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Abstract

In this paper, we focus on the boundary value problem (BVP) for a coupled system of nonlinear
fractional differential equations (SFDEs) involving the Erdélyi-Kober derivatives on an infinite interval.
First, we define the integral solution of the BVP for Erdélyi-Kober (SFDEs). Then, by using the Ba-
nach contraction principle and the Leray-Schauder nonlinear alternative fixed point theorem in a special
Banach space, existence and uniqueness theorems of the given problem are demonstrated, respectively.
Finally, several indispensable examples are presented to illustrate the usefulness of our main results.

1 Introduction

Fractional-order differential equations have been used in the study of models of many phenomena in various
fields of science and engineering, such as viscoelasticity, fluid mechanics, electrochemistry, control, porous
media, mathematical biology, and electromagnetic bioengineering. More details are available, for instance,
in the books by Samko et al. 1993 [27], Podlubny 1999 [25], Kilbas et al. 2006 [12], Sabatier et al. 2007 [26],
Das 2008 [9], Diethelm 2010 [10], and Mathai and Haubold 2018 [20].

The classical fractional calculus is based on several definitions for the operators of integration and differ-
entiation of arbitrary order [13]. Among the various definitions of fractional differentiation, the Riemann—
Liouville and Caputo fractional derivatives are widely used in the literature. The most useful classical
fractional integrals, however, seem to be the Erdélyi-Kober operators. These were introduced by Sneddon
(see, for example, [29, 30, 31]), who studied their basic properties and emphasized their useful applications
to generalized axially symmetric potential theory and other physical problems, such as in electrostatics and
elasticity.

The theory of boundary value problems on infinite intervals arises quite naturally and has many applica-
tions [4]; it is important and several authors have done much work on this topic [2, 3, 15, 16, 17, 23, 28, 32,
34, 35, 37, 39]. For instance, in [22], Ahmad and Ntouyas, studied a three point boundary value problem for
a coupled system of nonlinear fractional differential equations given by

DS‘W@) ft,o(t ) +u(t), t < (0,
DO+U (t) =g (t,ut), DI u)), t (0
u(0) =0, u(l) = ( ) v(0) =0, v(1) = yv(n),

where 1 < o, 8 < 2, p,q,v > 0, 0 < n < 1, D is the standard Riemann—Liouville fractional derivative and
f:0,1] x R x R — R are given continuous functions.
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292 BVP for a Coupled System of Nonlinear FDEs

In [36], Zhai and Jiang considered a new coupled system of fractional differential equations with integral
boundary conditions

Du(t) + f(t,v(t) =a, 0 <t <1,
DBu(t) + g(t,ut)) =b, 0 <t <1,
u(0) = 0, u(1) = [ p(t)u(t)dt,
0(0) =0, v(1) = [y (tyu(@)dr,
where 1 < «a,8 < 2, a,b are constants. D denotes the usual Riemann-Liouville fractional derivative.
f,9€C([0,1] xR x R), ¢, € L0,1].
The aim of this study is to investigate the existence and uniqueness of a positive solution to boundary

value problem for a coupled system of nonlinear fractional differential equation involving Erdélyi-Kober
differential operators on an infinite interval:

{Dg’élu )+ f1 (tu(t),v (1) =0, t >0,

D30 (1) + f (b u(t) 0 (6) = 0, £> 0, Y

with the boundary conditions

fimg PETDTIE () =0, i (PTDIN () = 0, @
}E,I(l] t5(2+7)152+%2—52v(t) =0, tll,%lo t5(1+’Y)I52+’Y72—52U(t) =0, (3)

where Dg’é"', (k = 1,2), denotes the Erdélyi-Kober fractional derivative operator of order &5 and Z°++7-2=%
is the Erdélyi—-Kober fractional integral of order 2 — i, with 1 < §x < 2, =2 <~y < —1, 8 > 0, and f; are
given continuous functions.

We obtain several existence and uniqueness results for a coupled system of the nonlinear fractional
boundary value problem (1)—(3). The methods used in this work are the Leray—Schauder nonlinear alternative
fixed point theorem and Banach contraction principle in a special Banach space.

