On The Asymptotic Expansion Of A Generalized Smith's Determinant*

Mehdi Hassani ${ }^{\dagger}$

Received 6 April 2020

Abstract

In this paper we study the generalized Smith's determinant $\Delta_{s}(n):=\operatorname{det}\left[(\operatorname{gcd}(i, j))^{s}\right]_{1 \leqslant i, j \leqslant n}$, where $s \neq 0$ is fixed real. For large values of n we obtain asymptotic expansions of $\log \left|\Delta_{s}(n)\right|$, and for $s>1$ we obtain Stirling type approximations for $\Delta_{s}(n)$. Furthermore, we prove that for $s<0$ the sign of $\Delta_{s}(n)$ is independent of s, and is same as the sign of $(-1)^{\eta_{n}}$, where η_{n} denotes the number of integers $m \in[1, n]$ having odd number of distinct prime divisors.

1 Introduction

In 1875 Smith $[8]$ considered the determinant of the matrix $\left[a_{i j}\right]_{1 \leqslant i, j \leqslant n}$ with elements given by $a_{i j}=\operatorname{gcd}(i, j)$, greatest common divisor of i and j. He proved that

$$
\operatorname{det}[\operatorname{gcd}(i, j)]_{1 \leqslant i, j \leqslant n}=\prod_{m=1}^{n} \varphi(m)
$$

where $\varphi(m)$ denotes the Euler function of m, counting the number of positive integers not exceeding m and coprime to m. The above determinant is known as Smith's determinant. Since Smith's work this field has been studied extensively. For a recent account of the theory of gcd-matrices we refer the reader to [4] and the references given there. Also, see [2, p. 123] for some classical generalizations of Smith's determinant, including the assertion that if f is an arithmetic function then

$$
\begin{equation*}
\operatorname{det}[f(\operatorname{gcd}(i, j))]_{1 \leqslant i, j \leqslant n}=\prod_{m=1}^{n} \sum_{d \mid m} \mu(d) f\left(\frac{m}{d}\right) \tag{1}
\end{equation*}
$$

where $\mu(d)$ denotes the Möbius function of d, which is 1 if $d=1$, is $(-1)^{k}$ if d is equal to the product of k distinct primes, and is 0 otherwise. In this paper we are motivated by the asymptotic growth of generalized Smith's determinant (1) for $f(n)=n^{s}$. The exponent s is an arbitrary non-zero real. For the case $s>0$ we prove the following result.

Theorem 1 Let $s>0$ be fixed real and

$$
\begin{equation*}
\Delta_{s}^{+}(n)=\operatorname{det}\left[(\operatorname{gcd}(i, j))^{s}\right]_{1 \leqslant i, j \leqslant n} \tag{2}
\end{equation*}
$$

Define the absolute constant α_{s} by

$$
\begin{equation*}
\alpha_{s}=\sum_{p} \frac{1}{p} \log \left(1-\frac{1}{p^{s}}\right) \tag{3}
\end{equation*}
$$

[^0]where p runs over all primes. Then, as $n \rightarrow \infty$,
\[

\log \Delta_{s}^{+}(n)= $$
\begin{cases}s n \log n+\left(\alpha_{s}-s\right) n+O\left(n^{1-s}\right) & (0<s<1) \\ n \log n+\left(\alpha_{1}-1\right) n+\frac{1}{2} \log n+O(\log \log n) & (s=1) \\ s n \log n+\left(\alpha_{s}-s\right) n+\frac{s}{2} \log n+s \log \sqrt{2 \pi}+O\left(\frac{1}{n^{s-1}}\right) & (1<s \leqslant 2)\end{cases}
$$
\]

Also, for each $s>2$ the following approximation holds

$$
\log \Delta_{s}^{+}(n)=s n \log n+\left(\alpha_{s}-s\right) n+\frac{s}{2} \log n+s \log \sqrt{2 \pi}+\sum_{1 \leqslant j \leqslant \frac{s}{2}} \frac{s B_{2 j}}{(2 j)(2 j-1) n^{2 j-1}}+O\left(\frac{1}{n^{s-1}}\right),
$$

where B_{i} denotes the i-th Bernoulli number.
Stirling approximation for $n!$ asserts that $n!=\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\left(1+O\left(\frac{1}{n}\right)\right)$. By taking exponent we obtain the following Stirling type approximation for $\Delta_{s}^{+}(n)$ for each $s>1$.

