to Sibirsky and his
school [15, 19, 23]. Besides, many important results have been obtained with the help of invariant theory such
as, the number and nature of singular points, normal forms, the geometrical and topological classification of
quadratic and cubic differential systems, see for instance [5, 12, 18, 17, 19].

It is worth noting that the invariants computation is rather cumbersome, since it is a combination of
complicated polynomials in several indeterminates of higher degrees. In [2, 6], the authors gave an algorithmic
methods to describe the algebra of invariants by using the fundamental theorem of classical invariant [8].

The main motivation of this work is the numerous applications of classical invariant theory in the study of
differential systems (see for example [3, 10, 15, 16, 20]), more specifically, the affine equivalence of two systems
with respect to the group SL(n,R) implies that they have the same topological and geometric properties,
and this makes it an important and useful property in the qualitative study of differential systems (see
[4, 7]). In [19], Sibirsky showed that for two n−dimensional polynomial differential systems to be affine
equivalent with respect to the group SL(n,R) (or O(n,R) ) it is necessary and sufficient that their absolute
invariants with respect to this group coincide. In [23], the authors obtained a complete classification to the
affine equivalence of planar homogeneous quadratic differential systems, which is characterized by algebraic
invariants conditions (see also [1]). In [14], Popa established a necessary and sufficient invariants conditions
for the affine equivalence of the class of planer homogeneous quadratic differential systems with linear parts,
which were used later by Sibirsky [19] for proving the existence of two foci of nonzero cyclicity for the same
class of differential systems in case when the origin is a center.

Inspired by the aforementioned works, the aim of the present paper is to give necessary and sufficient
invariants conditions for the affine equivalence of some classes of planar cubic differential systems with respect
to the affine group SL(2,R), we deduce the minimal rational base for each one of these classes after having
constructed normal forms. These kind of bases is a useful tool for qualitative study of polynomial differential
systems[13]. For instance, in [11] the authors showed how to reduce the expression of the conditions for
existence of a center (center-focus problem) of bidimensional polynomial systems of differential equations
with nonlinearities of fourth degree with the help of minimal rational basis associated with this system.

The article is organized as follows. In section 2, we present some preliminary results and notations. In
section 3, we construct canonical forms for the general planar cubic differential systems, then we establish
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necessary and sufficient invariants conditions for the affine equivalence of some classes with respect to the
affine group SL(2,R). In the last section, we deduce the minimal rational base for each one of these classes.

2 Preliminaries and Notations

Using Einstein’s notation [19], a polynomial differential system of degree at most k with coefficients in R is
written as:

dxj

dt
= aj +

k∑
r=1

ajα1α2...αr
xα1xα2 · · ·xαr , j, α1, · · · , αr ∈ {1, 2, ..., n} , (1)

where for j = 1, n and for r = 0, k, ajα1α2...αr
∈ T 1

r , here T 1
r denotes the space of tensors 1 time contravariant

and r times covariant symmetric with respect to the lower subscripts. The space T 1
r corresponds to the

homogeneous part of degree r of the polynomials of the right hand side of system (1). We denote by C(n, k,R)
the dimensional coefficient space of system (1) and by a the vector of coefficients a =

(
a1, a2, ..., annn...n

)
.

The action of the general linear group GL(n,R) on Rn : (Q, x) 7→ Qx, induces the representation:

ρ : GL(n,R) −→ GL(C(n, k,R))
Q 7−→ ρ(Q),

defined by
ρ(Q)ajα1α2...αr

= QjiP
β1
α1
P β2
α2
...P βr

αr
aiβ1β2...βr

, (2)

where j, α1α2...αr = 1, n, r = 0, k, and Q is a matrix of GL(n,R) and P its inverse. The formula (2) is
called the formula of the centro-affine transformations.

Definition 1 A polynomial function C(a, x) : C (n, k,R)×Rn → R is called a covariant with respect to the
group GL(n,R) or GL(n,R)-covariant of (1) if there exists a character Λ of the linear group GL(n,R) such
that

∀Q ∈ GL(n,R),∀a ∈ C(n, k,R), C(ρ(Q)a, ρ(Q)x) = Λ(Q)C(a, x).

If Λ ≡ 1, the covariant is said to be absolute, otherwise it is said to be relative. If the C(a, x) is constant
with respect to x, then it is said to be a GL(n,R)-invariant.

According to [19], the character Λ (Q) has the form Λ (Q) = det(Q)−w, where w is an integer, called the
weight of covariant C(a, x).

Definition 2 A GL(n,R)-covariant C(a, x) is said to be reducible if it can be expressed as a polynomial
function of GL(n,R)-covariants of lower degree. If C(a, x) is reducible, we write C(a, x) ≡ 0 (modulo
GL(n,R)).