Throughout this paper, we will refer to the following hypotheses:

(H1) fr:(0,00) x R? — (0, 00) are continuous functions.

(H2) For all (t,u,v) € (0,00) x R,

Fl(t’u7 U) = t5(1+"/)—1f1 (t, (1 + t—ﬁ(l-‘r’)’)) u, (1 + t—5(1+'y)) ’U) ,

Fo(t, u,v) = tPA+0-1, (t, (1 n t—B(H—v)) u, (1 n t—B(1+7)) v) :
such that
Fi(t,u,0) < @y (Bwi(fu]) + ¢y (Hws(|v]),
Fy(t,u,v) < ()@ (Ju]) + 1y (t)w2(lv]),
with wi,@x € C ((0,00), (0, 00)) nondecreasing and ¢y, 1, € L' (0,00) ,k = 1,2.

(H3) There exist a positive functions g, §x with

+oo
q = / (1 + t’ﬁ(””)) ar (1) dt < oo,
0

+o0o
i = / (1+47709) G (1) di < ox.
0

such that
PO f (o, 0) = fi (80, D)] < i (8) |u— @] + G (8) v — 9],

for any w,v, 4,0 € R and ¢ € (0,00).
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The remainder of this paper is organized as follows. In Section 2, we recall some necessary preliminary
facts. In Section 3, we prove our main results, after we have established sufficient conditions for the existence
and uniqueness results for the solution to the problem (1)—(3). In Section 4, two examples are presented to
explain the application of our main results.

2 Preliminaries

In this section, we present the necessary definitions and lemmas from fractional calculus theory that will be
used to derive our main results.

Definition 1 ([18]) The space of functions C?, o € R, n € N, consists of all functions f (t), t > 0, that
can be represented in the form f () =P f1 (¢t) with p > « and f1 € C™([0,00)).

Definition 2 (Erdélyi—Kober fractional integrals [18]) The right-hand Erdélyi-Kober fractional inte-
grals of the orders & of the function u € Cy are defined by

t
(73%u) (1) = rf 5)’575(%6) / (8 — 5%)° 7 BOTD-Ly (s)ds, 5,8 >0, 7 €R, (4)
0

where I" is the Euler gamma function.

Definition 3 (Erdélyi—-Kober fractional derivatives [18]) Let n —1 < 6 < n, n € N. The right-hand
Erdélyi-Kober fractional derivative of the order § of the function uw € C}} is defined by

(30) 0= T (3 45+ ) (540) 0 g

=1

where

ﬁ(7+3+ dt) (I”fsn 5 )_< +1+;t(jt> ..<7+ +;dt> (stn 5 )

Remark 1 Let 6,5 > 0 and v € R. Then we have

P(y+8+5+1)

F(’y+%+1)

Dg"’tp = P, p+ B (y+1)>0.

In particular, ‘
Dg’ét*ﬂh*l) =0, for eachi={1,2,....,.n}.
Definition 4 Let E be a Banach space; a subset P in C (E) is called equicontinuous if
Ve>0, 30 >0, Vu,v € E, VAEP, |[u—v||<i=|A(u)— Av)| <e.

Theorem 1 (Ascoli-Arzela [7]) Let E be a compact metric space. If P is an equicontinuous, bounded
subset of C (E), then P is relatively compact.

Definition 5 ([4]) Let E be a Banach space. A map A: X C E — E is said to be completely continuous
if A(Y) is relatively compact for all bounded sets Y C X.

The following fixed-point theorems are fundamental in the proofs of our main results.



294 BVP for a Coupled System of Nonlinear FDEs

Theorem 2 (Leray—Schauder Nonlinear Alternative theorem [14]) Let E be a Banach space, and
Q a bounded open subset of E with 0 € Q. Then, every completely continuous map A : Q — E has at least
one of the following two properties:

(i) A has a fived point in Q.
(i) There is an x € Q and X € (0,1) with x = A\ Ax.

Theorem 3 (Banach’s fixed point theorem [1]) Let E be a Banach space, D be closed subset of E, and
A: D — D be a strict contraction, i.e.,

[ Au — Av|| < k||lu — || for some k € (0,1) and all u,v € D.

