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Abstract
We introduce a notion of a fixed ellipse to study the geometric properties of the set of nonunique

fixed points of a discontinuous self map and establish fixed ellipse theorems. Further, we verify these by
illustrative examples with geometric interpretations to demonstrate the authenticity of the postulates.
Paper is concluded by a discussion of activation functions having fixed ellipse to exhibit the feasibility of
results, thereby providing a better insight into the analogous explorations.

1 Introduction

The nonunique fixed points of a discontinuous self map perform an essential role in fixed point theory. Because
if the fixed point is not unique then the set of nonunique fixed points may form some geometrical shape like
a circle, disc, ellipse, or ellipsoid. In particular, an ellipse has several applications in Physics, Astronomy,
Biology, Neural Networks, Economics, Artificial Intelligence, and so on. Actually, ellipses emerge naturally in
numerous areas, for instance: planetary orbits. It is well known that an ellipse is the locus of a point for which
the sum of the Euclidean distances from the two foci is constant. A more natural perspective on the ellipse
is to define it as a flattened circle. In the present work, we introduce the notion of a fixed ellipse in metric
spaces. Next, we establish that the set of nonunique fixed points of a map includes an ellipse in a metric space
and verify these by illustrative examples with the geometric interpretation to demonstrate the authenticity
of the postulates. Towards the end, motivated by the fact that majority of prevalent discontinuous activation
functions that are being applied in neural networks are maps which have either fixed circles or fixed discs,
or fixed ellipses, we discuss the discontinuous activation function thereby provide a better insight into the
analogous explorations. These fixed ellipse results promote further examinations and applications in metric
spaces.

Definition 1 ([5]) A metric on a nonempty setM is a function d :M×M−→ R+ satisfying

(i) d(ω, υ) = 0 iff ω = υ;

(ii) d(ω, υ) = d(υ, ω);

(iii) d(ω, υ) ≤ d(ω, u) + d(u, υ), ω, υ, u ∈M.

2 Main Results

We first discuss the shapes of ellipses in different metric spaces for different lengths of semi major axes and
different foci and next familiarize a fixed ellipse in a metric space. Further, we exploit a classical Caristi
type map [4] to demonstrate that the set of nonunique fixed points of a map includes an ellipse.
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226 Fixed Point to Fixed Ellipse

Definition 2 An ellipse having foci at c1 and c2 in a metric space (M, d) is defined as

E(c1, c2, a) = {ω ∈M : d(c1, ω) + d(c2, ω) = 2a, c1, c2 ∈M, a ∈ [0,∞)}.

The midpoint C of a line c1c2 is known as a centre of an ellipse. Here, the segment of length 2a on line
c1c2 is the major axis, the line perpendicular to it through the center is the minor axis and a is the length
of a semi major axis of an ellipse. The distance 2f = d(c1, c2) is the linear eccentricity. The numerical
eccentricity of an ellipse (ellipsoid) is ε = sinf

sina . Visibly, the circles (spheres) are the ellipse (ellipsoid in
higher dimensions) of vanishing eccentricity in which both the focal points are same.

Example 1 LetM = R and a metric d :M×M−→ R+ be defined as d(ω, υ) = |ω − υ| , ω, υ ∈M then

E(−2, 2, 5) = {ω ∈M : d(−2, ω) + d(2, ω) = 10}
= {ω ∈M : |2 + ω|+ |2− ω| = 10}
= {−5, 5},

i.e., an ellipse centered at origin, having foci at −2 and 2 is {−5, 5}.

Example 2 LetM = R2 and a metric d :M×M−→ R+ be defined as d(ω, υ) =
√
(w1 − v1)2 + (w2 − v2)2,

where ω = (w1, w2), υ = (v1, v2) ∈M, then

E(c1, c2, 2) = {ω ∈M : d(c1, ω) + d(c2, ω) = 4},

where c1 = (2, 0) and c2 = (0, 2) ∈ M, i.e., the equation of an ellipse centered at (1, 1) having foci at (2, 0)
and (0, 2) is

