Applied Mathematics E-Notes, 21(2021), 356-364 © ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/~amen/

Iterative Approximation Of Best Proximity Pairs Of
Asymptotically Relatively Nonexpansive Mappings*

S. Ithaya Ezhil Mannaf, A. Anthony Eldred*

Received 13 May 2020

Abstract

We prove the strong convergence of iterative approximation of best proximity pairs of an asymp-
totically relatively nonexpansive mappings on a uniformly convex Banach spaces using Noor’s iteration
schemes under various control conditions on iteration parameters. We also provide an example to support
our results.

1 Introduction

Let U be a nonempty subset of a Banach space X and S be a mapping from U into U. Iterative approximation
of fixed points on nonexpansive mappings was studied by various authors (see [5], [6], [9], [10], [13], [14],
[17]) using Mann iteration schemes (zg € U, Zn41 = (1 — ap)yn + anSTp,n > 0, where {a,} C [0,1] ) and
Ishikawa iteration schemes (zg € U, zp+1 = (1 — an)Tn + @nSYn,yn = (1 — B,,)Tn + B,,5Tn, n > 0, where
{an}, {B,,} € [0,1]). Thereafter modification of Mann and Ishikawa [18] iteration schemes was introduced to
approximate fixed points of mapping with asymptotic behaviour. Later, Xu and Noor [22] in 2002 introduced
three steps (Noor) iterative schemes (2o € U, X1 = (1 —an)Tn + @nS"Yn; yn = (1= B8,)2n + 5,5 2n; 25 =
(I —=7,)Zn +7v,5"Tn,n > 0, where {a, },{5,,}, {7, } are real sequences in [0, 1]) to approximate fixed points
of asymptotically nonexpansive mappings.

Let U and V be nonempty subsets of a Banach space X. A mapping S : U UV — X such that
S(U) CU,S(V) C V is said to be relatively nonexpansive [2] if ||Sz — Sy|| < ||z — y|| for all (z,y) € U x V.
and asymptotically relatively nonexpansive [16] if ||S™x — S™y|| < ky ||z —y|| for all (z,y) € U x V. Under this
weaker assumption over S, the existence of the so-called best proximity pair, that is, a point (p,q) € U x V
such that

p=2Sp, q=Sq andd(p,q)=dist(U, V),

was studied by various authors (see [1], [3], [4], [7], [15]). Recently, S. Rajesh and P. Veeramani [16] have
proved the following theorem which ensures the existence of best proximity pair for asymptotically relatively
nonexpansive mappings.

Theorem 1 ([16, Theorem 3.2]) Let (U, V) be a nonempty bounded closed convex proximal parallel pair
in a nearly uniformly convexr (NUC) Banach space. Suppose S : UUV — UUYV is a continuous and
asymptotically relatively nonexpansive mappings satisfying S(U) C U and S(V) C V. Further, assume that
(U, V) has the rectangle property and the property UC. Then there exist u € U and v € V such that Su = u,
Sv=wv and ||u—v|| = dist(U, V).

Here we establish the strong convergence of best proximity pairs for Theorem 1 with the help of Noor
iteration schemes under variety of control conditions.
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2 Preliminaries
Here we recall some important definitions, notations and results which are necessary for our main results.

Definition 1 ([2]) Let U and V' be nonempty subsets of a Banach space X and (u,v) € U x V. Then a
point u (orv) is said to be a proximal point of v (oru) if |[u — v|| = dist(U, V).

Definition 2 ([2, 8]) Let U and V' be nonempty subsets of a Banach space X. The pair (U, V) is said to
be proximal pair if and only if for each (u,v) in U X V, there exists (ui,v1) in U X V such that ||u — v1]|=
dist(U, V) = ||lv —u1]||. If (u1,v1) in U x V is unique then the pair (U, V) is called sharp prozimal pair.

Definition 3 ([8]) The pair (U,V) is said to be a proximal parallel pair if the pair (U, V) is sharp prozimal
pair and there exists a unique h € X such that V =U + h.