Definition 3 A finite family B of GL(n,R)-covariants of (1) is called a system of generators if any GL(n,R)-
covariant of (1) is reducible to zero modulo B. A system B of generators is said to be minimal if none of
them is generated by the others.

Now, let us consider the tensor product (see [2]):

(T 1
0 )⊗d0 ⊗ (T 1

1 )⊗d1 ⊗ · · · ⊗ (T 1
r )⊗dr ⊗ R⊗δ, 1 ≤ r ≤ k. (3)

Then, we have the following result from [8].

Theorem 1 ([8]) The expressions obtained with the help of successive alternations and complete contraction
over the tensor products (3) form a system of generators of centro-affine covariants of (1).

Definition 4 A centro-affine covariant of (1) is said to be of type (d0, d1, . . ., dr, δ) if it is homogeneous of
degree di (i = 0, 1, ..., r) with respect to coordinates of ajα1α2···αi and of degree δ with respect to coordinates
of x ∈ Rn.
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Remark 1 An invariant constructed with the help of Theorem 1 is called generator invariant.

We denote by A(n, k,R) the R−algebra of the centro-affine covariants of (1), this algebra is multigraded
of finite type [9], hence

A(n, k,R) = ⊕d0,d1,d2,...,dr∈NA(d0,d1,d2,...,dr,δ) (4)

and A(d0,d1,d2,...,dr,δ) is the finite linear space of the centro-affine covariants of type (d0, d1, d2, ..., dr, δ).

Example 1 If k = n = 2, the polynomials aβaααβ and aαpa
β
βqa

γ
αγε

pq are generator invariants with respect to
the linear group GL(2,R) belonging respectively to A(1,0,1,0) and A(0,1,2,0).

The minimal system of generators for (1) in the case k = n = 2 was established by Vulpe [21], we shall
use the following elements of this basis :

I1 = aαα, I17 = aβaααβ , I22 = aααβa
β
γδa

γaδ,

I2 = aαβa
β
α, I18 = aαaqapαεpq, I25 = aααpa

β
γqa

γ
βδa

δεpq,

I4 = aαpa
β
βqa

γ
αγε

pq, I20 = aαγa
β
αβa

γ , I26 = aααpa
β
γqa

γ
βδa

δεpq.

I9 = aαpra
β
βqa

γ
γsa

δ
αδε

pqεrs I21 = apαβa
αaβaqεpq,

Let us consider the family {J1, . . . , J61} of GL (2,R)−invariants for general cubic differential system
given by