Corollary 1 Let $\Delta_{s}^{+}(n)$ be the determinant defined by (2). Then, as $n \rightarrow \infty$,

$$
\Delta_{s}^{+}(n)= \begin{cases}\left(\frac{n}{e}\right)^{s n} \beta_{s}^{n} \sqrt{(2 \pi n)^{s}}\left(1+O\left(\frac{1}{n^{s-1}}\right)\right) & (1<s<2), \\ \left(\frac{n}{e}\right)^{s n} \beta_{s}^{n} \sqrt{(2 \pi n)^{s}}\left(1+O\left(\frac{1}{n}\right)\right) & (s \geqslant 2),\end{cases}
$$

where β_{s} is an absolute constant defined by

$$
\beta_{s}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{\frac{1}{p}}
$$

and p runs over all primes.
A more sophisticated argument, similar to that used in our paper [3], enables us to consider the case of negative values of exponent.

Theorem 2 Let $s>0$ be fixed real and

$$
\Delta_{s}^{-}(n)=\operatorname{det}\left[(\operatorname{gcd}(i, j))^{-s}\right]_{1 \leqslant i, j \leqslant n} .
$$

Then, for any positive integer r there exist computable constants c_{1}, \ldots, c_{r} such that as $n \rightarrow \infty$,

$$
\log \left|\Delta_{s}^{-}(n)\right|=\left(\alpha_{s}+\gamma+E\right) n+s \sum_{j=1}^{r} \frac{c_{j} n}{\log ^{j} n}+O\left(\frac{n}{\log ^{r+1} n}\right),
$$

where α_{s} is defined by (3), γ is Euler's constant, and E is the constant in Mertens' approximation given by

$$
\begin{equation*}
E=\lim _{x \rightarrow \infty} \sum_{p \leqslant x} \frac{\log p}{p}-\log x . \tag{4}
\end{equation*}
$$

Furthermore, the sign of $\Delta_{s}^{-}(n)$ is independent of s, and is same as the sign of $(-1)^{\eta_{n}}$, where η_{n} denotes the number of integers $m \in[1, n]$ having odd number of distinct prime divisors.

2 Proof of Theorem 1

Proof. For $f(n)=n^{s}$, we conclude from (1) that

$$
\Delta_{s}^{+}(n)=\prod_{m=1}^{n} m^{s} g_{s}(m)=n!^{s} \prod_{m=1}^{n} g_{s}(m)
$$

where $g_{s}(m)=\sum_{d \mid m} \mu(d) d^{-s}$. Since g_{s} is multiplicative, we get

$$
g_{s}(m)=\prod_{p^{a} \| m} g_{s}\left(p^{a}\right)=\prod_{p^{a} \| m}\left(1-\frac{1}{p^{s}}\right)=\prod_{p \mid m}\left(1-\frac{1}{p^{s}}\right)
$$

Thus,

$$
\Delta_{s}^{+}(n)=n!^{s} \prod_{m=1}^{n} \prod_{p \mid m}\left(1-\frac{1}{p^{s}}\right)
$$

and

$$
\begin{equation*}
\log \Delta_{s}^{+}(n)=s \log n!+\sum_{m=1}^{n} \sum_{p \mid m} \log \left(1-\frac{1}{p^{s}}\right) \tag{5}
\end{equation*}
$$

Stirling's approximation [7, p. 294] for $\log n$! asserts that given any positive integer r, as $n \rightarrow \infty$,

$$
\begin{equation*}
\log n!=n \log n-n+\frac{1}{2} \log n+\log \sqrt{2 \pi}+\sum_{j=1}^{r} \frac{B_{2 j}}{(2 j)(2 j-1) n^{2 j-1}}+O\left(\frac{1}{n^{2 r+1}}\right) \tag{6}
\end{equation*}
$$

