Iterative Approximation Of Best Proximity Pairs Of Asymptotically Relatively Nonexpansive Mappings*

S. Ithaya Ezhil Manna[†], A. Anthony Eldred[‡]

Received 13 May 2020

Abstract

We prove the strong convergence of iterative approximation of best proximity pairs of an asymptotically relatively nonexpansive mappings on a uniformly convex Banach spaces using Noor's iteration schemes under various control conditions on iteration parameters. We also provide an example to support our results.

1 Introduction

Let U be a nonempty subset of a Banach space X and S be a mapping from U into U. Iterative approximation of fixed points on nonexpansive mappings was studied by various authors (see [5], [6], [9], [10], [13], [14], [17]) using Mann iteration schemes $(x_0 \in U, x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Sx_n, n \geq 0$, where $\{\alpha_n\} \subseteq [0,1]$ and Ishikawa iteration schemes $(x_0 \in U, x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Sy_n, y_n = (1 - \beta_n)x_n + \beta_n Sx_n, n \geq 0$, where $\{\alpha_n\}, \{\beta_n\} \subseteq [0,1]$). Thereafter modification of Mann and Ishikawa [18] iteration schemes was introduced to approximate fixed points of mapping with asymptotic behaviour. Later, Xu and Noor [22] in 2002 introduced three steps (Noor) iterative schemes ($x_0 \in U, x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S^n y_n; y_n = (1 - \beta_n)x_n + \beta_n S^n z_n; z_n = (1 - \gamma_n)x_n + \gamma_n S^n x_n, n \geq 0$, where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are real sequences in [0,1]) to approximate fixed points of asymptotically nonexpansive mappings.

Let U and V be nonempty subsets of a Banach space X. A mapping $S: U \cup V \to X$ such that $S(U) \subseteq U, S(V) \subseteq V$ is said to be relatively nonexpansive [2] if $||Sx - Sy|| \le ||x - y||$ for all $(x, y) \in U \times V$ and asymptotically relatively nonexpansive [16] if $||S^nx - S^ny|| \le k_n ||x - y||$ for all $(x, y) \in U \times V$. Under this weaker assumption over S, the existence of the so-called best proximity pair, that is, a point $(p, q) \in U \times V$ such that

$$p = Sp$$
, $q = Sq$ and $d(p,q) = dist(U,V)$,

was studied by various authors (see [1], [3], [4], [7], [15]). Recently, S. Rajesh and P. Veeramani [16] have proved the following theorem which ensures the existence of best proximity pair for asymptotically relatively nonexpansive mappings.

Theorem 1 ([16, Theorem 3.2]) Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a nearly uniformly convex (NUC) Banach space. Suppose $S: U \cup V \to U \cup V$ is a continuous and asymptotically relatively nonexpansive mappings satisfying $S(U) \subseteq U$ and $S(V) \subseteq V$. Further, assume that (U, V) has the rectangle property and the property UC. Then there exist $u \in U$ and $v \in V$ such that Su = u, Sv = v and ||u - v|| = dist(U, V).

Here we establish the strong convergence of best proximity pairs for Theorem 1 with the help of Noor iteration schemes under variety of control conditions.

^{*}Mathematics Subject Classifications: 39B12, 41A65, 47H10.

[†]Department of Mathematics, St. Josephís College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu 620002, India

[‡]Department of Mathematics, St. Josephís College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu 620002, India

2 Preliminaries

Here we recall some important definitions, notations and results which are necessary for our main results.

Definition 1 ([2]) Let U and V be nonempty subsets of a Banach space X and $(u,v) \in U \times V$. Then a point u (or v) is said to be a proximal point of v (or u) if ||u-v|| = dist(U,V).

Definition 2 ([2, 8]) Let U and V be nonempty subsets of a Banach space X. The pair (U, V) is said to be proximal pair if and only if for each (u, v) in $U \times V$, there exists (u_1, v_1) in $U \times V$ such that $||u - v_1|| = dist(U, V) = ||v - u_1||$. If (u_1, v_1) in $U \times V$ is unique then the pair (U, V) is called sharp proximal pair.

Definition 3 ([8]) The pair (U, V) is said to be a proximal parallel pair if the pair (U, V) is sharp proximal pair and there exists a unique $h \in X$ such that V = U + h.