√
(2− w1)2 + w22 +

√
w21 + (2− w2)2 = 4 and is shown as the blue line in a Figure 1. If a

metric d :M×M −→ R+ is defined as d(ω, υ) = |w1 − v1| + |w2 − v2| , ω = (w1, w2), υ = (v1, v2) ∈ M,
then an ellipse having the same center and the same foci as above is |2− w1| + |w2| + |w1| + |2− w2| = 4
and is shown as the green line in a Figure 1.
If d :M×M −→ R+ is defined as d(ω, υ) = max{|w1 − v1| , |w2 − v2|}, ω = (w1, w2), υ = (v1, v2) ∈ M,
then again an ellipse with the same center and the same foci is max{|2− w1| , |w2|}+max{|w1| , |2− w2|} = 4
and is shown as the orange line in a Figure 1.

Figure 1: The blue line is the ellipse corresponding to a metric d(ω, υ) =
√
(w1 − v1)2 + (w2 − v2)2, the

green line shows the ellipse corresponding to a metric d(ω, υ) = |w1 − v1|+ |w2 − v2| and the red line shows
the ellipse corresponding to a metric d(ω, υ) = max{|w1 − v1| , |w2 − v2|}, centred at (1, 1) and having foci
at (2, 0) and (0, 2) in Example 1.

It is fascinating to see that shapes of some ellipses may change on changing the length of semi major axis
(shape is changed in figure 2 but not in figure 3) or foci (refer to figure 4).



Joshi et al. 227

Figure 2: Ellipses corresponding to a metric d(ω, υ) = |w1 − v1|+ |w2 − v2| , for semi major axis a = 2, 2.5, 3
and 4, centred at (1, 1) and having foci at (2, 0) and (0, 2) are shown by the green, the blue, the orange and
the pink lines respectively in Example 1.

Figure 3: Ellipses corresponding to a metric d(ω, υ) = max{|w1 − v1| , |w2 − v2|}, for semi major axis
a = 1, 2 and 3, centred at (1, 1) and having foci at (2, 0) and (0, 2) are shown by the red, the blue and the
green lines respectively, in Example 1.

Definition 3 Let E(c1, c2, a) be an ellipse having foci at c1 and c2 and length of a semi major axis as a in
a metric space (M, d), c1, c2 ∈ M, a ∈ [0,∞). For a self-map A :M −→ M in a metric space (M, d), if
Aω = ω for all ω ∈ E(c1, c2, a), then E(c1, c2, a) is called the fixed ellipse of A.

Theorem 1 Let E(c1, c2, a) be an ellipse in a metric space (M, d). Define ς :M−→ [0,∞) as

ς(ω) = d(c1, ω) + d(c2, ω), c1, c2, ω ∈M. (1)

If there exists a self map A :M−→M so that

(E1) d(ω,Aω) ≤ ς(ω)− ς(Aω),

(E2) d(c1,Aω) + d(c2,Aω) ≥ 2a, a ∈ [0,∞),

(E3) d(Aω,Aυ) ≤ σd(ω, υ), ω ∈ E(c1, c2, a), υ ∈M\E(c1, c2, a), σ ∈ [0, 1),

then E(c1, c2, a) is a unique fixed ellipse of A.
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Figure 4: Ellipses corresponding to a metric d(ω, υ) = |w1 − v1|+ |w2 − v2| , for semi major axis a = 2 and
having foci at (2, 0), (0, 2); (3, 3), (4, 3); (5,−2), (3, 0) and (−1,−2), (−3,−2) are shown by the green, the
pink, the brown and the orange lines respectively in Example 1.

Proof. Let ω ∈ E(c1, c2, a) be any arbitrary point. Using (i) and equation (1)

d(ω,Aω) ≤ d(c1, ω) + d(c2, ω)− d(c1,Aω)− d(c2,Aω)
= 2a− d(c1,Aω)− d(c2,Aω)
≤ 2a− 2a, (using (ii))

i.e.,
d(ω,Aω) = 0 =⇒ Aω = ω,

i.e., ω is fixed point of A, ∀ ω ∈ E(c1, c2, a), c1, c2 ∈ M, a ∈ [0,∞). So, a self map A fixes an ellipse
E(c1, c2, a),
i.e., the set of nonunique fixed points of a map A includes an ellipse.
Let there exist two fixed ellipses E(c1, c2, a) and E(c