To approximate the double sum in (5), we change the order of summations. Thus,

$$
\begin{aligned}
\sum_{m=1}^{n} \sum_{p \mid m} \log \left(1-\frac{1}{p^{s}}\right) & =\sum_{p \leqslant n} \log \left(1-\frac{1}{p^{s}}\right) \sum_{\substack{m \leqslant n \\
p \mid m}} 1=\sum_{p \leqslant n} \log \left(1-\frac{1}{p^{s}}\right)\left[\frac{n}{p}\right] \\
& =\sum_{p \leqslant n} \log \left(1-\frac{1}{p^{s}}\right)\left(\frac{n}{p}+O(1)\right) \\
& =n \sum_{p \leqslant n} \frac{1}{p} \log \left(1-\frac{1}{p^{s}}\right)+O\left(\sum_{p \leqslant n} \log \left(1-\frac{1}{p^{k}}\right)\right) \\
& =\alpha_{s} n+n \sum_{p>n} \frac{1}{p} \log \left(1-\frac{1}{p^{s}}\right)^{-1}+O\left(\sum_{p \leqslant n} \log \left(1-\frac{1}{p^{s}}\right)\right)
\end{aligned}
$$

Since $-\log (1-t) \sim t$ as $t \rightarrow 0$, we get

$$
\sum_{p>n} \frac{1}{p} \log \left(1-\frac{1}{p^{s}}\right)^{-1} \ll \sum_{p>n} \frac{1}{p^{s+1}} \ll \int_{n}^{\infty} \frac{d x}{x^{s+1}} \ll \frac{1}{n^{s}}
$$

Also, by using the approximation $\sum_{p \leqslant n} \frac{1}{p} \ll \log \log n$ we obtain

$$
\sum_{p \leqslant n} \log \left(1-\frac{1}{p^{s}}\right) \ll \sum_{p \leqslant n} \frac{1}{p^{s}} \ll \begin{cases}\int_{2}^{n} \frac{d x}{x^{s}} \ll \frac{1}{n^{s-1}} & (s \neq 1) \\ \log \log n & (s=1)\end{cases}
$$

Hence,

$$
\sum_{m=1}^{n} \sum_{p \mid m} \log \left(1-\frac{1}{p^{s}}\right)=\alpha_{s} n+O\left(\left\{\begin{array}{ll}
n^{1-s} & (s \neq 1) \tag{7}\\
\log \log n & (s=1)
\end{array}\right) .\right.
$$

We let $r=\left[\frac{s}{2}\right]$ in (6). Note that $2\left[\frac{s}{2}\right]+1 \geqslant s-1$. Therefore, by considering (5) and (7) we conclude the proof.

3 Proof of Theorem 2

Proof. Let $s>0$. We conclude from (1) that

$$
\Delta_{s}^{-}(n)=\prod_{m=1}^{n} m^{-s} h_{s}(m)=n!^{-s} \prod_{m=1}^{n} h_{s}(m)
$$

where $h_{s}(m)=\sum_{d \mid m} \mu(d) d^{s}$. Since h_{s} is multiplicative, we get

$$
\begin{aligned}
h_{s}(m) & =\prod_{p^{a} \| m} h_{s}\left(p^{a}\right)=\prod_{p^{a} \| m}\left(1-p^{s}\right)=\prod_{p \mid m}\left(1-p^{s}\right) \\
& =(-1)^{\omega(m)} \prod_{p \mid m}\left(p^{s}-1\right)=(-1)^{\omega(m)} \kappa(m)^{s} \prod_{p \mid m}\left(1-\frac{1}{p^{s}}\right),
\end{aligned}
$$

where $\omega(m)$ counts the number of distinct prime factors of m, and $\kappa(m)$ denotes the product of distinct prime factors of m. Thus,

$$
\begin{equation*}
\Delta_{s}^{-}(n)=(-1)^{\sum_{m=1}^{n} \omega(m)} n!^{-s}\left(\prod_{m=1}^{n} \kappa(m)\right)^{s} \prod_{m=1}^{n} \prod_{p \mid m}\left(1-\frac{1}{p^{s}}\right) . \tag{8}
\end{equation*}
$$