Then A has a unique fixed point.

3 Main Results

In this section, we prove a preparatory lemma for the boundary value problem of nonlinear fractional differ-
ential equations with an Erdélyi-Kober derivative.

Lemma 1 ([5]) Let 1 < 6 <2, -2 <y < -1, 8>0andy € C2, with [;~sP0T™~1y(s)ds < o,
m = {1,2}. Then, the fractional differential equation

DYu(t) +y(t) =0, t >0, (6)
with the conditions
limy ¢7 DT (1) = 0, )
tli,rgo tﬁ(1+’Y)I5+’Y72—5u(t) =0, (8)
has a unique solution given by
u(®)= [ Gs(t.s) "0y (s)ds, 9)
0
where s
Gs (ts) = iy [1770D =) (1 ) 0 <s <i<oo, (10)
’ %t*ﬂﬁﬂh 0<t<s< oo,

is called the Green function of the boundary value problem (6)—(8).
Now, we present some properties of Green’s function that form the basis of our main work.

Lemma 2 ( [5]) For1 <d§ <2, =2<~v < —1, and B > 0, the function Gs(t,s) in Lemma 1 satisfies the
following conditions:

1220 >0, 9,5 € (0,00).

Gs(t,s
2. % < %,Vt,se (0,00).

3. For all0 < $ <t <7 and Vs> {3, where A > 1, 7 > 0, we have
Gs(t.s) B(6—1)r AU B

L+ tA059) = () AP0 (14 7By ro)P )
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Based on the previous Lemma 1, we will define the integral solution of the problem (1)—(3).
Lemma 3 Let 0 < 61,62 < 1. We give f, € C2,(k = 1,2) with
/ PO (s, u(s), v(s))ds < o0, m = {1,2}.
0
Then the problem (1)—(3) has a unique solution given by
u(t) = / Gs, (t5) S°OFD=1 (5, u(s), v(s))ds, (11)
0
v(t)= [ Gs, (t,s)s" 0TV fals, u(s), v(s))ds, (12)
0
where 5
B [4=B(r+1) _ 4=B(er1+y) (18 _ 8)01~ }
t t ¢ . 0<s<t< oo,
G§1 (t,s) — F((;l) ( S ) S S (0] (13)
st PO+ 0<t<s<oo
(01) ’ ’
B =By _ p=B(S24) (48 _ 4B 6271} 0<s<t<
Go, (t,5) = TG =" ], O<esico (14)
B =Plr+1) 0<t<s<oo
(92) ’ = )
Proof. By Lemma 1, for § = §1, and § = 5, respectively. =
We now turn to the question of existence for the boundary value problem (1)—(3).
In this work, we use the space E = X x Y, with the norm |[|(u,v)||z = ||ulx + ||v|y, Obviously
(E,||(u,v)| g), is a Banach space, where
limt_,o % and
X=queC((0,00),R) | . R .
hmt_>+oo W exist
with the norm
I = sup|
lullx = sup 13— =5G |
and “
lim; ¢ ———y4 and
Y = fveC((0.00).R) | TN
hmt_,_l,_oo ==Y exist
with the norm
[o]ly = sup )
v =S T e |
Define an integral operator A : F — E by
_ [ Ai(u,0)(t)
A(u,v)(t) = ( As(u,v)(t) ) (15)

where

A (u,v)(t) = /000 Gs, (t, ) sﬁ('yﬂ)_lfl(s, u(s),v(s))ds,

Ao (u,v)(t) = /0C>O Gs, (t, s) 85(7+1)71f2(8, u(s),v(s))ds,

with Gs, (t, s), (k = 1.2) is defined by (13) and (14).

Clearly, from Lemma 3, the fixed points of the operator A coincide with the solutions of the problem

(1)-(3).
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Lemma 4 If (H1)-(H2) hold, then A: E — E is completely continuous.