The proximal pair of (U, V') denoted as (Uy, Vj) which are given by
Up={ueU:|u—7|=dist(U,V) for some v’ € V},
Vo={veV:|u —wv|=dist(U,V) for some v € U}.

Also
(z) = yeU: |z —y| =dist(U, V) ifzelp,
CyeVo:lz—y| =dist(U, V) if z € U,

and Fiz(S) ={x e UUV/S(z) = x}.

Definition 4 ([20]) The pair (U,V) is said to satisfy the property UC if and only if the following holds: If
{zn} and {y,} are sequences in U and {z,} be a sequence in 'V such that lim d(x,,z,) = dist(U,V) and

lim d(yn,zn) = dist(U,V), then lim d(x,,y,) = 0.

Definition 5 ([16]) Let (U,V) be a nonempty convex parallel pair in a Banach space X. The pair (U, V)
is said to have the rectangle property if and only if ||z +h—y|| = |ly+h —z||, for any z,y € U, where h € X
such that V.=U + h.

Lemma 2 ([19]) Let X be a normed linear space. Then for all x,y € X and t € [0,1],
[tz + (1 = &)yl* < ¢ + 1 = &)yl

Lemma 3 ([23]) Assume f : [0,00) — [0,00) with f(0) = 0 be a strictly increasing map. If a sequence
{z,} in [0,00) satisfies lim f(x,) =0, then lim z, =0.

Lemma 4 ([21]) A Banach space X is uniformly convex (UC) if and only if for each fixed number r > 0,
there exists a continuous strictly increasing function ¢ : [0,00) — [0,00), @(t) =0« t =0, such that

Az + (1= Nyl < Allz] + (1 = Nyl = 2201 = Me([lz = ),
for all X € [0,1] and all z,y € X such that ||z|| <7 and ||y| < 7.

Lemma 5 ([12]) Let U be a nonempty convexr subset of a normed linear space X and S : U — U be a
uniformly k-Lipschitzian mapping. For {an},{8,},{v.} C [0,1] and z1 € U, define xnr1 = (1 — an)x, +
S Yny Yn = (1 = B,)Tn + £, 2n and zp, = (1 — v,)@n + 7,S"Tn,n > 1. Then

| £ — S(z0) ||< e + cn1k(2 + 2k 4 2k + k3),

where ¢, =| xp — S™(xy) ||, for alln > 1.
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3 Convergence Results

Let (U,V) be a nonempty closed and convex pair in a strictly convex Banach space X. For zy € Uy, put
y1 := P(z1) € V. Define the sequence pair {(z,,y,) € Up x Vo} as follows:

Tnt1 = (1— )Ty 4+ anS™z,,  Yng1 = (1 — an)yn + nS™y,,,

" = (1= B2+ 8,5, Yy = (1= B )yn+ B.S"y,, (1)
=1 =7)Zn + 705" Cn, Yp =1 —=7)Un + 75 "Yn, n=123..,
where {ay,}, {Bn} and {~,,} are sequences in [0, 1] satisfying one of the following conditions:
(A 0<e<a,(1—a,) <1;8, —0and 0 <+, <1asn— oo,
B)o<e<a,<1;0<e<p,(1-p5,)<land~, —0asn— oo,
(C)0<e<ay,B,<land0<e<~,(1—7,)<1lasn— oo.

Lemma 6 Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex
Banach space X also assume that (U, V') have rectangle and UC property. Let S : UUV — UUV isa

continuous and noncyclic asymptotically relatively nonexpansive mapping with > (k, — 1) < co. Assume
n>1
{zn} and {yn} are real sequences as defined in (1). Then

(i) lim ||z, — q| exists for all ¢ € Fix(S) N V.
(1) lim ||y, — p|| ezists for all p € Fix(S) N Ujp.