This relation implies that the sign of $\Delta_{s}^{-}(n)$ depends on the value of $\sum_{m=1}^{n} \omega(m)$, which is independent of s. Moreover, the sign of $\Delta_{s}^{-}(n)$ is same as the sign of $(-1)^{\eta_{n}}$, where

$$
\eta_{n}=\sum_{\substack{1 \leqslant m \leqslant n \\ \omega(m) \text { is odd }}} 1 .
$$

denoting the number of integers $m \in[1, n]$ which have odd number of distinct prime divisors. Furthermore, we conclude from (8) that

$$
\log \left|\Delta_{s}^{-}(n)\right|=-s \log n!+s \sum_{m=1}^{n} \log \kappa(m)+\sum_{m=1}^{n} \sum_{p \mid m} \log \left(1-\frac{1}{p^{s}}\right) .
$$

To approximate $\sum_{m=1}^{n} \log \kappa(m)$ we recall the notion of the index of composition of n, which is defined by

$$
\lambda(n)=\frac{\log n}{\log \kappa(n)},
$$

for each integer $n \geqslant 2$. Note that $\lambda(n)$ "somehow" measures how much the integer $n \geqslant 2$ is composite! For n square-free it takes the value $\lambda(n)=1$, and for integers n having square factors in heart, it takes the value $\lambda(n)>1$. De Koninck and Kátai [1] proved that given any positive integer r, there exist computable constants d_{1}, \ldots, d_{r} such that

$$
\begin{equation*}
v(x):=\sum_{k \leqslant x} \frac{1}{\lambda(k)}=x+\sum_{j=1}^{r} d_{j} \frac{x}{\log ^{j} x}+O\left(\frac{x}{\log ^{r+1} x}\right) . \tag{9}
\end{equation*}
$$

By using Abel summation we get

$$
\sum_{k=1}^{n} \log \kappa(k)=\sum_{k=2}^{n} \frac{1}{\lambda(k)} \log k=v(n) \log n-v\left(2^{-}\right) \log 2-\int_{2}^{n} \frac{v(t)}{t} \mathrm{~d} t
$$

To deal with the last integral, we study the functions $L_{j}(t)$ defined for each integer $j \geqslant 1$ by the following anti-derivative

$$
\mathrm{L}_{j}(t):=\int \frac{\mathrm{d} t}{\log ^{j} t}
$$

Note that $\mathrm{L}_{1}(t)$ is the logarithmic integral function, which admits the following expansion

$$
\begin{equation*}
\mathrm{L}_{1}(t)=\operatorname{li}(t)=\sum_{i=1}^{r}(i-1)!\frac{t}{\log ^{i} t}+O\left(\frac{t}{\log ^{r+1} t}\right) \tag{10}
\end{equation*}
$$

Integrating by parts gives

$$
\mathrm{L}_{j-1}(t)=\int\left(\frac{1}{\log ^{j-1} t}\right)(\mathrm{d} t)=\frac{t}{\log ^{j-1} t}+(j-1) \int \frac{\mathrm{d} t}{\log ^{j} t}
$$

Hence, for $j \geqslant 2$ the functions $\mathrm{L}_{j}(t)$ satisfy the recurrence

$$
\mathrm{L}_{j}(t)=\frac{1}{j-1} \mathrm{~L}_{j-1}(t)-\frac{t}{(j-1) \log ^{j-1} t}
$$

By repeated using this recurrence we deduce that

$$
(j-1)!\mathrm{L}_{j}(t)=\operatorname{li}(t)-\sum_{i=1}^{j-1}(i-1)!\frac{t}{\log ^{i} t}
$$

Hence, by using the expansion (10), for $1 \leqslant j \leqslant r$ we obtain

$$
\begin{equation*}
\mathrm{L}_{j}(t)=\sum_{i=j}^{r} \frac{(i-1)!}{(j-1)!} \frac{t}{\log ^{i} t}+O\left(\frac{t}{\log ^{r+1} t}\right) \tag{11}
\end{equation*}
$$

We deduce from the expansion (9) that

$$
\begin{aligned}
\int_{2}^{n} \frac{v(t)}{t} \mathrm{~d} t & =\int_{2}^{n}\left(1+\sum_{j=1}^{r} d_{j} \frac{1}{\log ^{j} t}+O\left(\frac{1}{\log ^{r+1} t}\right)\right) \mathrm{d} t \\
& =n+\sum_{j=1}^{r} d_{j} \mathrm{~L}_{j}(n)-\left(2+\sum_{j=1}^{r} d_{j} \mathrm{~L}_{j}(2)\right)+O\left(\frac{n}{\log ^{r+1} n}\right)
\end{aligned}
$$