Proof. First, for all (u,v) € E, we have

| A1 (u, v) (1)]
i>0 1 4+ t=B0+)

/°°Msﬁ(wl)*lfl(s,u(s),v(S))dS
0

A (u, ) () x

- ?gg 1+ ¢t=80+7)

B /oo B( 1)—
< y+1)—-1 .
< To ), )s fi(s,u(s),v(s))|ds;

together with conditions (H1) and (H2), it then follows that

/000 s'g(“’ﬂ)_lfl(s, u(s), v(s))‘ ds

oo B+ —B(+
_ / SO+D-1p (87 (14 s P )u(s) (1+s7F0+D) U(S)> i
0

1+ s—B0I+) ’ 1+ s—B0+Y)
Y u(s) v(s)
o /0 B (S’ 14 580+ 1 4 s—B01+7) ) ‘ ds

[ (e (7550 0 (55 ) o

wr (llullx) / " pr(s)ds +wn (Jolly) / " g (s)ds < oo

IN

IN

Similarly, one can find that

| Aa(,0) (B)]ly < @1 (lullx) / " a(s)ds + @ (Jolly) / " a(s)ds < oo,

Hence, A: E — E is well-defined. Let Q = {(u,v) € E, [|(u,v)| 5 <7, > 0} be a bounded subset of E. In
the following, we divide the proof into several steps.

Step 1: A is continuous.
Let (un,vn),cy € E be a convergent sequence to (u,v) in E such that ||(u,v)||; < r, from Lemma 2, we
obtain that

B - Ay (t,02)() — A (u,0) (1)
||A1(Unavn) Al(U7U)||X - tes(l()lgo)' 1_|_t—ﬁ(1+'y)
< s oo B(7+1)71 S, Unp , Un ds
< Fs o / s F1(5 1 (5), 0 ()

— /OO Sﬂ(’7+1)71f1(8,U(S),’U(S))ds .

0

By the condition (H2), we obtain
‘55(7+1)—1f1(8’ 'LL(S), U(S))‘ <wi (T) (pl(s) +wa (T) 1pl(s) € Ll (07 OO) :

Together with the continuity of the function s°(*D=1f, (s, u(s),v(s)), the Lebesgue dominated convergence
theorem (Theorem 12.12, page 199 in [6]) yields (u,v) — [;° s?OFD=Lf1(s,u(s), v(s))ds, is continuous and
it follows that

/ sPOFDZLE (5,0 (s), vn(s))ds — / sPOFVTLf (s, u(s), v(s))ds as n — oo.
0 0
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Therefore,
| AL (tn, v5) — A1 (w, )] — 0, as n — oo.
Similarly, one can find that
| A2 (tn, vn) — A2(u,v)|ly — 0, as n — oo.
Thus
| A(tn,vn) — A(u,v)||p — 0, as n — oo.

Step2: A(Q) is relatively compact.
First, we show that A (€) is uniformly bounded. Let (u,v) € €2, by the condition (H2), we obtain

A (u, > Gy, (8, _
T = | T A u(e), (e
< Pgl)A ‘36(7+1)71f1(8,U(S),U(S))‘dS
< I‘(Bél)wl (7")/0 ©1(s)ds + F(il)wg (r)/o Py(8)ds < o0,
consequently,
Al < freren ) [ euelds + e () [ s < e, (16)
Similarly, one can find that
a0y < osin (1) [ s + a0 [ (el < (17

for all (u,v) € Q. Hence, A (2) is uniformly bounded.
Next, letting V = {% (u,v) € Q} , we show that V is equicontinuous on any compact interval

of Ry. For all (u,v) € Q, t1,t2 € [a,b], 0 < a <b < oo, and t; < g, we can find

Ai(u,0) (t2)  Ai(u,v) (t1)
1_|_t2—/3(1+7) 1+t—5(1+7)

| Gs (tg S) Gs (tl
< — S [P0 s u(s), v(9)) | ds
/0 1+t;ﬁ(1+7) 1+t /3(1+'Y)
< /oo G61 (tQaS) _ G51 (ths) + G51 (tlvs)
= 0 1+t—5(1+7) 1+t*6(1+7) 1+t;6(1+7)
Gs, (t1,5) ‘ Bly+1)-1
- fi1(s,u(s), v(s)))ds
141 —B(1+7)
—B(1+7) —B(1+)
< /°° Gs, (t2,8) — G, (t1,8) G (81, 9) (tZ Ton 7)
= ) 1+¢,70+7) (1+t;5(1+7)) <1+t1—6(1+v)>
X ‘sﬁ(7+1)_1f1(s, u(s), v(s))‘ ds
< / (G, (2, 5) = Gs, (11, 9)] ’35(7+1)_1f1(s,u(s)w(S))‘ ds
0

1+ t;ﬁ(lJr’Y)
/OO G(Sl (t17s) (t;ﬁ(1+’Y) _ t;ﬁ(1+7))
+
o (1 N t2—B(1+7)) (1 Gl )

— 0, uniformly as t; — ¢ for all (u,v) € Q.