J1 = aαpa
β
βαqε

pq, J11 = aαβγa
β
pra

γ
αqsε

pqεrs, J21 = aαaβδpa
γ
γβra

δ
αqsε

pqεrs,

J2 = aααpra
β
βqsε

pqεrs, J12 = aαγpra
β
αqka

γ
βslε

pqεrsεkl, J22 = aαaββpa
γ
γδra

δ
αqsε

pqεrs,

J3 = aαβpra
β
αqsε

pqεrs, J13 = aαγβpa
β
αrka

γ
qslε

pqεrsεkl, J23 = aαaβpra
γ
γδqa

δ
αβsε

pqεrs,

J4 = aαaβaγγαβ , J14 = aαaβaγβa
δ
δαγ , J24 = aαδpa

β
βqa

γ
γrka

δ
αslε

pqεrsεkl,

J5 = aαaβγpa
γ
βαqε

pq, J15 = aαaβaγαβpa
δ
δγqε

pq, J25 = aαβpa
β
γqa

γ
αrka

δ
δslε

pqεrsεkl,

J6 = aαaβαpa
γ
βγqε

pq, J16 = aαaβδ a
γ
γpa

δ
βαqε

pq, J26 = aαδpa
β
βra

γ
γqka

δ
αslε

pqεrsεkl,

J7 = aαaββpa
γ
γαqε

pq, J17 = aαaβγa
γ
δpa

δ
βαqε

pq, J27 = aαγpa
β
βra

γ
δqka

δ
αslε

pqεrsεkl,

J8 = aαγpa
β
αra

γ
βqsε

pqεrs, J18 = aαaβδ a
γ
αpa

δ
γβqε

pq, J28 = aαrka
β
δpa

γ
γsla

δ
βαqε

pqεrsεkl,

J9 = aααpa
β
γra

γ
βqsε

pqεrs, J19 = aαaβγa
γ
αpa

δ
δβqε

pq, J29 = aαpra
β
δka

γ
qsla

δ
γβαε

pqεrsεkl,

J10 = aαβpa
β
αra

γ
γqsε

pqεrs, J20 = aαaβαa
γ
δpa

δ
γβqε

pq, J30 = aαaβaγapaqαβγεpq,

J31 = aαaβaγaδδµa
µ
αβγ , J42 = aαaβγδa

γ
µpa

δ
βra

µ
αqsε

pqεrs,

J32 = aαaβaγaδγβa
µ
µαδ, J43 = aαaβrka

γ
γδpa

δ
βµqa

µ
αlsε

pqεrsεkl,

J33 = aαaβaγµγa
δ
δpa

µ
βαqε

pq, J44 = aαaβrka
γ
µδpa

δ
βαqa

µ
γlsε

pqεrsεkl,

J34 = aαaβaγγαpa
δ
βrqa

µ
µδsε

pqεrs, J45 = aαaβrka
γ
γµpa

δ
βαqa

µ
δlsε

pqεrsεkl,

J35 = aαaβµδa
γ
γβa

δ
pra

µ
αqsε

pqεrs, J46 = aαaβpra
γ
µδqa

δ
βγka

µ
αlsε

pqεrsεkl,

J36 = aαaβµγa
γ
δβa

δ
pra

µ
αqsε

pqεrs, J47 = aαµδa
β
βγa

γ
αpa

δ
rka

µ
qslε

pqεrsεkl,

J37 = aαaββµa
γ
γδa

δ
pra

µ
αqsε

pqεrs, J48 = aαµγa
β
βδa

γ
αpa

δ
rka

µ
qslε

pqεrsεkl,

J38 = aαaβµγa
γ
δαa

δ
pra

µ
βqsε

pqεrs, J49 = aαδγa
β
βµa

γ
αpa

δ
rka

µ
qslε

pqεrsεkl,

J39 = aαaβµδa
γ
βαa

δ
pra

µ
γqsε

pqεrs, J50 = aαµβa
β
γδa

γ
αpa

δ
rka

µ
qslε

pqεrsεkl,

J40 = aαaβµγa
γ
βαa

δ
pra

µ
δqsε

pqεrs, J51 = aαγβa
β
µδa

γ
αpa

δ
rka

µ
qslε

pqεrsεkl,

J41 = aαaβµδa
γ
γpa

δ
βra

µ
αqsε

pqεrs, J52 = aαµδa
β
βαa

γ
γpa

δ
rka

µ
qslε

pqεrsεkl,

J53 = aαµγa
β
βαa

γ
δpa

δ
rka

µ
qslε

pqεrsεkl, J57 = aαaβνδa
γ
µpa

δ
γra

µ
βqka

ν
αslε

pqεrsεkl,

J54 = aαµδa
β
γpa

γ
βra

δ
αka

µ
qslε

pqεrsεkl, J58 = aαaβνγa
γ
µpa

δ
δra

µ
βqka

ν
αslε

pqεrsεkl,

J55 = aαaβaγaδaµµδνa
ν
αβγ , J59 = aαaβδµa

γ
νpa

δ
βra

µ
γqka

ν
αslε

pqεrsεkl,

J56 = aαaβaγaδδνa
µ
γµpa

ν
αβqε

pq, J60 = aαaβνδa
γ
γpa

δ
βra

µ
µqka

ν
αslε

pqεrsεkl,



310 On the Affine Equivalence and Minimal Rational Bases

J61 = aαaβγµa
γ
νpa

δ
βra

µ
δqka

ν
αslε

pqεrsεkl.

Henceforth, we denote by B the set

{I1, I2, I4, I9, I17, I18, I20, I21, I22, I25, I26, J1, . . . , J61}.

3 Affine Equivalence of Planar Cubic Differential Systems

In this section, by using the constructed invariants in the preceding section, we give necessary and sufficient
invariants conditions for the affine equivalence of the general planar cubic differential systems with respect
to affine group SL(2,R) in the case J4 6= 0, J7 6= 0 and I17 6= 0. First, consider the general planar cubic
differential systems

dxj

dt
= aj + aiαx

α + ajαβx
αxβ + ajαβγx

αxβxγ , j, α, β, γ = 1, 2, (5)

which ia a particular case of systems (1) where n = 2 and k = 3.

Definition 5 We say that two families S
(
a(1)

)
and S

(
a(2)

)
of systems (1) (with the same degree k and

dimension n) are affine equivalent with respect to affine group SL(n,R) (or SL(n,R)-equivalent) if there
exists a transformation Q ∈ SL(n,R) such that ρ(Q)a(1) = a(2).

Lemma 1 The elements of the set B are centro-affine invariants of the cubic differential system 5 which
are polynomially independent.

Proof. We shall prove that it is not possible to write any element of this family polynomially by means of
others, to this end, we use an algorithmic method which is based on reducing the polynomial decomposition
to a linear one(see [2, 6, 22]), for instance I2, I1 are polynomially independent according to their linear
decompositions (see Table 3), where A(0,2,0,0) = {I21 , I2}, obviously I2 cannot be generated from I1 since
2a12a

2
1 is a term of I2 but not of I21 . In this case, it suffices to find a product with nonzero coefficients, which

do not come into any other invariants of B or their products, this proof is similar to the one in [19, p. 41-42].
Indeed, if one invariant of type T = (d0, d1, d2, d3) can be generated by the others, it can be expressed as

a linear combination of the generating family A(d0,d1,d2,d3), for example K = apra
q
sεpqε

ps of type T = (0, 2, 0)
can be expressed linearly by A(0,2,0), hence K = 2det(aij)j,i=1,2 = I21 − I2.