′

1, c
′

2, a
′
) of A, i.e., A satisfies both conditions (E1) and

(E2) for each of the ellipses E(c1, c2, a) and E(c
′

1, c
′

2, a
′
), c1, c2, c

′
1, c
′
2 ∈M, a, a′ ∈ [0,∞). Let ω ∈ E(c1, c2, a)

and υ ∈ E(c′1, c
′

2, a
′
). Using (iii), d(ω, υ) = d(Aω,Aυ) ≤ σd(ω, υ), a contradiction. Hence E(c1, c2, a) is a

unique fixed ellipse of A.
The following example illustrates Theorem 1.

Example 3 LetM = R2 and a metric d :M×M−→ R+ be defined as d(ω, υ) =
√
(w1 − v1)2 + (w2 − v2)2

where ω = (w1, w2), υ = (v1, v2) ∈M. Then

E(c1, c2, 5) = {ω ∈M : d(c1, ω) + d(c2, ω) = 10}, (2)

where c1 = (−3, 0) and c2 = (3, 0) ∈ M, i.e., the equation of an ellipse centered at (0, 0) and having foci at
(−3, 0) and (3, 0) is √

(3− w1)2 + w22 +
√
(3 + w1)2 + w22 = 10,

i.e.,
w21
25
+
w22
16
= 1.

Let ς :M−→ [0,∞) be defined as ς(ω) = d((−3, 0), ω)+d((3, 0), ω), ω ∈M. Define a self map A :M−→M
as

A(a, b) =
{
(a, b), (a, b) ∈ (5 cos θ, 4 sin θ),
(c, d), otherwise,
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Figure 5: The blue lines demonstrate the ellipse (2) which is fixed by the function A.

where (c, d) is so that d((a, b), (c, d)) < 1
10d(ω, υ), ω, υ ∈ M. Then a self map A verifies all the postulates

of Theorem 1 and fixes the unique ellipse E(c1, c2, 5), i.e., the set of nonunique fixed points of A contains a
unique ellipse E(c1, c2, 5). It is obvious that geometrically the condition (E1) implies that Aω is in the exterior
of an ellipse and the condition (E2) implies that Aω is in the interior of an ellipse.

The following examples depict the significance of conditions (E1), (E2) and (E3) in the existence of a fixed
ellipse or a unique fixed ellipse in Theorem 1.

Example 4 LetM = R and a metric d :M×M−→ R+ be defined as:

d(ω, υ) = |ω − υ| , ω, υ ∈M.

The ellipse

E(1, 2, 2.5) = {ω ∈M : d(1, ω) + d(2, ω) = 5}
= {ω ∈M : |1− ω|+ |2− ω| = 5}
= {−1, 4}.

Let ς :M−→ [0,∞) be defined as ς(ω) = d(1, ω) + d(2, ω), ω ∈M. Define a self map A :M−→M as

Aω =
{
1, ω ∈ E(1, 2, 2.5),
−1, otherwise.

Then a self map A verifies only the condition (E1) of Theorem 1 and does not satisfy the conditions (E2) and
(E3). One may verify that a self map A does not fix the ellipse E(1, 2, 2.5) and consequently, no ellipse.

Example 5 LetM = R2 and a metric d :M×M−→ R+ be defined as

d(ω, υ) =
√
(w1 − v1)2 + (w2 − v2)2,

where ω = (w1, w2), υ = (v1, v2) ∈M. The ellipse

E(c1, c2, 13) = {ω ∈M : d(c1, ω) + d(c2, ω) = 26},
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where c1 = (−5, 0) and c2 = (5, 0) ∈ M, i.e., the equation of an ellipse centered at (0, 0) having foci at
(−5, 0) and (5, 0) is √

(5− w1)2 + w22 +
√
(5 + w1)2 + w22 = 26,

i.e., w21
169 +

w22
144 = 1. Let ς :M −→ [0,∞) be difined as ς(ω) = d((−5, 0), ω) + d((5, 0), ω), ω ∈ M. Define a

self map A :M−→M as

A(ω, υ) =
{
(ω, 0), ω > 0,

(0, υ), ω ≤ 0.