The proximal pair of (U, V) denoted as (U_0, V_0) which are given by

$$U_0 = \{ u \in U : ||u - v'|| = \text{dist}(U, V) \text{ for some } v' \in V \},$$

$$V_0 = \{ v \in V : ||u' - v|| = \text{dist}(U, V) \text{ for some } u' \in U \}.$$

Also

$$\mathcal{P}(x) = \begin{cases} y \in U_0 : ||x - y|| = \text{dist}(U, V) & \text{if } x \in V_0, \\ y \in V_0 : ||x - y|| = \text{dist}(U, V) & \text{if } x \in U_0, \end{cases}$$

and $Fix(S) = \{x \in U \cup V/S(x) = x\}.$

Definition 4 ([20]) The pair (U,V) is said to satisfy the property UC if and only if the following holds: If $\{x_n\}$ and $\{y_n\}$ are sequences in U and $\{z_n\}$ be a sequence in V such that $\lim_{n\to\infty} d(x_n,z_n) = dist(U,V)$ and $\lim_{n\to\infty} d(y_n,z_n) = dist(U,V)$, then $\lim_{n\to\infty} d(x_n,y_n) = 0$.

Definition 5 ([16]) Let (U, V) be a nonempty convex parallel pair in a Banach space X. The pair (U, V) is said to have the rectangle property if and only if ||x+h-y|| = ||y+h-x||, for any $x, y \in U$, where $h \in X$ such that V = U + h.

Lemma 2 ([19]) Let X be a normed linear space. Then for all $x, y \in X$ and $t \in [0, 1]$,

$$||tx + (1-t)y||^2 \le t||x||^2 + (1-t)||y||^2.$$

Lemma 3 ([23]) Assume $f:[0,\infty)\to [0,\infty)$ with f(0)=0 be a strictly increasing map. If a sequence $\{x_n\}$ in $[0,\infty)$ satisfies $\lim_{n\to\infty} f(x_n)=0$, then $\lim_{n\to\infty} x_n=0$.

Lemma 4 ([21]) A Banach space X is uniformly convex (UC) if and only if for each fixed number r > 0, there exists a continuous strictly increasing function $\varphi : [0, \infty) \to [0, \infty), \ \varphi(t) = 0 \Leftrightarrow t = 0$, such that

$$\|\lambda x + (1 - \lambda)y\| \le \lambda \|x\| + (1 - \lambda)\|y\| - 2\lambda(1 - \lambda)\varphi(\|x - y\|),$$

for all $\lambda \in [0,1]$ and all $x,y \in X$ such that ||x|| < r and ||y|| < r.

Lemma 5 ([12]) Let U be a nonempty convex subset of a normed linear space X and $S: U \to U$ be a uniformly k-Lipschitzian mapping. For $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \subseteq [0,1]$ and $x_1 \in U$, define $x_{n+1} = (1-\alpha_n)x_n + \alpha_n S^n y_n$, $y_n = (1-\beta_n)x_n + \beta_n S^n z_n$ and $z_n = (1-\gamma_n)x_n + \gamma_n S^n x_n$, $n \ge 1$. Then

$$||x_n - S(x_n)|| \le c_n + c_{n-1}k(2 + 2k + 2k^2 + k^3),$$

where $c_n = ||x_n - S^n(x_n)||$, for all $n \ge 1$.

3 Convergence Results

Let (U, V) be a nonempty closed and convex pair in a strictly convex Banach space X. For $x_1 \in U_0$, put $y_1 := \mathcal{P}(x_1) \in V_0$. Define the sequence pair $\{(x_n, y_n) \in U_0 \times V_0\}$ as follows:

$$\begin{cases} x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S^n x_n', & y_{n+1} = (1 - \alpha_n)y_n + \alpha_n S^n y_n', \\ x_n' = (1 - \beta_n)x_n + \beta_n S^n x_n'', & y_n' = (1 - \beta_n)y_n + \beta_n S^n y_n'', \\ x_n'' = (1 - \gamma_n)x_n + \gamma_n S^n x_n, & y_n'' = (1 - \gamma_n)y_n + \gamma_n S^n y_n, & n = 1, 2, 3..., \end{cases}$$
(1)

where $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are sequences in [0,1] satisfying one of the following conditions:

- (A) $0 < \epsilon \le \alpha_n (1 \alpha_n) \le 1; \beta_n \to 0 \text{ and } 0 \le \gamma_n \le 1 \text{ as } n \to \infty,$
- **(B)** $0 < \epsilon \le \alpha_n \le 1$; $0 < \epsilon \le \beta_n (1 \beta_n) \le 1$ and $\gamma_n \to 0$ as $n \to \infty$,
- (C) $0 < \epsilon \le \alpha_n, \beta_n \le 1$ and $0 < \epsilon \le \gamma_n (1 \gamma_n) \le 1$ as $n \to \infty$.

Lemma 6 Let (U,V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex Banach space X also assume that (U,V) have rectangle and UC property. Let $S:U\cup V\to U\cup V$ is a continuous and noncyclic asymptotically relatively nonexpansive mapping with $\sum_{n\geq 1} (k_n-1) < \infty$. Assume

- $\{x_n\}$ and $\{y_n\}$ are real sequences as defined in (1). Then
 - (i) $\lim_{n \to \infty} ||x_n q||$ exists for all $q \in \text{Fix}(S) \cap V_0$.
- (ii) $\lim_{n\to\infty} ||y_n-p||$ exists for all $p\in \text{Fix}(S)\cap U_0$.