Product I21 I2 K
(a11)2 1 1 0
a11a

2
2 2 0 2

a12a
2
1 0 2 −2

(a22)2 1 1 0

Table 3:

The same conclusion for {J12, J13} ∈ A(0,0,0,3) and {J24, J25, J26} ∈ A(0,0,2,2), which is clear from table
4 that are polynomially independent. It follows easily that α1J12 +α2J13 ≡ 0 and β1J24 +β2J25 +β3J26 ≡ 0
only when α1 = α2 = 0 and β1 = β2 = β3 = 0.

Product J13 J12
a1111a

1
112a

2
222 1 0

a1111a
1
122a

2
122 −2 −3

a1111a
1
222a

2
112 −1 3

Product J26 J25 J24
(a111)2a1112a

2
222 −1 0 0

a111a
1
22a

1
111a

2
122 −1 1 −1

a111a
2
12a

1
111a

1
222 −1 −1 −1

Table 4:
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For the remaining elements of B, the proof process is the same by refereeing to tables 6 and 7 in the
annexe.

Lemma 2 If I17 6= 0, then the system (5) can be reduced by means of centro-affine transformations to the
form:

dyj

dt
=

3∑
l+h=0

1

Ih+j−117

Kj

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

(
y1
)h (

y2
)l
, j = 1, 2. (6)

where

K1 = 0, K2
2 = I20, K1

1 = I1I17 − I20, K1
22 = I21,

K2 = I17, K1
11 = I26, K1

12 = I217 − I22, K2
11 = I9,

K2
1 = I4, K1

222 = −J30, K1
122 = I17J4 − J31, K2

12 = −I26,

K1
2 = I18, K2

222 = J31, K1
112 = J33 − I17J7, K2

22 = I22,

K1
111 = J35 − J37 − J38 − J39 + J40 − J41 + I17(J11 − 2J8 + 2J9 + J10),

K2
111 = 2J47 − 2J48 − J49 − J50 + 2J51 − 3J52 + 3J53 − J54,

K2
122 = −J33,

K2
112 = J37 − J35 + J38 + J39 − J40 + J41 − I17J11.

Proof. Since I17 6= 0, we can consider the following matrix

Q17(a) =

(
a2 −a1

1
I17
aαα1

1
I17
aαα2

)
. (7)

One can easily check that det(Q17(a)) = 1, therefore the system (5) can be transformed by the centro-affine
transformation yj = Q17(a)jix

i, i, j = 1, 2, into a new system, where the new coefficients are given by [20]

ρ(Q17)a111..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
1

Ih17
aqapβ1...βhδ1δ2...δl

h∏
i=1

aαi

αiki
εβiki ×

l∏
j=1

aδjεpq, (8)

ρ(Q17)a211..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
1

Ih+1
17

aαaββαia
i
β1...βhδ1δ2...δl

h∏
i=1

aαi

αiki
εβiki ×

l∏
j=1

aδj ,

where l + h = 0, 1, 2, 3 and h, l = 0, 1, 2, 3.

The proof is completed by expressing the elements Ih+j−117 ρ(QI17)aj11..1︸︷︷︸
htimes

22..2︸︷︷︸
ltimes

as a polynomial function

of the family B. For instance, choosing the element I217ρ(Q17)a1112 = aqaαaββra
γ
γka

p
αslεpqε

rsεkl and

I217ρ(Q17)a2122 = aαaβaγγµa
δ
δqa

µ
βαqε

pq, which are obtained from (8) at h = 2, l = 1 and h = 1, l = 2 Respec-
tively and

I217ρ(Q17)a2122, I
2
17ρ(Q17)a1112 ∈ A(2,0,2,1) = {I17J7, I17J6, I17J5, J33} .

Now by using the method developed in[6], we can easily express these elements as a linear combination of
A(2,0,2,1) (see table 5)
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Product I17J7 J33 I217ρ(Q17)a1112 I217ρ(Q17)a2122
(a1)2(a111)2a1112 1 1 0 −1
(a1)2(a111)2a2122 1 0 −1 0
(a1)2a111a

1
12a

1
111 −1 −1 0 1

(a1)2a111a
1
12a

2
112 −1 1 2 −1

(a1)2a111a
2
12a

1
112 2 2 0 −2

Table 5:

It is easy to check that: I217ρ(Q17)a1112 = J33 − I17J7 = K1
112 and I217ρ(Q17)a2122 = −J33 = K2

122.
Similarly, we obtain other elements expressions, for l + h = 0, 1, 2, 3, h, l = 0, 1, 2, 3 we find

Ih+j−117 ρ(Q17)aj11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

= Kj
11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

, j = 1, 2

which concludes the proof.