)sﬁ("ﬁl)*lfl (s,u(s), v(s))‘ ds.
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and

Az (u,v) (B2)  As(u,v) (1)
1 +t2—ﬁ(1+w) 1 +t1—ﬁ(1+’y)

* Gsy (t2,9) — Gy (1, 9)] | p(41)-1
/0 14,70+ ’S fa(s,u(s), U(s))‘ ds

IN

/oo Gs, (1, 5) (t;ﬁ(l-‘r’Y) _ t1—5(1+’7)>
Jr
0 (1+t2—ﬂ(1+7)) (1+t1—ﬁ(1+v))

— 0, uniformly as t; — t5 for all (u,v) € Q.

36(7+1)71f2(5, u(s), v(s))‘ ds.

Hence, V is locally equicontinuous on (0, 00) .
Finally, we show that V is equiconvergent at co. We know that

Ar(o)t) = gt [TPO I s u(e) () ds
=B v [ 8-l peiny-
I‘(él)t o /O (tﬁ‘sﬁ) sPOTDTL (5, u(s), v(s))ds, (18)

observing that for any (u,v) € (2, the condition (H2) gives

/000 ‘sﬁ(wrl)_lfl(s,u(s),v(s))‘ ds < o0, (19)

for a given € > 0, there exists a constant L > 0, such that

oo
/ ‘sﬂhﬂ)*lfl(s,u(s),v(s))‘ ds < e. (20)
L
However, because lim w =1, there exists a constant 77 > 0, such that for any t;,t5 > 77, and we
oo 1+t B(1+~)
obtain
tQ_B(l'f"Y) t;ﬂ(1+7) tl_B(1+'Y) tQ_B(l-i_’Y)
- <l-—F|+1-—— 7| <e. (21)
1 +t2—/3(1+7) 1 +t1—5(1+7) 1+t1—f3(1+7) 1 +t2—[3(1+"/)

t—5<61+w>(tﬁ,sﬁ)5rl .
TP = 1, and thus there exists a constant 75 > L > 0, such that for any

Similarly, . liﬁ_n
— T 00

t1,to > Th and 0 < s < L, it holds that

6171 5171
t;ﬁ(51+v) (tg _ 55) t;ﬁ(51+v) (tzla _ 85)

|+, P05 14 ¢ Pa)
61—1 61—1
£ PEL) (tf _ s@) £ PO (tg _ Sﬁ)
< 1- + |1 -
1 +t1_ﬁ(1+7) 1_’_t2_6(1+"/)
61—1 51—1
t1—5(51+7) (t? _ LB) ! t;ﬁ((sl"l")') (tg . Lﬁ) !
< 1= + |1 -
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Now, we choose T' > max {T1,T>}, for all t1,t2 > T, by (18), we can obtain

Ai(u,v) (t2)  Ai(u,v) (81)
1 +t55(1+7) 1 +t;5(1+~/)

R S UL Y el I
T D) 1470 g PO /0 | fi(s,u(s),v(s)) | ds
b - t;ﬂhHl) (tg 7 56>61_1 B(y+1)-1
T /0 1 16,707 sPTTIT f1 (s, u(s), v(s))ds
" tl_B(Wél) (t? B Sﬁ)érl B(y+1)—1
—/o 144,70 s7TUT fi(s, uls), v(s))ds
< 8 t;B(Hv) t;ﬁ(uw o I
T D) 14650 g0 /0 ]| Fi(s,u(s), v(s))| ds
+F(51) /o 141,70+ 5 f1(s, u(s), v(s))ds