Proof. For any $q \in \text{Fix}(S) \cap V_0$, we have

$$||x_{n+1} - q|| = ||(1 - \alpha_n)x_n + \alpha_n S^n x_n' - q||$$

$$\leq (1 - \alpha_n)||x_n - q|| + k_n \alpha_n ||x_n' - q||$$

$$\leq (1 - \alpha_n)||x_n - q|| + k_n \alpha_n ||(1 - \beta_n)x_n + \beta_n S^n x_n'' - q||$$

$$\leq (1 - \alpha_n)||x_n - q|| + k_n \alpha_n (1 - \beta_n)||x_n - q|| + k_n^2 \alpha_n \beta_n ||x_n'' - q||$$

$$\leq (1 - \alpha_n)||x_n - q|| + k_n \alpha_n (1 - \beta_n)||x_n - q||$$

$$\leq (1 - \alpha_n)||x_n - q|| + k_n \alpha_n (1 - \beta_n)||x_n - q||$$

$$\leq \{1 + \alpha_n (k_n - 1)(\beta_n \gamma_n k_n^2 + \beta_n k_n + 1)\} ||x_n - q||,$$

$$||x_{n+1} - q|| \leq (1 + \mu_n)||x_n - q|| \leq e^{\sum_{i=1}^{\infty} \mu_i} ||x_1 - q||,$$

$$||x_{n+1} - q|| \leq e^{\sum_{i=1}^{\infty} k_i^3 - 1} ||x_1 - q||.$$

where $\mu_n = k_n^{-3} - 1$. Since $\sum_{n=1}^{\infty} (k_n - 1) < \infty$ (which implies that $\sum_{n=1}^{\infty} (k_n^3 - 1) < \infty$), $\{\|x_n - q\|\}$ is a bounded sequence and hence $\lim_{n \to \infty} \|x_n - q\|$ exists for all $q \in \text{Fix}(S) \cap V_0$. Similarly, we can show that $\lim_{n \to \infty} \|y_n - p\|$ exists for all $p \in \text{Fix}(S) \cap U_0$.

Lemma 7 Let (U,V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex Banach space X, also assume that (U,V) have rectangle and UC property. Let $S:U\cup V\to U\cup V$ be a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with $\sum_{n\geq 1} (k_n-1) < \infty$. For $x_1 \in U_0$, let $y_1 \in V_0$ be a unique proximal point of x_1 . Assume $\{x_n\}$ and $\{y_n\}$ are real sequences as defined in (1) and $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are sequences in [0,1] satisfy either (A) or (B) or (C), then

$$\lim_{n \to \infty} ||x_n - Sx_n|| = 0 \quad and \quad \lim_{n \to \infty} ||y_n - Sy_n|| = 0.$$

Proof. Let $q \in F(T) \cap V_0$, then

$$\begin{split} \left\| x_n'' - q \right\| &= \| (1 - \gamma_n) x_n + \gamma_n S^n x_n - q \| \\ &= \| (1 - \gamma_n) (x_n - q) + \gamma_n (S^n x_n - q) \| \\ &\leq (1 - \gamma_n) \| x_n - q \| + \gamma_n \| S^n x_n - q \| - 2 \gamma_n (1 - \gamma_n) g(\| S^n x_n - x_n \|) \\ &\leq (1 - \gamma_n) \| x_n - q \| + k_n \gamma_n \| x_n - q \| - 2 \gamma_n (1 - \gamma_n) g(\| S^n x_n - x_n \|), \end{split}$$

$$\left\|x_n'' - q\right\| \le (1 - \gamma_n + k_n \gamma_n) \|x_n - q\| - 2\gamma_n (1 - \gamma_n) g(\|S^n x_n - x_n\|),$$
(2)

$$\begin{aligned} \left\| x_{n}^{'} - q \right\| &= \| (1 - \beta_{n}) x_{n} + \beta_{n} S^{n} x_{n}^{''} - q \| \\ &= \| (1 - \beta_{n}) (x_{n} - q) + \beta_{n} (S^{n} x_{n}^{''} - q) \| \\ &\leq (1 - \beta_{n}) \| x_{n} - q \| + \beta_{n} \| S^{n} x_{n}^{''} - q \| - 2\beta_{n} (1 - \beta_{n}) g (\| S^{n} x_{n}^{''} - x_{n} \|), \end{aligned}$$

$$\|x_n' - q\| \le (1 - \beta_n) \|x_n - q\| + k_n \beta_n \|x_n'' - q\| - 2\beta_n (1 - \beta_n) g(\|S^n x_n'' - x_n\|), \tag{3}$$