Lemma 3 If J4 6= 0 , then the system (5) can be reduced by means of centro-affine transformations to the
form:

dyj

dt
=

3∑
l+h=0

1

Jh+j−14

Hj

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

(
y1
)h (

y2
)l
, j = 1, 2. (9)

where
H1 = 0, H2

22 = J32, H1
1 = I1J4 − J14, H2

122 = J4J15 − 1
2J2J30,

H2 = J4, H1
22 = I21, H1

12 = I17J4 − J32, H2
12 = J4J6 + 1

2I21J2,

H2
2 = J14, H1

222 = −J30, H1
122 = J2

4 − J55, H1
112 = 1

2J2J30 − J4J15,

H1
2 = I18, H2

222 = J55, H2
1 = J1J4 + 1

2I18J2, H1
111 = J4J34 + 1

2J2J55,

H2
112 =

1

2
J2(J2

4 − J55)− J4J34),

H1
11 = −J4J6 + J4J7 −

1

2
I21J2,

H2
111 =

1

4
J2
2J30 − J4(J2J15 + J4(J12 + J13)),

H2
11 = J4(J23 − J21 + J22) +

1

2
J2(I17J4 − J32).

Proof. The proof of this lemma is almost the same as that of Lemma 2. Since J4 6= 0, it suffices to consider
the matrix of centro-affine transformations:

Q4(a) =

(
a2 −a1

1
J4
aαaββα1

1
J4
aαaββα2

)
,

clearly det (Q4(a)) = 1. In the same manner, by applying the formula of centro-affine transformations, for
l + h = 0, 1, 2, 3 and h, l = 0, 1, 2, 3 we obtain

ρ(Q4)a111..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
1

Jh4
aqapβ1...βhδ1δ2...δl

h∏
i=1

aαiaλi

λiαiki
εβiki ×

l∏
j=1

aδjεpq,

ρ(Q4)a211..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
1

Jh+1
4

aαaββαia
i
β1...βhδ1δ2...δl

h∏
i=1

aαiaλi

λiαiki
εβiki ×

l∏
j=1

aδj .
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The proof is completed by expressing these elements as polynomial function of the family B, which lead
to the systems 9

Jh+j−14 ρ(Q4)aj11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

= Hj
11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

.

for l + h = 0, 1, 2, 3 and h, l = 0, 1, 2, 3 and j = 1, 2.

Lemma 4 If J7 6= 0, then the system (5) can be reduced by means of centro-affine transformations to the
form:

dyj

dt
=

3∑
l+h=0

1

Jh+j−17

F j11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

(
y1
)h (

y2
)l
, j = 1, 2. (10)

where

F 2
2 = J16 − J17 − J18 + J19 + J20 − I17J1, F 1 = I17,

F 1
1 = I17J1 + I1J7 − J16 + J17 + J18 − J19 − J20, F 2 = J4,

F 1
11 = J4(J10 + J11 − J8)− 1

2I22J2, F 1
2 = −I4,

F 2
12 = J4(2J9 − J8 − J11) + 1

2J2(I22 − I217), F 1
22 = I9,

F 2
111 = 1

4J
2
2J30 − J2

4 (J12 + J13)− J2J4J15, F 2
1 = J1J4 + 1

2I18J2,

F 1
12 = J35 − J36 − J37 + J38 + J39 − J40 + J42 − I17J11,

F 2
22 = −J35 + J36 + J37 − J38 − J39 + J40 − J42 + I17J11,

F 2
11 = J4(J22 + J23 − J21) +

1

2
J2(I17J4 − J32),

F 1
111 = J4(

1

2
(J43 + 3J44 − J45 + J2J7)− J46 −

3

4
J3(J5 − J7)− I17(J13 +

1

3
J12)) +

1

2
J2J56,

F 1
112 = J4(

1

2
(J24 − J25)− J26 − J27 − J28 + J29)− 1

2
J2J33,

F 1
122 = 2(J58 − J57 + J59 − J61) + I17(J26 + J27 + J28 − J29 −

3

2
J24 −

1

2
J25)− J60 +

1

2
I25J2,

F 1
222 = J49 + J50 − 2J47 + 2J48 − 2J51 + 3J52 − 3J53 + J54,

F 2
112 = J4(J46 +

1

2
(J45 − J43 − 3J44) +

3

4
J3(J5 − J7) + I17(J13 +

1

3
J12))− 1

2
J2J56,

F 2
122 = J4(J26 + J27 + J28 − J29 +

1

2
(J25 − J24)) +

1

2
J2(J33 − I17J7),

F 2
222 = J7(2J9 − 2J8 + J10) + 2(J57 − J58 − J59 + J61)