Then a self map A satifies the condition (E2) and does not satisfy the conditions (E1) and (E3) of Theorem
1. Clearly, A does not fix the ellipse E(c1, c2, 13) but fixes some points (13, 0), (0, 12) and (0,−12) of an
ellipse.

Example 6 LetM = R and a metric d :M×M−→ R+ be defined as: d(ω, υ) = |ω − υ| , ω, υ ∈M. The
ellipse

E(2, 4, 5) = {ω ∈M : d(2, ω) + d(4, ω) = 10}
= {ω ∈M : |2− ω|+ |4− ω| = 10}
= {−2 , 8}.

Let ς :M−→ [0,∞) be difined as ς(ω) = d(2, ω) + d(4, ω), ω ∈M. Define a self map A :M−→M as

Aω =
{
−2, ω ∈ (−∞,−2],
8, ω ∈ (−2,∞).

Then a self map A verifies all the postulates of Theorem 1 except (E3) and fixes an ellipse E(2, 4, 5), i.e.,
the set of nonunique fixed points of a self map A contains at least one ellipse E(2, 4, 5). However, there may
exist infinitely many ellipses which are fixed by a self map A.

Using the equation (1), we give one more result for the existence of a unique fixed ellipse on a metric
space.

Theorem 2 Conclusion of Theorem 1 remains true even if we replace (E2) by

(E ′2) ηd(ω,Aω) + d(c1,Aω) + d(c2,Aω) ≥ 2a, η ∈ [0, 1).

Proof. Let ω ∈ C(ω0, r) be any arbitrary point. Using (i) and equation (1)

d(ω,Aω) ≤ d(ω, c1) + d(ω, c2)− d(Aω, c1)− d(Aω, c2)
= 2a− d(Aω, c1)− d(Aω, c2
≤ ηd(ω,Aω), (using (E ′2)),

which is a contradiction, i.e., d(ω,Aω) = 0 =⇒ Aω = ω. Uniqueness of a fixed ellipse may be proved as in
Theorem 1.

The following example illustrates Theorem 2.

Example 7 Let M = R2 and a metric d :M×M −→ R+ be defined as: d(ω, υ) = |w1 − v1| + |w2 − v2| ,
ω = (w1, w2), υ = (v1, v2) ∈M. The ellipse

E(c1, c2, 2) = {ω ∈M : d(c1, ω) + d(c2, ω) = 4}, (3)

where c1 = (1, 2) and c2 = (0, 2) ∈ M, i.e., the equation of an ellipse centered at (0.5, 2) with foci at (1, 2)
and (0, 2) is

|1− w1|+ |2− w2|+ |w1|+ |2− w2| = 4.
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Figure 6: The blue lines demonstrate the ellipse (3) which is fixed by the function A.

Let ς :M−→ [0,∞) be defined as ς(ω) = d((1, 2), ω)+d((0, 2), ω), ω ∈M. Define a self map A :M−→M
as

A(a, b) =
{
(a, b), (a, b) ∈ E(c1, c2, 2),
1
15 (0, 0.5), otherwise.

Then a self map A verifies all the postulates of Theorem 1 and fixes the unique ellipse E(c1, c2, 2), i.e., the
set of nonunique fixed points of A contains a unique ellipse E(c1, c2, 2).

It is clear that geometrically the condition (E1) implies that Aω is in the exterior of an ellipse and the
condition (E ′2) implies that Aω is in the interior of an ellipse. The following examples depict the significance
of conditions (E1), (E ′2) and (E3) in the existence of a fixed ellipse or a unique fixed ellipse in Theorem 2.

Example 8 LetM = R and a metric d :M×M−→ R+ be defined as: d(ω, υ) = |ω − υ| , ω, υ ∈M. The
ellipse

E(−2, 2, 3) = {ω ∈M : d(−2, ω) + d(2, ω) = 6}
= {ω ∈M : |2− ω|+ |2 + ω| = 6
= {−3 , 3}.

Let ς :M−→ [0,∞) be defined as ς(ω) = d(−2, ω) + d(2, ω), ω ∈M. Define a self map A :M−→M as

Aω =
{
2, ω ∈ E(−2, 2, 3),
3, otherwise.