$$||x_{n+1} - q|| = ||(1 - \alpha_n)x_n + \alpha_n S^n x_n' - q||$$

$$= ||(1 - \alpha_n)(x_n - q) + \alpha_n (S^n x_n' - q)||$$

$$\leq (1 - \alpha_n)||x_n - q|| + \alpha_n ||S^n x_n' - q|| - 2\alpha_n (1 - \alpha_n)g(||S^n x_n' - x_n||),$$

$$||x_{n+1} - q|| \le (1 - \alpha_n)||x_n - q|| + k_n \alpha_n ||x_n' - q|| - 2\alpha_n (1 - \alpha_n)g(||S^n x_n' - x_n||).$$

$$(4)$$

Applying equations (2) and (3) in (4), we get

$$||x_{n+1} - p|| \leq \{1 + \alpha_n(k_n - 1)(\beta_n \gamma_n k_n^2 + \beta_n k_n + 1)\} ||x_n - q||$$

$$-2\alpha_n(1 - \alpha_n)g(||S^n x_n^{'} - x_n||) - 2k_n \alpha_n \beta_n(1 - \beta_n)g(||S^n x_n^{''} - x_n||)$$

$$-2k_n^2 \alpha_n \beta_n \gamma_n(1 - \gamma_n)g(||S^n x_n - x_n||).$$

This can be transformed into the following three equations:

$$2\alpha_{n}(1-\alpha_{n})g(\|S^{n}x_{n}^{'}-x_{n}\|) \leq \|x_{n}-q\| - \|x_{n+1}-q\| + \alpha_{n}(\beta_{n}\gamma_{n}k_{n}^{2}+\beta_{n}k_{n}+1)(k_{n}-1)\|x_{n}-q\| \leq \|x_{n}-q\| - \|x_{n+1}-q\| + M(k_{n}-1),$$

$$(5)$$

$$2k_n \alpha_n \beta_n (1 - \beta_n) g(\|S^n x_n'' - x_n\|) \le \|x_n - q\| - \|x_{n+1} - q\| + M(k_n - 1), \tag{6}$$

$$2k_n^2 \alpha_n \beta_n \gamma_n (1 - \gamma_n) g(\|S^n x_n - x_n\|) \le \|x_n - q\| - \|x_{n+1} - q\| + M(k_n - 1).$$
 (7)

Now we have to show that for the given conditions, $\lim_{n\to\infty} ||S^n x_n - x_n|| \to 0$.

Case (i). Suppose the sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ satisfy condition (A). Then summing up the first m terms of equation (5), we get

$$\sum_{n=1}^{m} 2\alpha_{n}(1-\alpha_{n})g(\|S^{n}x_{n}^{'}-x_{n}\|) \leq \|x_{1}-q\|-\|x_{m+1}-q\|+M\sum_{n=1}^{m}(k_{n}^{3}-1) < \infty,$$

for all $m \ge 1$. Therefore, $\sum_{n=1}^{\infty} 2\alpha_n (1 - \alpha_n) g(\|S^n x_n' - x_n\|) < \infty$. Since $\alpha_n (1 - \alpha_n) \ge \epsilon$, $g(\|S^n x_n' - x_n\|) \to 0$ as $n \to \infty$, $\lim_{n \to \infty} \|S^n x_n' - x_n\| \to 0$ from Lemma 3. Also

$$||S^{n}x_{n} - \mathcal{P}x_{n}|| \leq ||S^{n}x_{n} - \mathcal{P}S^{n}x_{n}^{'}|| + ||\mathcal{P}S^{n}x_{n}^{'} - \mathcal{P}x_{n}||$$

$$= ||S^{n}x_{n} - S^{n}(\mathcal{P}x_{n}^{'})|| + ||S^{n}x_{n}^{'} - x_{n}||,$$

$$\leq k_{n}||x_{n} - \mathcal{P}x_{n}^{'}|| + ||S^{n}x_{n}^{'} - x_{n}||$$

$$\leq k_{n}||x_{n} - \mathcal{P}\{(1 - \beta_{n})x_{n} + \beta_{n}S^{n}x_{n}^{''}\}|| + ||S^{n}x_{n}^{'} - x_{n}||$$

$$= k_{n}||x_{n} - \mathcal{P}x_{n} + \beta_{n}(\mathcal{P}x_{n} - \mathcal{P}S^{n}x_{n}^{''})|| + ||S^{n}x_{n}^{'} - x_{n}||$$

$$\leq k_{n}||x_{n} - \mathcal{P}x_{n}|| + k_{n}\beta_{n}||\mathcal{P}x_{n} - \mathcal{P}S^{n}x_{n}^{''}|| + ||S^{n}x_{n}^{'} - x_{n}||,$$

$$||S^{n}x_{n} - \mathcal{P}x_{n}|| \le k_{n}||x_{n} - \mathcal{P}x_{n}|| + k_{n}\beta_{n}||x_{n} - S^{n}x_{n}''|| + ||S^{n}x_{n}' - x_{n}||.$$

That is, $\lim_{n\to\infty} ||S^n x_n - \mathcal{P} x_n|| = \operatorname{dist}(A, B)$ which implies that $\lim_{n\to\infty} ||S^n x_n - x_n|| \to 0$.