Proof. For any ¢ € Fix(S) N Vg, we have

lass =l = 11— an)an +anS"e, —
< (1= an)ln — gl + knanllz, — gl
< (1= an)llen = all + knan ||(1 = B,)an + 8,52, — d
< (1= an)lzn = all + knon(d = 8,) 20 — all + k2o, |2, — al
< (= an)len = all + knon(1 = B,) |20 — g
k20 B, (L= 7)0 + 7,5 () — g
< {1+ an(kn = D(Bpvnkn” + Buka + 1)} |z — all,

oo

>0 Ky
[#n41 = qll < (L+ pp)llzn — gl < e= g — ql],
S kit—1
[#nt1 — gl < €= 21 —ql-

where p1,, = k,,* — 1. Since Z (kn —1) < oo (which implies that Z (k3 —1) < 00), {||zn — ¢||} is a bounded

sequence and hence hm ||a:n — ¢ql| exists for all ¢ € Fix(S) N V. Slmllarly, we can show that hm llyn — DIl
exists for all p € le(S) NUp. m

Lemma 7 Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex
Banach space X, also assume that (U, V) have rectangle and UC property. Let S : UUV — U UV be
a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with
> (kn — 1) < 00. Forxzy € Uy, let y1 € Vo be a unique proxzimal point of x1. Assume {x,} and {y,} are
n>1

real sequences as defined in (1) and {an}, {8,,} and {7, } are sequences in [0, 1] satisfy either (A) or (B) or
(C), then

lim ||z, — Sz,||=0 and lim |y, — Sy.| =0.

n—oo
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Proof. Let ¢ € F(T) NV, then

= (A=) (@0 — @) +7,(5" 20 — )|

< A=y )llzn = qll + 718"z — qll = 27,(1 = 7,)9([|S" 20 — 20ll)
< T =v)llzn — gl + Envpllzn —all = 27,(1 = 7,)9(|15" %0 — z5])),
20 = af| < (= 7+ Buva)lwn = all = 27,1 = 7,)9(15™ 20 = 20, (2)
= (1= B,)(@n — ) + B, (S"z, — )|
o = a]| < 0= B)llzn = all + kuBullz = all = 28,(1 = B)g(11S" ), — ), 3)
|Znt1 = all = (1 = an)zn + anS™a, — q|
=11 = an)(@n — @) + an(S"z, — q)|
< (1= o)z — gl + anllS™e, — gl — 20 (1 — an)g(||S"z,, — z4]),
|Zns1 — gl < (1= a0 — gll + kncal|z,, — gl — 20 (1 — an)g(|S™ 2, — z,])). (4)

Applying equations (2) and (3) in (4), we get

lznir —pll < {14 an(kn — DB, 7000 + Bokn + D}Hlzn — g
=200 (1 = an)g(1S" 2, — nll) — 2knanB, (1 = B,)g(1S"z,, — zn||)
—2k7 0B, 70 (1= 7,)9(1[8" @0 — nl]).

This can be transformed into the following three equations:

20, (1 = ap)g([|1S" 2, — 20ll) < lon —qll = |01 — 4l
+an (B ynk: + Bk + 1) (kn — 1) |, — gl
< len =gl = @01 — gl + Mk, — 1), (5)
2knanB,(1 = B,)9(1S"2, — 2nll) < |2n — all = |Tns1 — all + M(k, — 1), (6)
252 By (1 = 70)9(1S" @0 — 20ll) < |20 — qll — |01 — gl + M(kn — 1). (7)

Now we have to show that for the given conditions, lim |[S™z, — z,| — 0.
n—oo

Case (i). Suppose the sequences {a,}, {f,,} and {v,,} satisfy condition (A).
Then summing up the first m terms of equation (5), we get

D200 (1= a)g((|S" 2, — al|) < 21 = gl = lzmer — gl + M Y (k) — 1) < o0,
n=1

n=1
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] ’ ’
for all m > 1. Therefore, Y 2a,(1 — ay,)g(||S™x,, — znl]) < co. Since an (1 — ay) > €, g(||S™x,, — zu||) — 0
n=1