Then a self map A verifies only the condition (E1) of Theorem 2 and does not satisfy the conditions (E ′2) and
(E3). One may verify that a self map A does not fix the ellipse E(−2, 2, 3) and consequently, no ellipse.

Example 9 Let E(c1, c2, a) be any arbitrary ellipse on any metric space (M, d), c1, c2 ∈ M, a ∈ [0,∞).
Let ξ be chosen such that d(c1, ξ) + d(c2, ξ) = µ > 2a. Let ς :M −→ [0,∞) be defined as ς(ω) = d(c1, ω) +
d(c2, ω), ω ∈ M. Define a self-map A :M−→M as Aω = ξ, ω ∈ M. Then a self-map A verifies the
postulate (E ′2) but does not verify the postulate (E1). Obviously, A does not fix the ellipse E(c1, c2, a).

Example 10 LetM = (0,∞) and a metric d :M×M−→ R+ be defined as: d(ω, υ) = |lnω − ln υ| , ω, υ ∈
M. The ellipse

E(1, e, 3.5) = {ω ∈M : d(1, ω) + d(e, ω) = 7}
= {ω ∈M : |ln 1− lnω|+ |ln e− lnω| = 7
= {e−3, e4}.
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Let ς :M−→ [0,∞) be defined as ς(ω) = d(1, ω) + d(e, ω), ω ∈M. Define a self map A :M−→M as

Aω =
{
e−3, ω ∈ (0, e],
e4, ω ∈ (e,∞).

Then a self map A verifies all the postulates of Theorem 2 except (E3) and fixes the ellipse E(1, 2, 3.5), i.e.,
the set of nonunique fixed points of A contains at least one ellipse E(1, 2, 3.5). However, there may exist
infinitely many ellipses which are fixed by a self map A.

Example 11 Let a discrete metric d :M×M−→ R+ onM be defined as:

d(ω, υ) =

{
0, ω = υ,

1, ω 6= υ,

and
E(c1, c2, a) = {ω ∈M : d(c1, ω) + d(c2, ω) = 2a}, c1, c2, ω, υ ∈M, a ∈ [0,∞). (4)

So

(i) if ω = c1 6= c2, a = 1
2 , then E(c1, c2, a) =M\{c2},

(ii) if ω = c1 6= c2, a 6= 1
2 , then E(c1, c2, a) = φ,

(iii) if ω 6= c1 6= c2, a = 1, then E(c1, c2, a) =M\{c1, c2},

(iv) if ω 6= c1 6= c2, a 6= 1, then E(c1, c2, a) = φ.

Let ς :M−→ [0,∞) be defined as ς(ω) = d(c1, ω) + d(c2, ω), ω ∈M. Define a self map A :M−→M as

Aω =


c1, ω = c2,

c2, ω = c1,

ω, otherwise.

Then a self map A verifies all the postulates of Theorem 2 except the condition (E3), i.e., the set of nonunique
fixed points of A contains at least one ellipse. However, one may verify that an ellipse is not unique. There
may exist infinitely many ellipses on varying the values of foci c1, c2 and lengths of semi major axis a.

Remark 1 (i) It is not necessary that an ellipse defined in a metric space is same as an ellipse in a
Euclidean space. Noticeably, ellipses discussed in Examples 1, 2, 4, 6, 7, 10 and 11 are different from
the ellipses in a Euclidean space. The shape of the ellipse may also change on changing the center, the
semi major axis, foci, or the metric.

(ii) Noticeably, the semi major axis a of the fixed ellipse does not depend on the center and may not be
maximal.

(iii) AE(c1, c2, a) = E(c1, c2, a) does not imply that E(c1, c2, a) is a fixed ellipse of A.

(iv) For work on the set of nonunique fixed points forming a circle or a disc, one may refer to Aydi et. al
[1], Mlaiki et. al [9], Özgür at. al [10], Özgür and Taş [11]-[12], Pant et. al [13], Taş et. al [14], and
references therein.