Case (ii). If the sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ satisfy condition (B).

Then adding the first m terms of equation (6), we get

$$\sum_{n=1}^{m} k_n \alpha_n \beta_n (1 - \beta_n) g(\|S^n x_n'' - x_n\|) \le \|x_1 - q\| - \|x_{m+1} - q\| + M \sum_{n=1}^{m} (k_n^3 - 1) < \infty,$$

for all $m \ge 1$. As $m \to \infty$, we get $\sum_{n=1}^{\infty} \alpha_n \beta_n (1 - \beta_n) g(\|S^n x_n'' - x_n\|) < \infty$. Then by Lemma 3, we have that $\lim_{n \to \infty} \|S^n x_n'' - x_n\| \to 0$. Now

$$||S^{n}x_{n} - \mathcal{P}x_{n}|| \leq ||S^{n}x_{n} - \mathcal{P}S^{n}x_{n}^{"}|| + ||\mathcal{P}S^{n}x_{n}^{"} - \mathcal{P}x_{n}||$$

$$\leq k_{n}||x_{n} - \mathcal{P}x_{n}^{"}|| + ||S^{n}x_{n}^{"} - x_{n}||$$

$$\leq k_{n}||x_{n} - \mathcal{P}x_{n} + \gamma_{n}(\mathcal{P}x_{n} - \mathcal{P}S^{n}x_{n})|| + ||S^{n}x_{n}^{"} - x_{n}||,$$

$$||S^n x_n - \mathcal{P} x_n|| \le k_n ||x_n - \mathcal{P} x_n|| + k_n \gamma_n ||x_n - S^n x_n|| + ||S^n x_n'' - x_n||.$$

We obtain that $\lim_{n\to\infty} ||S^n x_n - \mathcal{P} x_n|| = \operatorname{dist}(A, B)$ and hence $\lim_{n\to\infty} ||S^n x_n - x_n|| = 0$.

Case (iii). Assume that the sequences $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ satisfy condition (C). Then taking summation on the first m terms of the equation (7), we get

$$\sum_{n=1}^{m} k_n^2 \alpha_n \beta_n \gamma_n (1 - \gamma_n) g(\|S^n x_n - x_n\|) \le \|x_1 - q\| - \|x_{m+1} - q\| + M \sum_{n=1}^{m} (k_n^3 - 1) < \infty,$$

for all $m \ge 1$. As $m \to \infty$, $\sum_{n=1}^{m} k_n^2 \alpha_n \beta_n \gamma_n (1 - \gamma_n) g(\|S^n x_n - x_n\|) \to 0$ which gives

$$k_n^2 \alpha_n \beta_n \gamma_n (1 - \gamma_n) g(\|S^n x_n - x_n\|) \to 0 \text{ as } n \to \infty.$$

But (as $n \to \infty$) $k_n \to 1$, $\alpha_n, \beta_n \ge \epsilon > 0$ and $\gamma_n(1 - \gamma_n) \ge \epsilon > 0$,

$$g(||S^n x_n - x_n||) \to 0$$
 as $n \to \infty$.

Then by Lemma 3, we get that $\lim_{n\to\infty} ||S^n x_n - x_n|| \to 0$. From all the above cases, $||S^n x_n - x_n|| \to 0$ as $n\to\infty$. Further, since the mapping S is k-Lipschitzian, we have the following from Lemma 5,

$$||Sx_n - x_n|| \le c_n + c_{n-1}k(2 + 2k + 2k^2 + k^3),$$

where $c_n = ||x_n - S^n(x_n)||$, for all $n \ge 1$. Hence

$$\lim_{n \to \infty} ||Sx_n - x_n|| = 0.$$

Similarly we can show that, $\lim_{n\to\infty} ||Sy_n - y_n|| = 0$.

Theorem 8 Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex Banach space X, also assume that (U, V) have rectangle and UC property. Let $S: U \cup V \to U \cup V$ be a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with S(U) contained in a compact subset and $\sum_{n\geq 1} (k_n - 1) < \infty$. For $x_1 \in U_0$, let $y_1 \in V_0$ be a unique proximal point of x_1 . Assume $\{x_n\}$ and $\{y_n\}$ are real sequences as defined in (1), and $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are sequences in [0,1] satisfy either (A) or (B) or (C). Then the sequence pair $\{(x_n,y_n)\}$ converges to (p,q), where $p = Sp \in U$ and $q = Sq \in V$.