. / D
asn — oo, lim ||S"x,, — z,| — 0 from Lemma 3. Also
n—oo

18" 2 — Pan| < |1S"@, — PS x| + ||PS x,, — Pyl
= |IS" @0 — S (Pa,) | + 15", — @all,
< kallzn — Pyl + [|S™ @, —
< knllen = P{(L = Bo)zn + Bu Sz M + 182, — x|
= knl@n — Pon + B, (Pan — PS"z)|| + |1S"2, — 24|
< knllzn — Pan| + knB, || P2n — PS™a, || + ||S" 2, — @],

1S 20 = Panll < knllzn — Ponll + knBollzn — S"2, | + 19" 2, — 2.
That is, lim ||S™x, — Px,|| = dist(A4, B) which implies that lim ||S"z, — z,| — 0.

Case (ii). If the sequences {a,}, {8,,} and {v,,} satisfy condition (B).
Then adding the first m terms of equation (6), we get

Y knanB (1= B,)g(1S™ @, — wall) < 21— all = @mir — gl + MY (k3 —1) < o0,
n=1

n=1

for all m > 1. As m — oo, we get > a3, (1 — 8,)9(|S"x,, — 2,||) < oo. Then by Lemma 3, we have that

n=1

lim ||S™z, — x,|| — 0. Now
n—oo

15”2y = PS", || + | PS =, — Pzy||
k[, = Pay || + (15", — ]
< knllzn — Prn + 7, (Prn — PS"2,) | + ||Snx;; — Znll,

1S" 2z, — Py

VARVAN

18" @0 = Pan|| < knllzn — Paall + knvpllzn — S™an| + ||S"$;; — |-
We obtain that lim [|S"z, — Pz,| = dist(A, B) and hence lim |S™z, — z,| = 0.

Case (iii). Assume that the sequences {«,}, {5,,} and {7, } satisfy condition (C).
Then taking summation on the first m terms of the equation (7), we get

D kranB (1= 7)9(15" 20 = zal) < o1 = all = l@msr —all + M Y (kp = 1) < o0,
n=1

n=1
for all m > 1. As m — oo, Z k2on Byl —7,)g(|S" @y — ,]|) — 0 which gives
n=1

k”%anﬁnrhb(l - ryn)g(||sn$" - «Tn”) — 0 asn — oo.
But (as n — 00) kp, — 1, o, 8,, = € >0 and 7,,(1 —7,) > € >0,
g(|S"xn —zpn])) = 0 as n — oo.

Then by Lemma 3, we get that lim ||S™x, — z,|| — 0. From all the above cases, ||S™x, — z,| — 0 as
n—oo

n — o0o. Further, since the mapping S is k-Lipschitzian, we have the following from Lemma 5,

| Sy — | < n + cno1k(2 + 2k + 2% + k3),
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where ¢, =|| ©, — S™(x,) ||, for all n > 1. Hence
lim ||Sz, — z,|| = 0.
n—oo
Similarly we can show that, lim ||Sy, —y.|=0. =
n—oo

Theorem 8 Let (U,V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex
Banach space X, also assume that (U, V) have rectangle and UC property. Let S : UUV — UUV be
a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with

S(U) contained in a compact subset and Y (k, — 1) < co. For 1 € Uy, let y1 € Vi be a unique prozimal
n>1

point of x1. Assume {x,} and {y,} are real sequences as defined in (1), and {a,}, {B,,} and {v,} are

sequences in [0,1] satisfy either (A) or (B) or (C). Then the sequence pair {(x,,yn)} converges to (p,q),

wherep=Spe U and ¢q=SqeV.

