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Abstract

In this paper we study the generalized Smith’s determinant As(n) := det [(ged(é, 1))°],«; j<,,» Where

s # 0 is fixed real. For large values of n we obtain asymptotic expansions of log |As(n)|, and for s > 1 we
obtain Stirling type approximations for As(n). Furthermore, we prove that for s < 0 the sign of A4(n) is
independent of s, and is same as the sign of (—1)", where 7,, denotes the number of integers m € [1, n]
having odd number of distinct prime divisors.

1 Introduction

In 1875 Smith [8] considered the determinant of the matrix [a;;]1<s, j<n With elements given by a;; = ged (¢, 7),
greatest common divisor of ¢ and j. He proved that

det [ng(iﬂj)]lgi,jgn = H e(m),

m=1

where ¢(m) denotes the Euler function of m, counting the number of positive integers not exceeding m and
coprime to m. The above determinant is known as Smith’s determinant. Since Smith’s work this field has
been studied extensively. For a recent account of the theory of ged-matrices we refer the reader to [4] and
the references given there. Also, see [2, p. 123] for some classical generalizations of Smith’s determinant,
including the assertion that if f is an arithmetic function then

det [/ (ged(i: Dyesgen = 1 2o m(@) 1 (7). ®
m=1d|m

where u(d) denotes the Mobius function of d, which is 1 if d = 1, is (=1)* if d is equal to the product of k
distinct primes, and is 0 otherwise. In this paper we are motivated by the asymptotic growth of generalized
Smith’s determinant (1) for f(n) = n®. The exponent s is an arbitrary non-zero real. For the case s > 0 we
prove the following result.

Theorem 1 Let s > 0 be fized real and

Af(n) = det [(ng(iaJ’))shgi,jgn . (2)

Define the absolute constant as by
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where p runs over all primes. Then, as n — oo,
snlogn + (as — s)n + O(n'~%) (0<s<1),
log Af(n) = ¢ nlogn+ (g — 1)n + 3 logn + O(loglogn) (s=1),
snlogn + (s — s)n+ $logn+slogV2r + O(=5) (1 <s<2).

Also, for each s > 2 the following approximation holds

B 1
log AT (n) = snlogn + (as —S)n—&—?logn-i-slog\/ +1§: s 2i)n2j*1+0(ﬁ)7

where B; denotes the i-th Bernoulli number.

Stirling approximation for n! asserts that n! = (p) V2rn (14+0(2)). By taking exponent we obtain the
following Stirling type approximation for At (n) for each s > 1.

Corollary 1 Let At (n) be the determinant defined by (2). Then, as n — oo,
(2)™ B V/(@mn)* (1+0(5)) (1<s<2),

()™ BeV/Cm) (140(3))  (s>2),

where B4 is an absolute constant defined by
1 P
S
pS

p

Af(n) =

|~

and p runs over all primes.

A more sophisticated argument, similar to that used in our paper [3], enables us to consider the case of
negative values of exponent.

Theorem 2 Let s > 0 be fized real and
A7 (n) = det [(gcd(i,j))_s]lgi’jgn :

Then, for any positive integer r there exist computable constants ci,...,c, such that as n — oo,

n
+O | — 1,
log’ n <log“rl n)

where ay is defined by (3), v is Euler’s constant, and E is the constant in Mertens’ approximation given by

log’A !— (as +v+E) n—l—sz

= mlingo Z —= —logx. (4)

p<T

Furthermore, the sign of A7 (n) is independent of s, and is same as the sign of (—1)", where n,, denotes
1

the number of integers m € [1,n] having odd number of distinct prime divisors.
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2 Proof of Theorem 1

Proof. For f(n) =n?®, we conclude from (1) that

n n
= H m® gs(m) = nl!’ H gs(m
m=1 m=1

where gs(m) = 3_4,,, p(d)d™". Since g, is multiplicative, we get

M IL(-2)-T10-2)

p|lm pelm P
Thus,
e H I ( )
m= 1p‘
and

log Af(n) —Slogn'—l—ZZlog (1—) (5)

m= 1p‘

Stirling’s approximation [7, p. 294] for logn! asserts that given any positive integer r, as n — oo,

1 a Ba; 1
logn! =nlogn —n + B logn + log V2w + ; 2592 — o T + O(n2r+1>. (6)

To approximate the double sum in (5), we change the order of summations. Thus,

R S P M ]

m=1 p|m p<n m<n p<n
plm
=) log (1 - ) (" + 0(1))
p<n p
—nz log<1—)+0 Zlog( )
p<n p<n

1 1\ " 1
:asn—i-nZlog(l—])S) +0 Zlog(l—ps>

p>n p<n

Since —log(l —t) ~t ast — 0, we get

1 1\~ < dr 1
Zp10g<1ps> <<Zs+1 /nﬁ<<;

p>n

Also, by using the approximation » L <« loglogn we obtain

p<n p

) B (s#1),

Zlog(l—) <<Zis<<

p<n p<n loglogn (s=1).
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Hence,

iZlog <1p15> asn+0({ ﬁlg_lzgn Ezig > (7)

m=1 p|m

We let » = [3] in (6). Note that 2[5] +1 > s — 1. Therefore, by considering (5) and (7) we conclude the
proof. m

3 Proof of Theorem 2

Proof. Let s > 0. We conclude from (1) that

A7 (n) = [ m " he(m) = n1=* [ hs(m),

m=1
where hy(m) =}, p(d)d’. Since hy is multiplicative, we get

ho(m) = ] hsw®) = [ 0 =p*) =] (0 -»")

pellm p|lm plm

— 0 T =1 = 0 s T (1- ).

pS
plm plm

where w(m) counts the number of distinct prime factors of m, and k(m) denotes the product of distinct
prime factors of m. Thus,

A7 (n) = (_1)Eﬁl=1 w(m) 1—s (1__[1 l-@(m)) H H <1 — pls> . (8)

m=1p|m

This relation implies that the sign of A (n) depends on the value of " _, w(m), which is independent of
s. Moreover, the sign of A7 (n) is same as the sign of (—1)"", where

M=y, L

1<m<n
w(m)is odd

denoting the number of integers m € [1,n] which have odd number of distinct prime divisors. Furthermore,
we conclude from (8) that

10g}As_(n)| = —slogn! + s Z log r(m) + Z Zlog <1 _ pls> )

m=1 m=1 p‘m

To approximate

_1log k(m) we recall the notion of the index of composition of n, which is defined by

logn

Aln) = ————,
(n) log k(n)

for each integer n > 2. Note that A(n) “somehow” measures how much the integer n > 2 is composite!

For n square-free it takes the value A(n) = 1, and for integers n having square factors in heart, it takes the

value A(n) > 1. De Koninck and Kétai [1] proved that given any positive integer r, there exist computable

constants d,...,d, such that

log”

1 . T T
v(z) = —=z+ ) dj +0 —1 ) (9)
Z; (k) ; (log + x)
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By using Abel summation we get

= 1077)”0”,1)*0,”@
Zlogn(k)fz log k = v(n)log (27) log2 /2 .

To deal with the last integral, we study the functions L;(¢) defined for each integer j > 1 by the following
anti-derivative dt
L;(t) == / =
log’ t

Note that L; (¢) is the logarithmic integral function, which admits the following expansion

Lu(t) = li(t) = 3 (i — 1)! log o+ o(m%) (10)

=1

Integrating by parts gives

Lii(t) = / (bgfll) (d) = logjtlt TU- 1)/ 1023 t

Hence, for j > 2 the functions L;(t) satisfy the recurrence

1 t
L,(t)=——L;1(t) - ————.
() j-1" 1) (j—1)log’ 't

By repeated using this recurrence we deduce that

j*l
—DIL;(t) = li(¢ (1 —
(-1 2 log .
Hence, by using the expansion (10), for 1 < j < r we obtain
L (i—-1) ¢ t
L) = = —+0( ). 11
() Z (j—D'og't log" " ¢ (11)

We deduce from the expansion (9) that

o). " 1
/2 Tdt B /2 b Zd loth (logw'1 ) d
r r "
:n—|—Zd]L](n)— 2+ZdJLJ(2) —|—O<177+1)
j=1 j=1 og n

With r replaced by r + 1 in (9), we obtain

n n
logn =nlogn +din+S d +0(7).
v(n)log & ! ; H_11 gjn log" ' n

Combining the above expansions, we obtain

n T n n

= log"
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where ,
Cr=2+v(27)log2+ > d;L;(2)
j=1
is a constant depending only on r. Thus, C, = O,(1). Moreover, we deduce from the expansion (11) that

r

J n n
dji1—— —d;Li(n) | = +0O(——F—).
;( J+1log7n L )) Jz:; log n Zz:: J log n (logrﬂn)
Note that

log” n (G —D'log'n log” n

T T s 1 s
Z dj+17nj —Zd (-1 n :ch 72 +O(log:iln))
Jj=1 i=j j=1

where c;s are computable constants in terms of d;s. Thus, letting co = d; — 1, we obtain

Zlogn( _nlogn+con+Zc]10g n+0(log’+ln>'

To compute the precise value of ¢y we write

Zlogﬁ( Zlong— ZZlogp—Z [Z] logp =nM(n) —R(n), (12)

m= 1p|m p<n
where )
ogp
M(n) =" —=,
= p
rsn
and
n
R(n) = Z {} log p.
psn p

It is known due to Landau [5, p. 198] that

M(n)zlogn+E+0( (13)

log n) ’
where FE is the constant given by (4). To estimate R(n) we let

and

It is known due to Lee [6] that

L(n) = (1— )" +0( n )

logn log®n
We observe that although the summation £(n) has the summation S(n) in heart, but their difference is not
too large in comparison the true size of £(n). More precisely,

EOEECED IR FIED SEED DT DI

o p< logn
"oz RSy espn 2R
Z

a=2
1
nao nz2
< — < o nlogn
< D r Sqn 2 < Valgn,
g 2<a<11°§§
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where 7(t) denotes the number of primes p not exceeding ¢, and we use the simple estimate () < in

the above argument. Hence,

t
logt

1ogn +0(10g"2n). (14)

Let w(k) to be 1 when k is prime and 0 otherwise. By using Abel summation we get

S(n) = (1-7)

R(n) =3 { %} w(k)logh = S(n) logn — S(27) log2 - /Zn I”T(t) .
where

pst

Since 0 < F,,(t) < 7(t) < @, by using the approximation (14) we deduce that

R(n) = (1 - )n+0(logn) - /20(10;)? =0 —V)“O(logn)

Thus, by substituting (13) and the last approximation in (12) we obtain the truncated approximation

n
Zlogn( —nlogn+(’y+E71)n+O( )
logn
m=1
implying that ¢ = v+ F — 1. Hence, given any positive integer r, there exist computable constants cy,...,c,

such that

- n
Zlogn( )=nlogn+ (y+E —1) n—l—z —&-O(ﬁ).
— log’ n og' "' n

By using this approximation and the relations (6) and (7) we conclude the proof. m
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