With r replaced by $r+1$ in (9), we obtain

$$
v(n) \log n=n \log n+d_{1} n+\sum_{j=1}^{r} d_{j+1} \frac{n}{\log ^{j} n}+O\left(\frac{n}{\log ^{r+1} n}\right)
$$

Combining the above expansions, we obtain

$$
\sum_{k=1}^{n} \log \kappa(k)=n \log n+\left(d_{1}-1\right) n+\sum_{j=1}^{r}\left(d_{j+1} \frac{n}{\log ^{j} n}-d_{j} \mathrm{~L}_{j}(n)\right)-C_{r}+O\left(\frac{n}{\log ^{r+1} n}\right)
$$

where

$$
C_{r}=2+v\left(2^{-}\right) \log 2+\sum_{j=1}^{r} d_{j} \mathrm{~L}_{j}(2)
$$

is a constant depending only on r. Thus, $C_{r}=O_{r}(1)$. Moreover, we deduce from the expansion (11) that

$$
\sum_{j=1}^{r}\left(d_{j+1} \frac{n}{\log ^{j} n}-d_{j} \mathrm{~L}_{j}(n)\right)=\sum_{j=1}^{r}\left(d_{j+1} \frac{n}{\log ^{j} n}-\sum_{i=j}^{r} d_{j} \frac{(i-1)!}{(j-1)!} \frac{n}{\log ^{i} n}\right)+O\left(\frac{n}{\log ^{r+1} n}\right)
$$

Note that

$$
\sum_{j=1}^{r}\left(d_{j+1} \frac{n}{\log ^{j} n}-\sum_{i=j}^{r} d_{j} \frac{(i-1)!}{(j-1)!} \frac{n}{\log ^{i} n}\right)=\sum_{j=1}^{r} c_{j} \frac{n}{\log ^{j} n}+O\left(\frac{n}{\log ^{r+1} n}\right)
$$

where c_{j} s are computable constants in terms of $d_{j} \mathrm{~s}$. Thus, letting $c_{0}=d_{1}-1$, we obtain

$$
\sum_{m=1}^{n} \log \kappa(m)=n \log n+c_{0} n+\sum_{j=1}^{r} c_{j} \frac{n}{\log ^{j} n}+O\left(\frac{n}{\log ^{r+1} n}\right)
$$

To compute the precise value of c_{0} we write

$$
\begin{equation*}
\sum_{m=1}^{n} \log \kappa(m)=\sum_{m=1}^{n} \log \prod_{p \mid m} p=\sum_{m=1}^{n} \sum_{p \mid m} \log p=\sum_{p \leqslant n}\left[\frac{n}{p}\right] \log p=n \mathcal{M}(n)-\mathcal{R}(n) \tag{12}
\end{equation*}
$$

where

$$
\mathcal{M}(n):=\sum_{p \leqslant n} \frac{\log p}{p}
$$

and

$$
\mathcal{R}(n):=\sum_{p \leqslant n}\left\{\frac{n}{p}\right\} \log p
$$

It is known due to Landau [5, p. 198] that

$$
\begin{equation*}
\mathcal{M}(n)=\log n+E+O\left(\frac{1}{\log n}\right) \tag{13}
\end{equation*}
$$

where E is the constant given by (4). To estimate $\mathcal{R}(n)$ we let

$$
\mathcal{S}(n)=\sum_{p \leqslant n}\left\{\frac{n}{p}\right\}
$$

and

$$
\mathcal{L}(n)=\sum_{p^{\alpha} \leqslant n}\left\{\frac{n}{p^{\alpha}}\right\}
$$

It is known due to Lee [6] that

$$
\mathcal{L}(n)=(1-\gamma) \frac{n}{\log n}+O\left(\frac{n}{\log ^{2} n}\right)
$$