§1—1
L tl—ﬂ(’Y-‘rél) (tf . SB)

B(y+1)—1
= s fi(s,u(s),v(s))ds
1+, 70

0

_ 61—1
ts t2 B(v+61) (tg . SB>

TR /
I'(01) |/ 1+t2—5(1+7)

sﬁ('vﬂ)ﬂfl(s’ w(s), v(s))ds
t t;5(7+51) (t/f _ S[1)(5171

B(y+1)—1
a s fi(s,u(s),v(s))ds|,
/L 1+ ¢, 70 (s, u(s), v(s)

a direct calculation yields

Ai(u,0) (t2)  Ai(u,v) (41)
1 +t;5(1+’)’) 1 +t;ﬁ(1+'\/)

g | 0 A T
I'(61) |1+ t;ﬁ(lJrv) 1+ t;5(1+7) /0 ‘3 f1(s,u(s), v(s))’ ds
g el (8 - Sﬁ)él‘l P (1 - 55)51_1
+ / - 55(7+1)71f s.u(s),v(s))| ds
I (61) 0 1+ t;ﬁ(l-i-’)’) 1+ tl_ﬂ(l'*"” 1( ( ) ( ))
51—1
- 5
6 ta tQ B(v+d1) (tg _ sﬁ) O ]
+F (61) /L 1+ t;ﬁ(l""’Y) ‘S fi (S>U(3), ”U(S))‘ 5

~B(r+81) (18 _ 8
6 /t1 tl (tl — S ) B by
" ‘S s Ji(s,u(s),v(s ‘ds.

I'(61) Ji 1+ ¢, 70 1(s, u(s), v(s))
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From (19), (20), (21), (22) and for t1,¢3 — oo, we obtain

Ai(u,v) (t2)  Ai(u,0) (t1)

r (551)8 /Ooo ’Sﬁ(VH)ﬂfl(s, u(s), v(S))’ ds

5[ 2%
+I‘(51)€/0 ‘s fl(s,u(s),v(s))‘ds—l—F(dl)s.
Analogously, we can obtain
As(u,v) (t2)  As(u,v) (41)
1+t;5(1+7) 1+t;ﬁ(1+’Y)
< F(ﬁ(52)5/000 $POFD=L 1 (s, u(s), v(s))| ds
B B1 B -1 28
+I‘(52)€/0 s fa(s,uls), v(s))| ds + o F 5

Hence, V is equiconvergent at oo. Consequently, V' is relatively compact.
Therefore, A : E — FE is completely continuous. m

3.1 Existence of At Least One Solution

Now, to prove the first existence result, we use the Leray-Schauder nonlinear alternative fixed point theorem.

Theorem 4 Assume that hypotheses (H1)-(H2) hold, and

o0 /8 o0
g ) | e+ s (51) () [ s
6 o0
e (7“)/0 2(s)ds + i / by(s)ds <. (23)

Then, the fractional boundary value problem (1)-(3) has at least one solution (u,v) € Q.

Proof. From Lemma 4, we know that A is a completely continuous operator. We apply the nonlinear
alternative of Leray-Schauder to prove that A has at least one nontrivial solution in Q. Let (u,v) € 09, such
that (u,v) = AA(u,v), A € (0,1), from (16) and (17), we obtain

1w, )l g = llullx + [[vlly
= AMAi(w,v)llx + A A2 (u, 0) [y

8 - . -

57 ) | eaods+ e () [ (e
[ g

+F(62)w1 (r)/o 5(s )ds+F(52 / NE

Fyea ) [ visas
ﬁ ~ o0 o0
g ) [ e 0 [ e

which contradicts (23). By Theorem 2 and Lemma 4, the boundary value problem (1)—(3) has at least one
solution (u,v) € Q. m

IN

and thus

B oo
r < F(51)w1 (r)/o p1(s)ds + T
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3.2 Uniqueness of Solution

The last result of the existence is based on the Banach contraction principle theorem.

Theorem 5 Assume that hypotheses (H1), (H2) and (H3) hold. If

Blgi +di) N B(as +¢5)
I (61) I'(62)

<1,

then the boundary value problem (1)-(3) has a unique solution.