+J60 + I17(J29 − J26 − J27 − J28 +
1

2
(J25 + 3J24))− 1

2
I25J2.

Proof. Since J7 6= 0, it suffices to consider the matrix of centro-affine transformations

Q7(a) =

(
aαα1 aαα2

1
J7
aαaβαβ1

1
J7
aαaβαβ2

)
,
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we see immediately that det(Q7(a)) = 1, by the centro-affine transformations formula we obtain:

ρ(Q7)a111..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
1

Jh7
aααia

i
β1...βhδ1δ2...δl

h∏
i=1

aαiaλi

αiλiki
εβiki ×

l∏
j=1

aνjνjωj
εωjδj ,

ρ(Q7)a211..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
1

Jh+1
7

aαaβαβia
i
β1...βhδ1δ2...δl

h∏
i=1

aαiaλi

αiλiki
εβiki ×

l∏
j=1

aνjνjωj
εωjδj ,

for l + h = 0, 1, 2, 3 and h, l = 0, 1, 2, 3. By expressing these elements as polynomial function of B yields

Jh+j−17 ρ(Q7)aj11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

= F j 11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

,

for l + h = 0, 1, 2, 3, h, l = 0, 1, 2, 3 and j = 1, 2, which leads to the system (10).

Theorem 2 The following statements hold:

1) Two planar cubic differential systems S(a(1)) and S(a(2)) such that I
(1)
17 .I

(2)
17 6= 0 are SL(2,R)− equiv-

alent if, and only if, (
I
(2)
17

)h+j−1
Kj(1)

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
(
I
(1)
17

)h+j−1
Kj(2)

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

.

2) Two planar cubic differential systems S(a(1)) and S(a(2)) such that J
(1)
4 .J

(2)
4 6= 0 are SL(2,R)-

equivalent if, and only if,(
J
(2)
4

)h+j−1
Hj(1)

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
(
J
(1)
4

)h+j−1
Hj(2)

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

.

3) Two planar cubic differential systems S(a(1)) and S(a(2)) such that J
(1)
7 .J

(2)
7 6= 0 are SL(2, R)−equivalent

if, and only if, (
J
(2)
7

)h+j−1
F j

(1)

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
(
J
(1)
7

)h+j−1
F j

(2)

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

,

for all l + h = 1, 2, 3, h, l = 0, 1, 2, 3.

Proof. Let S(a(1)) and S(a(2)) be two planar cubic differential systems such that I
(1)
17 .I

(2)
17 6= 0. We assume

S(a(1)) and S(a(2)) are SL(2,R)−equivalent (i.e. ρ(Q)a(1) = a(2) for some Q in SL(2,R)), because the
expressions

(I17)
h+j−1

Kj
11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

,

are centro-affines invariants for l + h = 1, 2, 3;h, l = 0, 1, 2, 3, then, it is clear that(
I
(2)
17

)h+j−1
Kj(1)

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

=
(
I
(1)
17

)h+j−1
Kj(2)

11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

. (11)

In the same way, we prove the sufficient condition in the cases (2) and (3). Conversely, if we have two planar

cubic differential systems S(a(1)) and S(a(2)) such that I
(1)
17 .I

(2)
17 6= 0 and satisfy the equalities (11), then by
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denoting Q
(i)
17 (i = 1, 2) the matrix Q17

(
a(i)
)

associated with the system S(a(1)), the equalities (11) mean
that

ρ(Q
(1)
17 )a(1) = ρ(Q

(2)
17 )a(2)

therefore,

ρ

((
Q

(2)
17

)−1
Q

(1)
17 )

)
a(1) = ρ

((
Q

(2)
17

)−1)
ρ
(
Q

(1)
17 )
)
a(1)

= ρ

((
Q

(2)
17

)−1)
ρ
(
Q

(2)
17 )
)
a(2)

= ρ (I2) a(2), (I2 denotes the identity matrix of order 2)

= a(2).

Hence, the systems S(a(1)) and S(a(2)) are SL(2,R)−equivalent by the transformation
(
Q

(2)
17

)−1
Q

(1)
17 . Sim-

ilar proof for the case (2) (Resp. (3)) shows that the systems S(a(1)) and S(a(2)) are SL(2,R)−equivalent

by the transformation
(
Q

(2)
4

)−1
Q

(1)
4 (Resp.

(
Q

(2)
7

)−1
Q

(1)
7 ).

4 Minimal Rational Basis of Cubic Polynomial Differential Sys-
tems

In this section, we shall deduce the minimal rational bases associated with the normal forms which have
been constructed in the previous section.

Definition 6 ([3]) A set S of GL(n,R)−invariants is called a rational on M ⊂ C(n, k,R) basis of invariants
for system (1) with respect to the group GL(n,R) if any invariants of system (1) with respect to the group
GL(n,R) can be expressed as a rational function of elements of the set S. And a rational basis on M ⊂ A
of invariants for system (1) with respect to a group GL(n,R) is called minimal if by the removal from it of
any comitant it ceases to be a rational basis.