Proof. Let S(U) lie in a compact subset. Then there exists a subsequence {Sz,, } of {Sx,} which converges
to some point u € Uy. Then by Lemma 7, we have lim [|Sx,, — zp,|| = 0 which implies that z,, — u.
n—oo

Thus, Su = u and therefore S(Pu) = Pu. Then by Lemma 6, lim,, ||2,, — Pu|| exists and

lim ||z, — Pul| = lilgn |Tn, — Pul| = |Ju — Pul|| = dist(U, V),

which gives that z,, — u € U. Similarly we can show that, as n — oo, ||Syn, — yn|| =0 and y, — v € V.
For a given x; € U, there exists an element y; = P(z1) € V such that ||z1 — y1|| = dist(U, V). Here

w2 —goll = [I(1—a1)ar +1Sz) — (1 - an)yr + a1 Sy,) |
< (—a)lar =yl +l|Sz) — Sy
< (1=a)]aer — il + ko ]|z) — yyl
= (1-a)er =l + kian | (1= By)as + By Szy — (1= Br)ys + 515y
< {14 (ks = 1)(By71kT + Bk + 1)} [lon — m,
|2 = yol| < Kfllz1 — wl]-
In general,
20 = ynll < K3llz1 — w1 ]-
As n — oo,
[#n — ynl — dist(U, V).
Finally,

[u—vll = lim |z, — ya|| = dist(U, V),

which deduces that (u,v) € Proxyxy (S). This completes the proof. m

If we choose 7y,, = 0 in Theorem 8, then Noor’s type (three steps) iteration schemes reduces to Ishikawa’s
type iteration schemes. In this case conditions (A) and (B) are still valid, but (C) is not.

Corollary 9 Let (U, V) be a nonempty bounded closed convex proximal parallel pair in a uniformly convex
Banach space X, also assume that (U, V) have rectangle and UC property. Let S : UUV — UUV be
a continuous uniformly k-Lipschitzian and noncyclic asymptotically relatively nonexpansive mapping with
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S(U) contained in a compact subset and >, (k, — 1) < co. For 1 € Uy, let y1 € Vi be a unique prozimal
n>1

point of x1, define the sequences {x,} and {y,} as follows:

Tn+l1 = (1 - a’n)xn +a, = Snx;u Yn4+1 = (1 - an)yn + OénS"y;L
Ty = (1= Bo)tn + B8 T, Y = (1= Bo)yn + S "y (n=1,2,3..),

where {a,}, {8,,} are sequences in [0, 1] satisfying one of the following conditions:
(A1) 0<e<ap(l—ay)<1land B, — 0 asn— oo,
(B1) 0<e<a,<1;0<e<p,1-5,)<1asn— .

Then the sequence pair {(x,,yn)} converges to (p,q), where p=Sp € U and g= Sq e V.

Putting 3,, = 7,, = 0 in Theorem 8, then Noor’s type (three steps) iteration schemes reduces to Mann’s
type iteration schemes. In such cases, condition (A) alone valid.

Corollary 10 Let (U, V) be a nonempty, bounded closed convex prozimal parallel pair in a uniformly convex
Banach space X also assume that (U, V') have rectangle and UC property. Let S : UUV — UUV is a
continuous and noncyclic asymptotically relatively nonexpansive mapping with S(U) contained in a compact

subset and Y (k, — 1) < co. For x1 € Uy, let y1 € Vy be a unique proximal point of x1, define the sequences
n>1

{zn} and {y,} as follows:
Tnt1 = (1 — ap)xn + @nS"xn,y Ynt1 = (1 — ap)yn + @Sy, (n=1,2,3...),

where {a,} be a sequence in [0, 1] satisfying the condition 0 < € < a, (1 — o) < 1. Then the sequence pair
{(zn,yn)} converges to (p,q), where p=Sp e U and q=Sqe V.

Example 1 Let (U,V) be a nonempty pair of subsets of the Hilbert space I*> such that