Proof. We shall show that the operator A defined by (15) is a contraction mapping.
Let (u,v), (@, ?) € F; from Lemma 2 and by the condition (H3), we can obtain that

’Al (u,v) () = Ax (4,9) (t)

1+ Bt

= [ O A (s e) v (6) — (s (5) 0 5) ds
< i LSO A G ) = i a9 B (6] ds

< F(il)/oooq1<s>|uﬂ|+q1<s>|v@|ds

< F(ﬁél /qu1(8)<1+s‘ﬁ(1+”))’% ds

~—

ds,

b /OO~ s |__v =0
e/, 1 (Hs ) 1+ s A0

this implies that

A (0) = A @0 < s luall [ ar(s) (145770 ds

_|_

then
Blai +ai)

A1 (u,v) — Ay (4,0)|| < T (01)

(lw = allx + llv =olly)-
Similarly, one can find that

Blas +d5)

||'A2 (U,U)—.AQ (a’ﬂ)HY < 1-\(52)

(w = allx + llv =olly)-
Thus it follows from (25) and (26), that

g e R e [T

B s G ~81+7)
F I? v||y/0 @i (s) (145770 ) ds,
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(25)

(26)

It follows from the assumption (24) and the preceding estimate that A is a contraction mapping. Applying
Banach’s fixed point Theorem 3, the operator 4 has a fixed point that corresponds to the unique solution

of problem (1)—(3). m
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4 Examples
In this section, we present some examples to illustrate the usefulness of our main results.

Example 1 Consider the following boundary value problem for a coupled System:

_3 3
Dy 2 2u(t) +tzet u —|—etln<arctan< L >>:O, t>0,
1+t2 1+4t2
_3 7 . 2 2 3 2
D, >’%v(t) +t21n b ) 41 fe i n (4 ) et =0,t>0, (27)
14+£2 1+t2
0,4 ~1,0,%
limy ,ot2Z, ?u(t) =0, limy oot 2Z, 2u(t) =0,
=L,2 =15
limy o t2Z,% S (t) =0, limy_.oot 2Z,® S0(t) =0

Here,

n | arctan T e,
1+1t2
2 2 3 u 2
+1 e 1t2In -] et
1+1t2

(H1) It is easy to show that the functions f1 and fo are continuous for any (t,u) € (0,00) x R.

1+¢2

5 (%
t =t21
Jalt ) “((Ht;

with(slzg, 52:%,7:73 and f =1.

e From the expression of the function f1, it follows that
Fi(tu,v) = tP0+)=1p (t, (1 + t’ﬁ(lﬂ)) u, (1 + t’ﬁ(””)) 11)
= (\/|u\ +1In (arctan(|v|))) et
If we choose wy (u) = \/u, wa (v) = In (arctan (v)), ¢, (t) =, (t) = e, then we obtain
[F1(t,u,0)| < @p (B) wi (Ju]) + ¥ (B)wa([v]), on (0,00) X R,
with wy,ws € C ((0,00), (0,00)) nondecreasing and p,,1, € L' (0,0).
e From the expression of the function fo, it follows that
Fy(t,u,v) = tP0T0-1p, (t’ (1 i t—a(m)) u, (1 I t—ﬁ(m)) 1,)
= In(v®+1) te 2" 4 Iny2e .
If we choose @y (u) = Inu?, Gy (v) =In (V2 4+ 1), oy (t) = e, ¥y (¢) = te=2°+1 then we obtain
|Fo(t, u,v)| < @y (1) @1 (Ju]) + ¥y (t)w2(|v]), on (0,00) xR,
with Wy, w2 € C ((0,00), (0,00)) nondecreasing and @y, s € L' (0,00). Then, the condition (H2) holds.

If we choose r = %, we show that
2y/r  2ln(arctan (r)) 7 o e [T 9
r{=)1 -T'(=]1 1
ﬁ+ N + 6 n(r)+4 6 n(r+)<r

therefore, (23) is satisfied. Hence, all the conditions of Theorem 4 hold, and problem (27) has at least one
solution.