Theorem 3 The following statements hold:

1) The set of GL(2,R)-invariants

B1 =

 I1, I4, I17, I20, I21, I26, I9, I22, J8, J9, J10,
J11, J30, J31, J33, J4, J7, J35, J37, J38, J39,
J40, J41, J47, J48, J49, J50, J51, J52, J53, J54


is a minimal rational basis of the GL(2,R)-invariants of system (5) on

M = {a ∈ C(2, 3,R); I17 6= 0} .

2) The set of GL(2,R)-invariants

B2 =

{
J4, J6, I21, J2, J34, J55, J30, J15, I1, J14, J1, J12,
J13, J2, I18, J7, I17, J32, J21, J22, J23, J32, J55

}
is a minimal rational basis of the GL(2,R)-invariants of system (5) on

M = {a ∈ C(2, 3,R); J4 6= 0} .
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3) The set of GL(2,R)-invariants

B3 =


I1, I4, I9, I17, I18, I22, I25, J1, J2, J4, J5, J7, J11, J8, J9, J10, J11,
J12, J13, J15, J16, J17, J18, J19, J20, J21, J22, J23, J24, J25, J26, J27,
J28, J29, J30, J32, J33, J35, J36, J37, J38, J39, J40, J42, J43, J44, J45,
J46, J47, J48, J49, J50, J51, J52, J53, J54, J56, J57, J58, J59, J60, J61


is a minimal rational basis of the GL(2,R)-invariants of system (5) on

M = {a ∈ C(2, 3,R); J7 6= 0} .

Proof. Let us consider a planar cubic differential systems S(a) such that I17 6= 0 and Q17 the matrix defined
by (7). From Lemma 2 the linear transformation y = Q17x can brought system (1) to the normal form (6).
Now if F (a) is a GL(2,R)−invariant of system (1) then by using the fact that det (Q17) = 1 we obtain

F (ρ(Q17)a) = F

 1

Ih+j−117

Kj
11..1︸︷︷︸
h times

22..2︸︷︷︸
l times

(a)


 = F (a) .

Which means that any invariant can be expressed as a rational function of elements of the set B1. By lemma
1, the elements of B1 are polynomially independents, thus the set B1 is a minimal rational basis of the
GL(2,R)-invariants of system (5) on

M = {a ∈ C(2, 3,R); I17 6= 0} .

In the same way, we can prove the case (2) and (3).
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5 Annexe

Table 6: A minimal polynomial basis of center-affine invariants of
cubic differential systems

Invariant Expression
Type

Product Cofficient
(d0, d1, d2, d3)