Proof. Let S(U) lie in a compact subset. Then there exists a subsequence $\{Sx_{n_k}\}$ of $\{Sx_n\}$ which converges to some point $u \in U_0$. Then by Lemma 7, we have $\lim_{n\to\infty} \|Sx_{n_k} - x_{n_k}\| = 0$ which implies that $x_{n_k} \to u$. Thus, Su = u and therefore $S(\mathcal{P}u) = \mathcal{P}u$. Then by Lemma 6, $\lim_{n\to\infty} \|x_n - \mathcal{P}u\|$ exists and

$$\lim_{n} ||x_n - \mathcal{P}u|| = \lim_{k} ||x_{n_k} - \mathcal{P}u|| = ||u - \mathcal{P}u|| = \text{dist}(U, V),$$

which gives that $x_n \to u \in U$. Similarly we can show that, as $n \to \infty$, $||Sy_n - y_n|| = 0$ and $y_n \to v \in V$. For a given $x_1 \in U$, there exists an element $y_1 = \mathcal{P}(x_1) \in V$ such that $||x_1 - y_1|| = dist(U, V)$. Here

$$\begin{aligned} \|x_2 - y_2\| &= \|(1 - \alpha_1)x_1 + \alpha_1 S x_1^{'} - ((1 - \alpha_1)y_1 + \alpha_1 S y_1^{'})\| \\ &\leq (1 - \alpha_1)\|x_1 - y_1\| + \alpha_1 \|S x_1^{'} - S y_1^{'}\| \\ &\leq (1 - \alpha_1)\|x_1 - y_1\| + k_1 \alpha_1 \|x_1^{'} - y_1^{'}\| \\ &= (1 - \alpha_1)\|x_1 - y_1\| + k_1 \alpha_1 \|(1 - \beta_1)x_1 + \beta_1 S x_1^{''} - ((1 - \beta_1)y_1 + \beta_1 S y_1^{''})\| \\ &\vdots \\ &\leq \left\{1 + \alpha_1 (k_1 - 1)(\beta_1 \gamma_1 k_1^2 + \beta_1 k_1 + 1)\right\} \|x_1 - y_1\|, \\ \|x_2 - y_2\| &\leq k_1^3 \|x_1 - y_1\|. \end{aligned}$$

In general,

$$||x_n - y_n|| \le k_n^3 ||x_1 - y_1||.$$

As $n \to \infty$,

$$||x_n - y_n|| \to dist(U, V).$$

Finally,

$$||u - v|| = \lim_{n \to \infty} ||x_n - y_n|| = \text{dist}(U, V),$$

which deduces that $(u, v) \in \text{Prox}_{U \times V}(S)$. This completes the proof.

If we choose $\gamma_n = 0$ in Theorem 8, then Noor's type (three steps) iteration schemes reduces to Ishikawa's type iteration schemes. In this case conditions (A) and (B) are still valid, but (C) is not.

Corollary 9 Let (U,V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex Banach space X, also assume that (U,V) have rectangle and UC property. Let $S:U\cup V\to U\cup V$ be a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with

S(U) contained in a compact subset and $\sum_{n\geq 1} (k_n-1) < \infty$. For $x_1 \in U_0$, let $y_1 \in V_0$ be a unique proximal point of x_1 , define the sequences $\{x_n\}$ and $\{y_n\}$ as follows:

$$\begin{cases} x_{n+1} = (1 - \alpha_n)x_n + \alpha_n = S^n x_n', & y_{n+1} = (1 - \alpha_n)y_n + \alpha_n S^n y_n' \\ x_n' = (1 - \beta_n)x_n + \beta_n S^n x_n, & y_n' = (1 - \beta_n)y_n + \beta_n S^n y_n & (n = 1, 2, 3...), \end{cases}$$

where $\{\alpha_n\}$, $\{\beta_n\}$ are sequences in [0,1] satisfying one of the following conditions:

$$(A_1)$$
 $0 < \epsilon \le \alpha_n (1 - \alpha_n) \le 1$ and $\beta_n \to 0$ as $n \to \infty$,

$$(B_1)$$
 $0 < \epsilon \le \alpha_n \le 1$; $0 < \epsilon \le \beta_n (1 - \beta_n) \le 1$ as $n \to \infty$.

Then the sequence pair $\{(x_n, y_n)\}$ converges to (p, q), where $p = Sp \in U$ and $q = Sq \in V$.

Putting $\beta_n = \gamma_n = 0$ in Theorem 8, then Noor's type (three steps) iteration schemes reduces to Mann's type iteration schemes. In such cases, condition (A) alone valid.