(v) It is worth mentioning here that the Banach contraction principle [2] and its generalizations give the
existence of a unique fixed point for a self map (for instance, Baradol et al. [3], Gopal et al. [6]-
[7], Lakzian et al. [8], Tomar and Joshi [18], Tomar and Sharma[16], Tomar et al. [15]-[17] and so
on) however, Theorems 1 and 2 (see, supporting examples also) establish the significant fact that a
discontinuous self-map fix a unique ellipse (i.e., a set of nonunique fixed points of a discontinuous self
map includes a unique fixed ellipse) which naturally arise in numerous real-world problems.
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It is interesting to see that the fixed ellipse E(c1, c2, a) is not essentially unique (see, for instance: Examples
6, 10, 11) unless some additional contraction condition is assumed. In Theorems 1 and 2, we have assumed
Banach contraction [2] to prove the uniqueness of a fixed ellipse. So it is significant to establish the uniqueness
of a fixed ellipse using different contractive conditions. In the following, we establish uniqueness using a more
general contractive condition.

Theorem 3 Let E(c1, c2, a) be an ellipse on a metric space (M, d). Let A : M −→ M be a self map
satisfying conditions (E1) and (E2) of Theorems 1 and 2 along with the contraction condition

d(Aω,Aυ)

≤ ηmax

{
d(ω, υ), d(ω,Aυ), d(υ,Aω), 1

2
(d(ω,Aω) + d(υ,Aυ)), 1

2
(d(ω,Aυ) + d(υ,Aω))

}
, (5)

ω ∈ E(c1, c2, a), υ ∈M\E(c1, c2, a), where η ∈ [0, 1), then E(c1, c2, a), c1, c2 ∈M, a ∈ [0,∞), is a unique
fixed ellipse of A.

Proof. Let there exist two fixed ellipses E(c1, c2, a) and E(c′1, c′2, a′) of A, c1, c2, c′1, c′2 ∈ M, a, a′ ∈ [0,∞),
i.e., A satisfies conditions (E1) and (E2) for both the ellipses E(c1, c2, a) and E(c′1, c′2, a′). Let ω ∈ E(c1, c2, a)
and υ ∈ E(c′1, c′2, a′). Using Inequality (5),

d(ω, υ) = d(Aω,Aυ)

≤ ηmax

{
d(ω, υ), d(ω, υ), d(υ, ω),

1

2
(d(ω, ω) + d(υ, υ)),

1

2
(d(ω, υ) + d(υ, ω)

}
= ηd(ω, υ)

< d(ω, υ),

which is a contradiction. Hence E(c1, c2, a) is a unique fixed ellipse of A.
Next, we give propositions for the existence of a self map which fixes the given ellipses.

Proposition 4 Let E(c1, c2, a) and E(c′1, c′2, a′) be any two ellipses in a metric space (M, d), c1, c2, c
′
1, c
′
2 ∈

M, a, a′ ∈ [0,∞), then there exists at least one self map A on M such that a self map A fixes the ellipses
E(c1, c2, a) and E(c′1, c′2, a′).

Proof. Define A :M−→M as

Aω =
{
ω, ω ∈ E(c1, c2, a) ∪ E(c′1, c′2, a′),
µ, otherwise,

where c1, c2,ω ∈ M, a ∈ [0,∞), µ is some constant such that d(c1, µ) + d(c2, µ) 6= 2a and d(c′1, µ) +
d(c′2, µ) 6= 2a′. Now define ς1, ς2 : M −→ [0,∞) as ς1(ω) = d(c1, ω) + d(c2, ω) and ς2(ω) = d(c′1, ω) +
d(c′2, ω), c1, c2, c

′
1, c
′
2, ω ∈ M. Then a self map A verifies all the hypotheses of Theorems 1 and 2 (except

(E3)) for the ellipses E(c1, c2, a) and E(c′1, c′2, a′). Hence E(c1, c2, a) and E(c′1, c′2, a′) are fixed ellipses of A.
Following the similar pattern, above proposition may be extended for n ellipses.

Proposition 5 Let E(c1, c2, a1), E(c′1, c′2, a′1), . . . , E(cn1, cn2, an1), c1, c′1, . . . , cn1, c2, c′2, . . . , cn2 ∈M, a1, a
′
1, . . . , a

n
1 ∈

[0,∞) be any n ellipses in a metric space (M, d). Then there exists at least one self map A onM such that
a self map A fixes ellipses E(c1, c2, a1), E(c′1, c′2, a′1), . . . , E(cn1, cn2, an1).