J1 = aαpa
β
βαqε

pq (0, 1, 0, 1) a11a
1
112 1

J2 = aααpra
β
βqsε

pqεrs (0, 0, 0, 2) a1111a
2
222 2

J3 = aαβpra
β
αqsε

pqεrs (0, 0, 0, 2) a1222a
2
111 2

J4 = aαaβaγγαβ (2, 0, 0, 1) (a1)2a1111 1

J5 = aαaβγpa
γ
βαqε

pq (1, 0, 1, 1) a1a122a
2
111 −1

J6 = aαaβαpa
γ
βγqε

pq (1, 0, 1, 1) a1a211a
2
222 1

J7 = aαaββpa
γ
γαqε

pq (1, 0, 1, 1) a1a222a
1
111 −1

J8 = aαγpa
β
αra

γ
βqsε

pqεrs (0, 0, 2, 1) a111a
2
12a

1
122 −1

J9 = aααpa
β
γra

γ
βqsε

pqεrs (0, 0, 2, 1) a111a
2
22a

1
112 −1

J10 = aαβpa
β
αra

γ
γqsε

pqεrs (0, 0, 2, 1) (a111)2a2222 1

J11 = aαβγa
β
pra

γ
αqsε

pqεrs (0, 0, 2, 1) a111a
1
22a

1
111 1

J13 = aαγβpa
β
αrka

γ
qslε

pqεrsεkl (0, 0, 0, 3) (a1111)2a1222 1

J14 = aαaβaγβa
δ
δαγ (2, 1, 0, 1) (a1)2a21a

2
122 1

J15 = aαaβaγαβpa
δ
δγqε

pq (2, 0, 0, 2) (a1)2a1111a
2
122 1

J16 = aαaβδ a
γ
γpa

δ
βαqε

pq (1, 1, 1, 1) a1a21a
2
22a

1
112 −1

J20 = aαaβαa
γ
δpa

δ
γβqε

pq (1, 1, 1, 1) a1a21a
2
22a

2
122 −1

J21 = aαaβδpa
γ
γβra

δ
αqsε

pqεrs (1, 0, 1, 2) a1a211a
1
112a

2
222 −1

J22 = aαaββpa
γ
γδra

δ
αqsε

pqεrs (1, 0, 1, 2) a1a222a
1
111a

2
122 1

J23 = aαaβpra
γ
γδqa

δ
αβsε

pqεrs (1, 0, 1, 2) a1a112a
1
111a

1
112 −2

J27 = aαγpa
β
βra

γ
δqka

δ
αslε

pqεrsεkl (0, 0, 2, 2) (a111)2a1222a
2
112 −1

J28 = aαrka
β
δpa

γ
γsla

δ
βαqε

pqεrsεkl (0, 0, 2, 2) (a111)2a1112a
1
122 1

J29 = aαpra
β
δka

γ
qsla

δ
γβαε

pqεrsεkl (0, 0, 2, 2) (a111)2a1111a
1
222 1

J30 = aαaβaγapaqαβγεpq (4, 0, 0, 1) (a1)4a2111 1

J31 = aαaβaγaδδµa
µ
αβγ (3, 0, 1, 1) (a1)3a222a

2
111 1

J32 = aαaβaγaδγβa
µ
µαδ (3, 0, 1, 1) (a1)3a211a

2
122 1

J33 = aαaβaγµγa
δ
δpa

µ
βαqε

pq (2, 0, 2, 1) (a1)2(a112)2a2111 −1

J34 = aαaβaγγαpa
δ
βrqa

µ
µδsε

pqεrs (2, 0, 0, 3) (a1)2a1112a
2
111a

2
222 −1

J41 = aαaβµδa
γ
γpa

δ
βra

µ
αqsε

pqεrs (1, 0, 3, 1) a2(a212)3a1222 1

J42 = aαaβγδa
γ
µpa

δ
βra

µ
αqsε

pqεrs (1, 0, 3, 1) a1a211(a222)2a1112 −1

J43 = aαaβrka
γ
γδpa

δ
βµqa

µ
αlsε

pqεrsεkl (1, 0, 1, 3) a1a112a
1
112a

2
111a

2
222 2

J46 = aαaβpra
γ
µδqa

δ
βγka

µ
αlsε

pqεrsεkl (1, 0, 1, 3) a2a111a
1
111a

1
112a

1
222 1

J49 = aαδγa
β
βµa

γ
αpa

δ
rka

µ
qslε

pqεrsεkl (0, 0, 4, 1) (a111)3a222a
2
222 1

J52 = aαµδa
β
βαa

γ
γpa

δ
rka

µ
qslε

pqεrsεkl (0, 0, 4, 1) (a111)3a222a
1
122 −1

J54 = aαµδa
β
γpa

γ
βra

δ
αka

µ
qslε

pqεrsεkl (0, 0, 4, 1) (a112)4a2111 −1

J55 = aαaβaγaδaµµδνa
ν
αβγ (4, 0, 0, 2) (a1)4a2111a

2
122 1

J56 = aαaβaγaδδνa
µ
γµpa

ν
αβqε

pq (3, 0, 1, 2) (a1)3a112a
1
112a

2
111 −1

J60 = aαaβνδa
γ
γpa

δ
βra

µ
µqka

ν
αslε

pqεrsεkl (1, 0, 3, 2) a2(a111)3a1222a
2
122 1
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Product J36 J35 J37 J39 J40 J38
a1a122(a211)2a1122 1 0 0 0 0 0
a2a111a

1
22a

2
11a

2
222 1 1 0 0 0 0

a1a211(a222)2a2122 1 1 1 0 0 0
a1a122(a211)2a2222 0 0 0 1 1 0
a1a122a

2
11a

2
22a

2
112 0 0 0 1 1 1

a2(a122)2a212a
2
111 0 0 0 1 2 1

Product J18 J19 J17
a2a12a

2
12a

2
122 1 1 1

a2a21a
1
11a

1
222 0 0 1

a2a21a
1
22a

2
122 0 −1 −1

Product J45 J44
a1a112a

1
112a

1
122a

2
111 2 0

a2a122a
1
112a

1
122a

2
111 0 1

a2a211a
1
112(a1122)2 −1 −1

Product J53 J51 J50 J47 J48
(a111)4a1222 1 1 1 1 1
(a111)2a122a

2
22a

1
111 −1 0 0 0 0

(a122)2(a211)2a1112 0 1 0 0 0
(a112)3a222a

2
111 0 0 −1 0 −1

(a111)3a212a
1
222 1 0 0 1 1

Product J61 J58 J57 J59 J60
a1(a112)3a1112a

2
111 1 −1 −1 1 −1

a1(a122)2a211a
1
111a

2
112 1 0 0 1 0

a1(a122)2a211(a2112)2 0 0 1 1 0
a1(a112)2a222a

1
112a

2
111 −1 0 0 0 −1

a1(a112)3a2111a
2
122 1 1 1 1 −1

Table 7:
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