We observe that although the summation $\mathcal{L}(n)$ has the summation $\mathcal{S}(n)$ in heart, but their difference is not too large in comparison the true size of $\mathcal{L}(n)$. More precisely,

$$
\begin{aligned}
\mathcal{L}(n)-\mathcal{S}(n)=\sum_{\substack{p^{\alpha} \leqslant n \\
\alpha \geqslant 2}}\left\{\frac{n}{p^{\alpha}}\right\} & <\sum_{\substack{p^{\alpha} \leqslant n \\
\alpha \geqslant 2}} 1=\sum_{\substack{p \leqslant n^{\frac{1}{\alpha}} \\
\alpha \geqslant 2}} 1=\sum_{2 \leqslant \alpha \leqslant \frac{\log n}{\log 2}} \pi\left(n^{\frac{1}{\alpha}}\right) \\
& \ll \sum_{2 \leqslant \alpha \leqslant \frac{\log n}{\log 2}} \frac{n^{\frac{1}{\alpha}}}{\log n^{\frac{1}{\alpha}}} \leqslant \frac{n^{\frac{1}{2}}}{\log n} \sum_{2 \leqslant \alpha \leqslant \frac{\log n}{\log 2}} \alpha \ll \sqrt{n} \log n,
\end{aligned}
$$

where $\pi(t)$ denotes the number of primes p not exceeding t, and we use the simple estimate $\pi(t) \ll \frac{t}{\log t}$ in the above argument. Hence,

$$
\begin{equation*}
\mathcal{S}(n)=(1-\gamma) \frac{n}{\log n}+O\left(\frac{n}{\log ^{2} n}\right) \tag{14}
\end{equation*}
$$

Let $\varpi(k)$ to be 1 when k is prime and 0 otherwise. By using Abel summation we get

$$
\mathcal{R}(n)=\sum_{k=2}^{n}\left\{\frac{n}{k}\right\} \varpi(k) \log k=\mathcal{S}(n) \log n-\mathcal{S}\left(2^{-}\right) \log 2-\int_{2}^{n} \frac{\mathcal{F}_{n}(t)}{t} \mathrm{~d} t
$$

where

$$
\mathcal{F}_{n}(t)=\sum_{p \leqslant t}\left\{\frac{n}{p}\right\}
$$

Since $0 \leqslant \mathcal{F}_{n}(t) \leqslant \pi(t) \ll \frac{t}{\log t}$, by using the approximation (14) we deduce that

$$
\mathcal{R}(n)=(1-\gamma) n+O\left(\frac{n}{\log n}\right)-\int_{2}^{n} O\left(\frac{t}{\log t}\right) \frac{\mathrm{d} t}{t}=(1-\gamma) n+O\left(\frac{n}{\log n}\right)
$$

Thus, by substituting (13) and the last approximation in (12) we obtain the truncated approximation

$$
\sum_{m=1}^{n} \log \kappa(m)=n \log n+(\gamma+E-1) n+O\left(\frac{n}{\log n}\right)
$$

implying that $c_{0}=\gamma+E-1$. Hence, given any positive integer r, there exist computable constants c_{1}, \ldots, c_{r} such that

$$
\sum_{m=1}^{n} \log \kappa(m)=n \log n+(\gamma+E-1) n+\sum_{j=1}^{r} \frac{c_{j} n}{\log ^{j} n}+O\left(\frac{n}{\log ^{r+1} n}\right)
$$

By using this approximation and the relations (6) and (7) we conclude the proof.

References

[1] J. M. De Koninck and I. Kátai, On the mean value of the index of composition of an integer, Monatsh. Math., 145(2005), 131-144.
[2] L. E. Dickson, History of the Theory of Numbers, Vol. I, AMS Chelsea Publishing, 2002.
[3] M. Hassani and M. Esfandiari, On the geometric mean of the values of positive multiplicative arithmetical functions, Commun. Math., to appear.
[4] P. Haukkanen, J. Wang and J. Sillanpää, On Smith's determinant, Linear Algebra Appl., 258(1997), 251-269.
[5] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, AMS Chelsea Publishing, 1974.
[6] J. Lee, The second central moment of additive functions, Proc. Amer. Math. Soc., 114(1992), 887-895.
[7] F. W. J. Olver, Asymptotics and special functions, Academic Press, 1974.
[8] H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. Lond. Math. Soc., 7(1875/76), 208-212.

[^0]: *Mathematics Subject Classifications: 15A15, 11A25.
 ${ }^{\dagger}$ Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran

