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Abstract
We prove the nonexistence of circulant Hadamard matrices H of order n > 4 under the truth of

some congruences (mod 2) extending a result of Brualdi. The new idea consists of exploiting modular
properties of a related circulant weighing matrix of order n/2.

1 Introduction

A matrix of order n is a square matrix with n rows. A circulant matrix A = circ(a1, . . . , an) of order n is
a matrix of order n of first row [a1, . . . , an] in which each row after the first is obtained by a cyclic shift of
its predecessor by one position. For example, the second row of A is [an, a1, . . . , an−1]. As usual, J is the
matrix of order n with all its entries equal to 1 (i.e., J = circ(1, . . . , 1)). A Hadamard matrix H of order n
is a matrix of order n with entries in {−1, 1} such that H√

n
is an orthogonal matrix. A circulant Hadamard

matrix of order n is a circulant matrix that is Hadamard. The 10 known circulant Hadamard matrices
are H1 = circ(1), H2 = −H1, H3 = circ(1,−1,−1,−1), H4 = −H3, H5 = circ(−1, 1,−1,−1), H6 = −H5,
H7 = circ(−1,−1, 1,−1), H8 = −H7, H9 = circ(−1,−1,−1, 1), H10 = −H9.
If H = circ(h1, . . . , hn), is a circulant Hadamard matrix of order n then its representer polynomial is the

polynomial R(x) = h1 + h2x+ · · ·+ hnx
n−1.

No one has been able, despite several deep computations (see [9]), to discover any other circulant
Hadamard matrix. Ryser [2, p. 97], [15] proposed in 1963 the conjecture of the non-existence of these
matrices when n > 4. Preceding work on the conjecture includes [3, 4, 6, 7, 8, 11, 13, 14, 16].
Ryser’s conjecture (there is no circulant Hadamard matrices of order > 4) has been studied by several

different methods. Brualdi [1] proved in 1965 the first special, and important, case of the conjecture, in
which all eigenvalues of a circulant Hadamard matrix H = circ(h1, . . . , hn) of order n > 4, are real; i.e., we
assume that H is symmetric. We relax in this paper the symmetry condition, by asking just a condition of
symmetry modulo 2 of a related matrix.
Assume the existence of a circulant Hadamard matrix H of order n > 4. The present paper proves that

this is impossible when the matrix H2 = (H + J)/2 reduced modulo 2 is a symmetric matrix. It is also
impossible when an n/4×n/4 related matrix reduced (mod 2) is symmetric. The result follows, essentially,
from a result of MacWilliams [10, Corollary 1.8] (see Lemma 5).
In order to be more precise, we define some sub-matrices of a given circulant matrix of even order. Let

M be a circulant matrix of even order 2k. Observe that M , having even order 2k, can be partitioned in four
blocks M1,M2,M3,M4, each of size k × k, as follows

M =

[
M1 M2

M3 M4

]
.

Since M is circulant, we have M4 = M1, and M3 = M2. We are thus associating to the 2k × 2k circulant
matrix M the square k × k matrices M1 and M2 (see exact details in Lemma 4), in order to have

M =

[
M1 M2

M2 M1

]
.
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Our main result is as follows:

Theorem 1 There is no circulant Hadamard matrix H of order n > 4 provided

(a) the matrix S2 = (H + J)/2 (mod 2) is symmetric, or

(b) both matrices C and D, defined below, are symmetric.

Write H as

H =

[
H1 H2

H2 H1

]
where the n/2 × n/2 matrices H1 and H2 are defined in Lemma 4 applied to H. Put T = (H1 + H2)/2.
Observe that T is circulant, and define n/4 × n/4 matrices T1 and T2 as above, by using again Lemma 4,
this time applied to T . Namely, write T as

T =

[
T1 T2
T2 T1

]
.

Finally, we define C = T1 (mod 2), and D = T2 (mod 2).

Section 2 contains the main tools necessary for the proof of the theorem. Section 3 contains the proof of
Theorem 1. Throughout the paper, we let A∗ denote the transpose conjugate of a matrix A, and the identity
matrix of order k is denoted by Ik. We let F2 = {0, 1} denote, as usual, the binary finite field. A binary
matrix is a matrix with all its entries in F2.

2 Tools

The following is well known. See, e.g., [5, p. 1193], [12, p. 234], [16, pp. 329-330] for the first lemma and [2,
p. 73] for the second.

First of all, we recall the notion of regular Hadamard matrix.

Definition 1 An r-regular Hadamard matrix is a Hadamard matrix whose row and column sums are all
equal to r. A regular Hadamard matrix is an r-regular Hadamard matrix for some integer r.

Lemma 1 Let H be a regular Hadamard matrix of order n ≥ 4. Then n = 4h2 for some positive integer
h. Moreover, if H is circulant then h is odd. Furthermore, either H or −H is 2h-regular (the other is
(−2h)-regular) and each row has 2h2+h positive entries and 2h2−h negative entries, when H is 2h-regular;
respectively, has 2h2 − h positive entries and 2h2 + h negative entries, when H is (−2h)-regular.

Lemma 2 Let H be a circulant Hadamard matrix of order n ≥ 1, let w = exp(2πi/n), and let R(x) be
its representer polynomial. Then, the set of all eigenvalues of H, consists of the set of all R(v) where
v ∈ {1, w, w2, . . . , wn−1}. Moreover, one has

|R(v)| =
√
n.

More generally, and in more detail (see [2]), one has

Lemma 3 Let C = circ(c1, . . . , cn) be a circulant matrix of order n > 0 with representer polynomial P (t) =
c1+ c2t+ . . .+ cnt

n−1. Let ω be the primitive complex n-th root of unity with smaller positive argument. The
matrix C is diagonalizable and C = F ∗∆F where ∆ = diag(P (1), P (w), . . . , P (wn−1) is a diagonal matrix

containing the eigenvalues of C, and F ∗ =
(
ω(i−1)(j−1)√

n

)
is the conjugate of the Fourier matrix. Moreover,

F is unitary.
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The following is well known, useful, and easy to check:

Lemma 4 Let M be a circulant matrix of even order n and with first row R1 = [m1, . . . ,mn]. Then

(a)

M =

[
M1 M2

M2 M1

]
where M1,M2 are the matrices of order n

2 defined by M1 = (ai,j), M2 = (bk,`), where i, j, k, ` =
1, . . . , n/2, and ai,j = mj−i+1, bk,` = m`+n/2−k+1, subscripts (mod n).

(b) The matrix M1 +M2 is circulant.

The following result of MacWilliams [10] is crucial.

Lemma 5 The only circulant, symmetric, and orthogonal matrix, over the binary field F2, of given order
n, is the identity matrix In.

The following “counting”lemma is important for the proof of the second part of the theorem.

Lemma 6 Let H be a
√
n-regular circulant Hadamard matrix of order n > 1. Let H1 and H2 be the n/2

square matrices defined in Lemma 4 applied to H. Let M = H1+H2

2 . Let a = number of 0’s in the first row
of the circulant matrix M . Let b = number of 1’s in the first row of M , and let c = number of −1’s in the
first row of M . Then

(i) a = n
4 ,

(ii) b = n+2
√
n

8 ,

(iii) c = n−2
√
n

8 .

Proof. Since H/
√
n is orthogonal, by Lemma 4, we have H1H1

∗+H2H2
∗ = nIn/2, and H1H2

∗+H2H1
∗ = 0.

Then, it follows that
MM∗ = (n/4)In/2. (1)

One has

M = circ

(
h1 + hn/2+1

2
, . . . ,

hn/2 + hn

2

)
.