One may observe that the ellipses E(c1, c2, a1), E(c′1, c′2, a′1), . . . , E(cn1, cn2, an1) , in above proposition, need
not be disjoint.

Next, we give a proposition on a metric space in which an ellipse contains all the points of a space except
its foci and validate it by giving an example.
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Proposition 6 For a ∈M = R+, define the function da :M×M−→ [0,∞) as

da(ω, υ) =

{
0, ω = υ,

a, ω 6= υ,

where ω, υ ∈ M and a ∈ [0,∞). Then the ellipse E(c1, c2, a) in (M, da) contains all the points ω ∈ M
except the foci c1, c2 ∈M.

Proof. Obviously, the function da is a metric onM and consequently, (M, da) is a metric space. Let, the
ellipse

E(c1, c2, a) = {ω ∈M : da(c1, ω) + da(c2, ω) = 2a, c1, c2 ∈M, a ∈ [0,∞)}.

Clearly, E(c1, c2, a) consists of all of the points ω ∈M so that ω 6= {c1, c2}.

Example 12 Let (M, da) be a metric space so that the metric da be as in Proposition 2.3. Consider a set
J = {ωi : 1 ≤ i ≤ n}, n ∈ N. Obviously, there exists an ellipse E(c1, c2, a) consisting of the elements of J
as follows:

E(c1, c2, a) = {ω ∈M : da(c1, ω) + da(c2, ω) = 2a, c1, c2 ∈M, a ∈ [0,∞)}
= {ω1, ω2, . . . , ωn},

where c1, c2 ∈M \ J .

3 Discontinuous Maps as Activation Functions in Neural Net-
works

First, we discuss continuity of a self map on a fixed ellipse. It is interesting to mention here that a discon-
tinuous map has a strong fascination midst scientist, as most of the phenomenon emerging in the real-world
is discontinuous in nature.

Theorem 7 Let E(c1, c2, a), c1, c2 ∈M, a ∈ [0,∞) be a fixed ellipse of a self-map A in metric space (M, d)
satisfying

(i) d(Aω,Aυ) ≤ ηM(ω, υ), where

M(ω, υ) = max{d(ω, υ), d(ω,Aω), d(υ,Aω), 1
2
(d(ω,Aυ) + d(υ,Aω))},

η ∈ [0, 1), ω, υ ∈M.

(ii) For ε > 0, there exists a δ > 0 satisfying ε <M(ω, υ) < ε+ δ =⇒ d(Aω,Aυ) < ε.

If A has a unique fixed point, say u ∈ E(c1, c2, a) and limωn−→uAωn = u ∈ M. Then a self map A is
continuous at an ellipse E(c1, c2, a) iff limωn−→uM(ωn, u) = 0 or in other words, A is discontinuous at an
ellipse E(c1, c2, a) iff limωn−→uM(ωn, u) 6= 0.

Proof. Let A be continuous at u ∈ E(c1, c2, a) and ωn −→ u. So Aωn −→ Au = u.

lim
ωn−→u

M(ωn, u) = lim
ωn−→u

max{d(ωn, u), d(ωn,Aωn), d(u,Au),
1

2
(d(ωn,Au) + d(u,Aωn))}

= max{d(u, u), d(u,Au), d(u,Au), 1
2
(d(u,Au) + d(u,Au))}

= 0.
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Conversely, if limωn−→uM(ωn, u) = 0, i.e., limωn−→u d(ωn,Aωn) = 0. Hence, Aωn −→ u = Au, i.e., A is
continuous at u ∈ E(c1, c2, a) and hence continuous at an ellipse E(c1, c2, a).

Also motivated by the fact that the storage capacity of a discontinuous activation function is higher
than continuous activation function, we discuss Mexican-hat-type non-monotonic discontinuous activation
function which is used to introduce non-linear properties to the neural network. Let

Aiω =


ri, −∞ < ω < ai

mi,1ω + ni,1, ai ≤ ω < bi

mi,2ω + ni,2, bi ≤ ω < ci

si, ci < ω <∞

, i = 1, 2, . . . , n, (6)

where ai, bi, ci, ri,mi,1,mi,2, ni,1, ni,2 are constants satisfying −∞ < ai < bi < ci < ∞, mi,1 > 0, ri =
mi,1ai + ni,1 = mi,2ci + ni,2, mi,1bi + ni,1 = mi,2bi + ni,2, si > Abi, i = 1, 2, . . . , n. Let d : R×R −→ R+ be
defined by d(ω, υ) = |ω − υ| , ω, υ ∈M.