Corollary 10 Let (U, V) be a nonempty, bounded closed convex proximal parallel pair in a uniformly convex Banach space X also assume that (U, V) have rectangle and UC property. Let $S: U \cup V \to U \cup V$ is a continuous and noncyclic asymptotically relatively nonexpansive mapping with S(U) contained in a compact subset and $\sum_{n\geq 1} (k_n - 1) < \infty$. For $x_1 \in U_0$, let $y_1 \in V_0$ be a unique proximal point of x_1 , define the sequences $\{x_n\}$ and $\{y_n\}$ as follows:

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S^n x_n, \ y_{n+1} = (1 - \alpha_n)y_n + \alpha_n S^n y_n \quad (n = 1, 2, 3...),$$

where $\{\alpha_n\}$ be a sequence in [0,1] satisfying the condition $0 < \epsilon \le \alpha_n(1-\alpha_n) \le 1$. Then the sequence pair $\{(x_n,y_n)\}$ converges to (p,q), where $p = Sp \in U$ and $q = Sq \in V$.

Example 1 Let (U, V) be a nonempty pair of subsets of the Hilbert space l^2 such that

$$U = \{(0, x_1, x_2, x_3, \dots) / \sum_{i=1}^{\infty} |x_i| \le 1\}$$

and

$$V = \{(1, y_1, y_2, y_3, \dots) / \sum_{i=1}^{\infty} |y_i| \le 1\}.$$

It is evident that U and V are closed, convex and compact subsets of l^2 . Define a mapping $S: U \cup V \to U \cup V$ by

$$Sx = \left\{ \begin{array}{ll} (0,0,{x_1}^2,A_2x_2,A_3x_3,\ldots) & \text{if } x \in U, \\ (1,0,{x_1}^2,A_2x_2,A_3x_3,\ldots) & \text{if } x \in V, \end{array} \right.$$

where $\{A_i\} = \left\{\frac{1}{2^{1/2^{i-1}}}\right\}$. It is easy to verify that S is an asymptotically relatively nonexpansive mapping but not relatively nonexpansive(refer [11]). Clearly $\operatorname{dist}(U,V) = 1$. Let us consider the point $(u,v) \in U \times V$. Then $u = (0,x_1,x_2,x_3,...) \in U$ and $v = (1,y_1,y_2,y_3,...) \in V$. If we choose $u' = (0,y_1,y_2,y_3,...) \in U$ and $v' = (1,x_1,x_2,x_3,...) \in V$, then $\|u-v'\| = \|u'-v\| = \operatorname{dist}(U,V)$. Since the point is arbitrary, the pair (U,V) is a proximal pair of a Banach space l^2 and also $U = U_0$ and $V = V_0$. Since $X = l^2$ is strictly convex Banach space, the pair (U,V) is a proximinal parallel pair (refer Lemma 3.1 in [16]) and so the pair (U,V) posses the rectangle property (refer Example 2.1 in [16]). Obviously U is a convex set and therefore the pair (U,V) satisfies the property UC (refer Proposition 3 in [20]). Hence by Theorem 8, the sequence pair $\{(x_n,y_n)\}$ under the mapping S, converges to the best proximity pair, say (p,q) of (U,V), where (p,q) = ((0,0,0,...), (1,0,0,...)).

Take $\{\alpha_n\} = \{\frac{2n}{3n+1}\}, \{\beta_n\} = \{\frac{1}{n^2+1}\}$ and $\{\gamma_n\} = \{\frac{n}{n+1}\}$. Then clearly the sequences $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ satisfy condition (A). Assume the initial guess as $x_1 = (0, 0.001, 0.019, 0.080, 0, 0, \ldots) \in U_0$. Putting this initial value in equation (1), we get the following sequence of iterations in 3 decimal places:

Iterations	Corresponding Iteration values
S. No	•
I	$x_1'' = (0, 0, 0.001, 0.046, 0.033, 0, 0, 0, 0, 0, \dots)$
	$x_1' = (0, 0, 0.001, 0.04, 0.002, 0.015, 0, 0, 0, 0,)$
	$x_2 = (0, 0, 0.001, 0.04, 0.016, 0.009, 0.007, 0,)$
II	$x_2^{"} = (0, 0, 0, 0.001, 0.005, 0.023, 0.011, 0.005, 0.005, 0)$
	$x_{2}^{'} = (0, 0, 0.008, 0.032, 0.013, 0.007, 0.006, 0.004, 0.002, 0.001, 0.001, 0, \dots)$
	$x_3 = (0, 0, 0, 0.017, 0.007, 0.017, 0.009, 0.004, 0.003, 0.002, 0.001, 0, \dots)$
III	$x_3'' = (0, 0, 0, 0.004, 0.002, 0.004, 0.011, 0.005, 0.012, 0.006, 0.003, 0.002, 0.001, 0,)$
	$x_3' = (0, 0, 0, 0.015, 0.006, 0.015, 0.008, 0.003, 0.003, 0.002, 0.002, 0, \dots)$
	$x_4 = (0, 0, 0, 0.007, 0.003, 0.007, 0.001, 0.004, 0.009, 0.001, 0.002, 0.002,$
	0.001, 0.001, 0,)
IV	$x_4'' = (0, 0, 0, 0.001, 0.0008, 0.005, 0.001, 0.005, 0, 0.003, 0.007, 0, 0.001,$
	0.001, 0,)
	$x_4' = (0, 0, 0, 0.001, 0.001, 0.0007, 0.005, 0.001, 0.005, 0.002, 0.001, 0.001,$
	0,
	$x_5 = (0, 0, 0, 0.002, 0.001, 0.002, 0, 0.001, 0.003, 0.003, 0, 0.002, 0.001, 0.003, 0,)$
V	$x_5'' = (0, 0, 0, 0, 0, 0, 0, 0, 0.001, 0.001, 0, 0.0008, 0.002, 0.002, 0, 0.0016,$
	0.0008, 0.002, 0,)
	$x_5' = (0, 0, 0, 0.002, 0.0009, 0.002, 0, 0.0009, 0.003, 0.003, 0.002, 0.001,$
	0.003, 0,)
	$x_6 = (0, 0, 0, 0, 0, 0, 0, 0.001, 0.002, 0, 0.001, 0, 0.001, 0$
	0,0.001,0,)
VI	$x_6'' = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
	0.001, 0.001, 0.001, 0.001, 0, 0.001, 0, 0.01, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.01, 0, 0.
	$x'_{6} = (0, 0, 0, 0, 0, 0, 0, 0.001, 0.002, 0.001, 0.00$
	$ \begin{array}{c} 0.001, 0) \\ x_7 = (0, 0, 0, 0, 0,) \end{array} $
	$x_7 = (0, 0, 0, 0, \dots)$

Acknowledgement. The authors thank the referee(s) for their comments and suggestions towards the improvement of the paper.

References

- [1] A. Abkar and M. Gabeleh, Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl., 153(2012), 298–305.
- [2] A. A. Eldred, W. A. Kirk and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math., 171(2005), 283–293.
- [3] A. A. Eldred and A. Praveen, Convergence of Mann's iteration for relatively nonexpansive mappings, Fixed Point Theory, 18(2017), 545–554.
- [4] A. Almeida, E. Karapinar and K. Sadarangani, A note on best proximity point theorems under weak *P*-property, Abstr. Appl. Anal., 2014, Art. ID 716825, 4 pp.
- [5] W. G. Jr. Dotson, On the Mann iterative process, Trans. Amer. Math. Soc., 149(1970), 65–73.

- [6] M. Edelstein, A remark on a theorem of M. A. Krasnoselskii, Amer. Math. Monthly., 73(1966), 509–510.
- [7] E. Karapinar and F. Khojasteh, An approach to best proximity points results via simulation functions, J. Fixed Point Theory Appl., 19(2017), 1983–1995.
- [8] R. Espínola, A new approach to relatively nonexpansive mappings, Proc. Amer. Math. Soc., 136(2008), 1987–1995.
- [9] G. Marino, B. Scardamaglia and E. Karapinar, Strong convergence theorem for strict pseudo-contractions in Hilbert spaces, J. Inequ. and Appl., 134(2016), 1–12.
- [10] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147–150.
- [11] S. I. E. Manna and A. A. Eldred, Strong convergence for best proximity pairs of asymptotically relatively nonexpansive mappings, Far East J. Math. Sci., 109(2018), 25–35.
- [12] S. I. E. Manna and A. A. Eldred, Weak and strong convergence theorem for three steps iteration of asymptotically firmly type nonexpansive mappings, Nonlinear Func. Ana. Appl., 24(2019), 747–757.
- [13] M. A. Krasnoselskii, Two observations about the method of successive approximations, Usp. Math. Nauk., 10(1955), 123–127.
- [14] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-510.
- [15] M. Gabeleh, Minimal sets of noncyclic relatively nonexpansive mapping in convex metric spaces, Fixed Point Theory, 16(2015), 313–322.
- [16] S. Rajesh and P. Veeramani, Best proximity point theorems for asymptotically relatively nonexpansive mappings, Numer. Funct. Anal. Optim., 37(2016), 80–91.
- [17] B. E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl., 56(1976), 741–750.
- [18] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158(1991), 407–413.
- [19] Y. Song and Q. Li, Successive approximations for quasi firmly type nonexpansive mappings, Math. Commun., 16(2011), 251–264.
- [20] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the UC property, Nonlinear., 71(2009), 2918–2926.
- [21] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991), 1127–1138.
- [22] B. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach space, J. Math. Anal. Appl., 267(2002), 444–453.
- [23] H. Y. Zhou, G. T. Guo, H. J. Hwang and Y. J. Cho, On the iterative methods for nonlinear operator equations in Banach spaces, PanAmer. Math. J., 14(2004), 61–68