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Abstract

The sum-connectivity index of a graph G is defined as the sum of weights 1/
√
du + dv over all edges

uv of G, where du and dv are the degrees of the vertices u and v in G, respectively. In this paper, we
give a relation between the sum-connectivity index and diameter in trees.

1 Introduction

Let G be a simple graph with vertex set V = V (G) and edge set E(G). The integers n = n(G) = |V (G)|
and m = m(G) = |E(G)| are the order and the size of the graph G, respectively. The open neighborhood of
vertex v is NG(v) = N(v) = {u ∈ V (G) | uv ∈ E(G)} and the degree of v is dG(v) = dv = |N(v)|. A pendant
vertex is a vertex of degree one. The distance between two vertices is the number of edges in a shortest path
connecting them and the diameter D(G) of G is the distance between any two furthest vertices in G. A
diametral path is a shortest path in G connecting two vertices whose distance is D(G). A unicyclic graph is
a connected graph containing exactly one cycle. A subgraph G′ of a graph G is a graph whose set of vertices
is a subset of V (G) and set of edges is a subset of E(G).

Topological indices have been used and have been shown to give a high degree of predictability of phar-
maceutical properties. The sum-connectivity index of a graph G was proposed in [11], defined as

SCI(G) =
∑

uv∈E(G)

1√
du + dv

.

The applications of the sum-connectivity index have been investigated in [6, 7]. Some basic mathematical
properties of the sum-connectivity index have been established in [1, 2, 3, 4, 6, 7, 9, 10, 11].
In [11], it was shown that for a graph G with n ≥ 5 vertices and without isolated vertices, SCI(G) ≥ n−1

n
with equality if and only if G is the star. In [9], sum-connectivity index of molecular trees are characterized.
In [4], the authors obtained relations between the sum-connectivity index and matching number and in [3],
the authors obtained relations between Randíc index and the general sum-connectivity index. In this paper,
we consider the relationship between the sum-connectivity index and the diameter.

Main Results

In this section, we obtain relationship between the sum-connectivity index and the diameter. An edge x1x2
is called local maximum if its weight 1√

dx1+dx2
is maximum in its neighborhood, i.e.,

1√
dx1 + dx2

≥ 1√
dxi + du

for any edge xiu for i = 1, 2. Here, we proving the following lemma that will need to obtain the main result.
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Lemma 1 Let x1x2 be a local maximum edge in graph G. Then

SCI(G)− SCI(G− x1x2) > 0.

Proof. By the definition of sum-connectivity index, we have

SCI(G)− SCI(G− x1x2) =
1√

dx1 + dx2
+

∑
u∈NG(x1)\{x2}

(
1√

dx1 + du
− 1√

dx1 + du − 1

)

+
∑

v∈NG(x2)\{x1}

(
1√

dx2 + dv
− 1√

dx2 + dv − 1

)

≥ 1√
dx1 + dx2

+ (dx1 − 1)
(

1√
dx1 + dx2

− 1√
dx1 + dx2 − 1

)

+ (dx2 − 1)
(

1√
dx1 + dx2

− 1√
dx1 + dx2 − 1

)

=
dx1 + dx2 − 1√
dx1 + dx2

− dx1 + dx2 − 2√
dx1 + dx2 − 1

=
(dx1 + dx2 − 1)

3/2
+ 2
√
dx1 + dx2 − (dx1 + dx2)

3/2√
dx1 + dx2

√
dx1 + dx2 − 1

> 0.

If x1x2 is a pendant edge of G , i.e., at least one of vertices x1, x2 has degree one, we can see that it is a
local maximum edge. Thus, by Lemma 1, we get the next result.

Corollary 2 If x1x2 is a pendant edge in the graph G, then

SCI(G)− SCI(G− x1x2) > 0.

Now we obtain a relation between the sum-connectivity index and diameter of trees.

Theorem 3 Let T be a tree of order n ≥ 4 and diameter D(T ). Then

SCI(T )−D(T ) ≥ 2√
3
− n+ 1

2

with equality if and only if T is a path Pn.

Proof. If T is a path, we have SCI(T ) = n
2 +

2√
3
− 3

2 and D(T ) = n − 1. Now we assume that T is not
a path, then D(T ) ≤ n − 2 and there are at least three pendent vertices in T . Assume P = u0, u1, . . . , uD
be a longest path in T . Then at least one pendent vertex, say v1, is not contained in P . Now we start an
operation on T , i.e., we continually delete pendent vertices which are not contained in P until the resulting
tree is P . Assume that v1, v2, . . . , vk are the vertices in the order they were deleted. We have

SCI(T ) > SCI(T − v1) > · · · > SCI(T −
k⋃
i=1

vk) = SCI(P ) =
D(T )

2
+

1√
6

by Corollary 2 and

D(T ) = D(T − v1) = · · · = D(T −
k⋃
i=1

vk) = D(P ).
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Thus, we have
SCI(T )−D(T ) > SCI(P )−D(P )

implying that
2√
3
− 1
2
− D(T ) + 1

2
≥ 2√

3
− 1
2
− n− 1

2
=

2√
3
− n
2
>

2√
3
− n+ 1

2
.

This result seems true for any connected graph G of order n, and we propose it as a conjecture as follows:
Let G be a connected graph of order n ≥ 4 and diameter D(G). Then

SCI(G)−D(G) ≥ 2√
3
− n+ 1

2
.
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