U= {(O7zlax27x37"')/z ‘ T |§ 1}
i=1

and

V ={(1,y1,2, 3 )/Z |y [< 1}
=1

It is evident that U and V are closed, convex and compact subsets of I?. Define a mapping S : UUV — UUV
by
Sq — (0,0,.%'12,14231‘2,143.’113,...) ZfSL' eU,
- (1,0,3312,142.%‘2,143@‘3,...) ’Lfﬂf S ‘/,
1
where {A;} = {21/211} . It is easy to verify that S is an asymptotically relatively nonerpansive mapping
but not relatively nonexpansive(refer [11]). Clearly dist(U,V) = 1. Let us consider the point (u,v) € U x V.
Then uw = (0,21, x2,x3,...) € U and v = (1,y1,Y2,¥s3,...) € V. If we choose u = (0,y1,y2,Ys,...) € U and
v = (1,21, 22,23,...) €V, then |lu—v || = |[u —v| = dist(U, V). Since the point is arbitrary, the pair (U,V)
is a proximal pair of a Banach space 1? and also U = Uy and V = V;. Since X = 12 is strictly convexr Banach
space, the pair (U, V) is a proximinal parallel pair (refer Lemma 3.1 in [16]) and so the pair (U, V') posses the
rectangle property (refer Example 2.1 in [16]). Obviously U is a convex set and therefore the pair (U, V') satis-
fies the property UC (refer Proposition 3 in [20]). Hence by Theorem 8, the sequence pair {(zn,yn)} under the
mapping S, converges to the best prozimity pair, say (p,q) of (U, V), where (p,q) = ((0,0,0,...),(1,0,0,...)).



S. I. E. Manna and A. A. Eldred 363

Take {ap} = {3712%}7 {8,} = {#} and {v,} = {nLJrl} Then clearly the sequences {a}, {8, }

n?+1
and {v,,} satisfy condition (A). Assume the initial guess as z1 = (0,0.001,0.019,0.080,0,0, ....) € Uy. Putting
this initial value in equation (1), we get the following sequence of iterations in 3 decimal places:

Iterations | Corresponding Iteration values
S. No
I z, = (0,0,0.001,0.046,0.033,0,0,0,0,0,....)
1:/1 = (0,0,0.001,0.04,0.002,0.015,0,0,0,0,...)
z2 = (0,0,0.001, 0.04,0.016,0.009, 0.007, 0, ...)
I :c; = (0,0,0,0.001,0.005,0.023,0.011, 0.005, 0.005, 0....)
Ty =

(0,0,0.008, 0.032,0.013, 0.007, 0.006, 0.004, 0.002, 0.001, 0.001, 0, ...)
z3 = (0,0,0,0.017,0.007,0.017, 0.009, 0.004, 0.003, 0.002, 0.001, 0, ...)
11 x5 = (0,0,0,0.004,0.002,0.004,0.011,0.005,0.012, 0.006, 0.003, 0.002,
0.001,0,...)

x5 = (0,0,0,0.015,0.006, 0.015,0.008, 0.003, 0.003, 0.002, 0.002, 0, ...)
x4 = (0,0,0,0.007,0.003, 0.007, 0.001, 0.004, 0.009, 0.001, 0.002, 0.002,
0.001,0.001,0, ...)

IV z, = (0,0,0,0.001,0.0008,0.005,0.001, 0.005, 0,0.003, 0.007, 0, 0.001,
0.001,0,...)
2, = (0,0,0,0.001,0.001,0.0007, 0.005, 0.001, 0.005, 0.002, 0.001, 0.001,
0,...
x5 = (0, 0,0,)0.002,0.001, 0.002, 0, 0.001, 0.003,0.003, 0, 0.002, 0.001,
0.003,0, ...)
% x5 = (0,0,0,0,0,0,0,0,0.001,0.001,0,0.0008, 0.002, 0.002, 0, 0.0016,

0.0008,0.002, 0, ...)
x,5 = (0,0,0,0.002,0.0009, 0.002, 0,0.0009, 0.003, 0.003, 0.002, 0.001,

0.003,0, ...)
z6 = (0,0,0,0,0,0,0,0.001,0.002,0,0.001, 0,0.001, 0.001, 0.001, 0.001,
0,0.001,0,...)
% zs = (0,0,0,0,0,0,0,0,0,0,0,0,0,0.0008,0.0017, 0,0.0008,0.001, 0,

0.001,0.001, 0.001, 0.001,0,0.001,0, ...)

z5 = (0,0,0,0,0,0,0,0.001,0.002,0.001, 0,0.001, 0.001, 0.001, 0.001, 0,
0.001,0....)

z7 = (0,0,0,0,0,.....)
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