Example 13 Taking mi,1 =
1
4 , mi,2 = − 14 , ni,1 = −1, ni,2 = −

5
4 , ri = −

3
2 , si =

9
2 , ai = −2, bi =

− 12 , ci = 1 in (6), we get the following discontinuous activation function

Aω =


− 32 , −∞ < ω < −2
1
4ω − 1, −2 ≤ ω < − 12
− 14ω −

5
4 , −

1
2 ≤ ω < 1

9
2 , 1 ≤ ω <∞

. (7)

Here A verifies all the postulates of Theorems 1 and 2 except (iii) for the ellipse E(1, 2, 3) = {− 32 ,
9
2} having

Figure 7: Maxican-hat-type discontinuous nonmonotonic activation function (6).

foci at 1, 2, center ω = 3 and semi major axis a = 3. Hence, A fixes the ellipse E(1, 2, 3). Since we have
limω−→− 3

2
M(ω,− 32 ) = 0 and limω−→ 9

2
M(ω, 92 ) = 0, A is continuous at the fixed points u = −

3
2 ∈ E(1, 2, 3)

and u = 9
2 ∈ E(1, 2, 3). Thus, A is continuous at an ellipse E(1, 2, 3).

Example 14 Now taking mi,1 = 2, mi,2 = −1, ni,1 = 2, ni,2 = 8, ri = 4, si = 9, ai = 1, bi = 2, ci = 4 in
(6), we get the following discontinuous activation function

Aω =


4, −∞ < ω ≤ 1
2ω + 2, 1 < ω ≤ 2
−ω + 8, 2 < ω ≤ 4
9, 4 < ω <∞

.
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The function A verifies all the postulates of Theorem 1 and 2 except (iii) for the ellipse E(6, 7, 2.5) = {4, 9}

Figure 8: Maxican-hat-type discontinuous nonmonotonic activation function (7).

having foci at 6, 7 center ω = 13
2 and semi major axis a = 2.5. Hence, A fixes the ellipse E(6, 7, 2.5). Since we

have limω−→4M(ω, 4) 6= 0 and limω−→9M(ω, 9) = 0, A is discontinuous at the fixed point u = 4 ∈ E(6, 7, 2.5)
and continuous at the fixed point u = 9 ∈ E(6, 7, 2.5). Thus, A is discontinuous at an ellipse E(6, 7, 2.5).

Remark 2 (i) Using M(ω, υ), we may decide the ellipse at which the activation function is continuous
or discontinuous.

(ii) It is worth mentioning here that maps having nonunique fixed points forming fixed circle, fixed disc, or
fixed ellipse have been utilized in neural networks as activation functions. Hence, our results may also
be applicable under suitable conditions.

(iii) The fixed points of described real valued activation function are on ellipses which increase the quantity of
fixed points of a neural network with a geometrical significance. Consequently, the underlying activation
function may be beneficial to create numerous neural nets and lead to fascinating applications.

4 Conclusion

Motivated by the reflecting property of an ellipse which is useful in Medical science, Optics, Astronomy,
Whispering Gallery, and so on, we explored a new direction to the geometric properties of the set of nonunique
fixed point of a discontinuous map. It is interesting to mention here that ellipses in metric spaces, change
their shapes on changing the length of semi major axis, foci or metric under consideration. Further, we
discussed continuity at fixed-ellipses of discontinuous activation functions on metric spaces to demonstrate
the significance of novel fixed-ellipse results in the neural networks. This permits us to select the suitable
activation function according to the underlying problem on a neural networks which may have feasible
applications in numerous neural networks.

Acknowlegments. The authors are grateful to the anonymous referees for their precise remarks and
suggestions which led to the improvement of the paper.
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[11] N. Y. Özgür and N. Taş, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conference
Proceedings, 1926, 020048 (2018)
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