Observe, from (1), that n/4 equals the sum of squares of all entries in row 1 of M , and that an entry
hi+hn/2+i

2 = 0 does not contribute to the sum of squares, while the other entries, i.e., the nonzero ones, each
contribute by 1 to the same sum. In other words one has

n/4 = b+ c. (2)

Since H is
√
n-regular, and 2

√
n > 0, we have that M is S-regular, with S > 0. Compute now S, i.e.,

compute the sum of all entries in row 1 of M :

S =

n/2∑
i=1

hi + hn/2+i

2
=

1

2

n∑
i=1

hi =

√
n

2
. (3)

But S = b− c, since zeros do not contribute to the sum, thus it follows from (3) that

b− c =

√
n

2
. (4)

From (2) and (4) we get (ii) and (iii). Since the total number of entries in the first row of M is equal to
n/2, we have

n/2 = a+ b+ c,

thereby obtaining also (i). This finishes the proof of the lemma.
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3 Proof of Theorem 1

Proof. Assume, on the contrary, the existence of a circulant Hadamard matrix H = circ(h1, . . . , hn) where
n > 4, such that

(a) for C1 = (H + J)/2, the matrix S2 = C1 (mod 2) is symmetric. Put I = In. By Lemma 1, n = 4h2

with odd h > 1, and we can assume that all the row sums of H equal 2h (i.e, H is 2h−regular).
Observe that HH∗ = 4h2I, HJ = JH∗ = 2hJ , and J2 = nJ . Thus

C1C
∗
1 = HH∗/4 + (HJ + JH∗)/4 + J2/4 = h2I + (h+ h2)J. (5)

Since h is odd, it follows then from (5) that S2S∗2 = I, as a matrix over F2. In other words, S2 is an
orthogonal matrix of order n over F2. Thus, since we assumed that S2 is symmetric, Lemma 5 implies
that S2 = I. In particular, the number of 1’s in the first row of S2 is equal to 1. But, by definition of
S2, this says that C1 (a {0, 1} matrix), and thus H, has also only a single 1 in its first row. By Lemma
1, and since H is 2h−regular, we know that the number of these 1’s is equal to 2h2 + h. We conclude
that 2h2 + h = 1. This is impossible since h > 1. This contradiction proves the result.

(b) Put E = C +D. Thus E is symmetric. Apply Lemma 4 to M = H to get matrices A1 = H1, B1 = H2

of order 2h2 for which T = (H1 + H2)/2 is a circulant {−1, 0, 1} matrix. Apply again Lemma 4,
this time to M = T , to get matrices A2 = T1, B2 = T2 of order h2 for which L = (A2 + B2) is a
circulant matrix with entries in {−2,−1, 0, 1, 2}. Thus C = A2 (mod 2), and D = B2 (mod 2). Since
HH∗ = nIn, we get by block multiplication

A1A
∗
1 +B1B

∗
1 = 4h2I2h2 , A1B

∗
1 +B1A

∗
1 = 0 (6)

so that, by adding both equations in (6) we get

TT ∗ = h2I2h2 . (7)

Remember that we have
D = D∗, C = C∗. (8)

Put U = T (mod 2). Reducing (7) (mod 2) one sees that U is orthogonal. Thus, it follows from the
definition of T , and from (8), that U is also symmetric. Therefore, a new application of Lemma 5 gives

U = I2h2 . (9)

But (9) contradicts Lemma 6 since the number of entries equal to −1 or to 1 in the first row of T (and
thus, the number of 1’s in the first row of U) is (with the notation of the lemma) equal to b+c = h2 ≥ 9,
and not equal to 1, as is in the matrix I2h2 . This contradiction proves the result.

Remark 1 Concerning the proof of part (b) of the theorem. Asking that E = C +D be symmetric, instead
of asking that both C and D be symmetric, (in the hypothesis of the theorem), seems too weak, in order to get
the same result. Moreover, when both C and D are assumed to be symmetric, it is possible to prove, using
again MacWilliams result, that one has E = Ih2 (i.e., that we have C = Ih2 + D). However, this alone do
not seems to give a contradiction. Thus, we obtained the contradiction (that proved part (b) of the Theorem)
by focusing on the 2h2 × 2h2 matrix T , instead.
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