Y. Arioua and M. Titraoui 303

Example 2 Consider the following boundary value problem for a coupled System:
+1) —1) 62Ot+t31n<
_92t2 )
1

11 11
limy_ot2Z8 3w (t) = 0, limy_oe t~2Z8 3 u(t) = 0.
lim;_.qo t%If’fv (t) =0, lim_ot™2Z;'20(t) =0,

et 5 v
1) —-1) — +1¢t21
" ) ) 20 n(‘lﬂi

5 1
fa(t,u,v) =t2 (arctan (‘vl + ) + sinh (' “ -
1+tz| 3w 1+1¢3

D, u(t)—l—t% <sinh< C

1
1+t2

e
wlo

5,2
+1>6 =0, t >0,

672t2+1
5 =0, 1>0, (28)

v
1+t

D,

29 (t) + ¢ arctan

(SIS
e

-

Here,

u

filt,u,v) = t3 (sinh (‘1

1412

e—2t2+1
1
+) i

e—2t2+1
)

(H1) It is easy to show that the functions f1 and fo are continuous for any (t,u) € (0,00) x R.

withélzg, 52:%, ’y:—% and  =1.

e From the expression of the function f1, it follows that

Fi(tu,v) = tP0+)=1p (t7 (1 + t—5(1+7)) u, (1 + t—6(1+w)) U)
et te—2t°+1
= (sinh(Ju|+1)—1) 20 +1In(jv] +1) ~—55
4 02
If we choose wy (u) = sinh (u+1) — 1, wa (v) = In(v+1), ¢ (t) = S5, ¥, () = & ;0 =L then we

obtain
|F1 (2w, v)| < oy (B wi (Ju]) + 9y (Hwa(lv]), on (0,00) X R,

with w1, ws € C ((0,00), (0,00)) nondecreasing and ¢y, € L' (0, 00).

e From the expression of the function fa, it follows that
Foltouw) = 700y (1 (1 4720 Y, (14477040 o)

1 te=20+1
(arctan <|v + W) + sinh(u|)) BT

5,2
e—2t%+1

If we choose w1 (u) = sinhu, Wy (v) = arctan (v + ﬁ) ;o (8) = 1y (t) = L55—, then we obtain

|Fa(t,u, v)] < g (8) @1 (Ju]) + o (t)wa(|v]), on (0,00) X R,
with Wy, w2 € C ((0,00), (0,00)) nondecreasing and @y, € L' (0,00). Then, the condition (H2) holds.

e We have

2
e—t t€_2t +1

-l Jo—17l.
20 (1+t§) 20 (1+t5)

A () — R (,0)| <
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—t . —2t241
T — e — te :
'f we put gy (t) 720(1“%) , q1 (1) 720(1“%) then we obtain
400
—t 1
g = / (1+t%) L(?dt:— < 0.
0 20 (1 +t5> 20
Foo texp (—2t2 +1
R A (R L
0 20 (1 +t§) 280
o We have
s te—2t°+1 B te—2t°+1
t*%fg(t,u,v)—t*%fg(t,u,v)’Seil|u—u|+ ¢ — v — 7|
20 (1+1%) 20 (1+1%)
If we put g2 (t) = g2 (t) = e then we obtain
put g2 = q2 = 20(1+t%)7
too texp (—2t2 +1
gz [ (1ee) 2, e
0 20 (1 +t§> 280

Hence, the condition (HS3) is satisfied.
Moreover, we have
Blai+4d)  Ble+a)
' (61) I' (02)

the condition (24) is satisfied. It follows from Theorem 5 that the boundary value problem (28) has a unique
solution (u,v) € E.

~6.6579 x 1072 < 1,

5 Conclusion

In this work, the existence and uniqueness of solution for the (SFDEs) with initial conditions comprising the
Erdélyi-Kober fractional derivatives have been discussed in a special Banach space. For our discussion, we
have used the Leray—Schauder nonlinear alternative fixed point Theorem, as well as the Banach contraction
principle. Finally, several indispensable examples are presented to illustrate the usefulness of our main
results. Future work will be directed toward the Caputo version of the Erdélyi-Kober fractional differential
equation and fractional coupled systems.

Acknowledgment. The authors are deeply grateful to the anonymous referees for their kind comments.
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