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Abstract

In this paper we study the generalized Smith’s determinant ∆s(n) := det [(gcd(i, j))s]16i,j6n, where
s 6= 0 is fixed real. For large values of n we obtain asymptotic expansions of log |∆s(n)|, and for s > 1 we
obtain Stirling type approximations for ∆s(n). Furthermore, we prove that for s < 0 the sign of ∆s(n) is
independent of s, and is same as the sign of (−1)ηn , where ηn denotes the number of integers m ∈ [1, n]
having odd number of distinct prime divisors.

1 Introduction

In 1875 Smith [8] considered the determinant of the matrix [aij ]16i,j6n with elements given by aij = gcd(i, j),
greatest common divisor of i and j. He proved that

det [gcd(i, j)]16i,j6n =

n∏
m=1

ϕ(m),

where ϕ(m) denotes the Euler function of m, counting the number of positive integers not exceeding m and
coprime to m. The above determinant is known as Smith’s determinant. Since Smith’s work this field has
been studied extensively. For a recent account of the theory of gcd-matrices we refer the reader to [4] and
the references given there. Also, see [2, p. 123] for some classical generalizations of Smith’s determinant,
including the assertion that if f is an arithmetic function then

det [f(gcd(i, j))]16i,j6n =
n∏

m=1

∑
d|m

µ(d) f
(m
d

)
, (1)

where µ(d) denotes the Möbius function of d, which is 1 if d = 1, is (−1)k if d is equal to the product of k
distinct primes, and is 0 otherwise. In this paper we are motivated by the asymptotic growth of generalized
Smith’s determinant (1) for f(n) = ns. The exponent s is an arbitrary non-zero real. For the case s > 0 we
prove the following result.

Theorem 1 Let s > 0 be fixed real and

∆+
s (n) = det [(gcd(i, j))s]16i,j6n . (2)

Define the absolute constant αs by

αs =
∑
p

1

p
log

(
1− 1

ps

)
, (3)
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where p runs over all primes. Then, as n→∞,

log ∆+
s (n) =


sn log n+ (αs − s)n+O(n1−s) (0 < s < 1),

n log n+ (α1 − 1)n+ 1
2 log n+O(log log n) (s = 1),

sn log n+ (αs − s)n+ s
2 log n+ s log

√
2π +O

(
1

ns−1

)
(1 < s 6 2).

Also, for each s > 2 the following approximation holds

log ∆+
s (n) = sn log n+ (αs − s)n+

s

2
log n+ s log

√
2π +

∑
16j6 s

2

sB2j
(2j)(2j − 1)n2j−1

+O
( 1

ns−1

)
,

where Bi denotes the i-th Bernoulli number.

Stirling approximation for n! asserts that n! =
(
n
e

)n√
2πn (1 +O( 1n )). By taking exponent we obtain the

following Stirling type approximation for ∆+
s (n) for each s > 1.

Corollary 1 Let ∆+
s (n) be the determinant defined by (2). Then, as n→∞,

∆+
s (n) =


(
n
e

)sn
βns
√

(2πn)s
(
1 +O

(
1

ns−1

))
(1 < s < 2),(

n
e

)sn
βns
√

(2πn)s
(
1 +O

(
1
n

))
(s > 2),

where βs is an absolute constant defined by

βs =
∏
p

(
1− 1

ps

) 1
p

,

and p runs over all primes.

A more sophisticated argument, similar to that used in our paper [3], enables us to consider the case of
negative values of exponent.

Theorem 2 Let s > 0 be fixed real and

∆−s (n) = det
[
(gcd(i, j))−s

]
16i,j6n .

Then, for any positive integer r there exist computable constants c1, . . . , cr such that as n→∞,

log
∣∣∆−s (n)

∣∣ = (αs + γ + E)n+ s

r∑
j=1

cjn

logj n
+O

(
n

logr+1 n

)
,

where αs is defined by (3), γ is Euler’s constant, and E is the constant in Mertens’approximation given by

E = lim
x→∞

∑
p6x

log p

p
− log x. (4)

Furthermore, the sign of ∆−s (n) is independent of s, and is same as the sign of (−1)
ηn , where ηn denotes

the number of integers m ∈ [1, n] having odd number of distinct prime divisors.



M. Hassani 189

2 Proof of Theorem 1

Proof. For f(n) = ns, we conclude from (1) that

∆+
s (n) =

n∏
m=1

ms gs(m) = n!s
n∏

m=1

gs(m),

where gs(m) =
∑
d|m µ(d)d−s. Since gs is multiplicative, we get

gs(m) =
∏
pa‖m

gs(p
a) =

∏
pa‖m

(
1− 1

ps

)
=
∏
p|m

(
1− 1

ps

)
.

Thus,

∆+
s (n) = n!s

n∏
m=1

∏
p|m

(
1− 1

ps

)
,

and

log ∆+
s (n) = s log n! +

n∑
m=1

∑
p|m

log

(
1− 1

ps

)
. (5)

Stirling’s approximation [7, p. 294] for log n! asserts that given any positive integer r, as n→∞,

log n! = n log n− n+
1

2
log n+ log

√
2π +

r∑
j=1

B2j
(2j)(2j − 1)n2j−1

+O
( 1

n2r+1

)
. (6)

To approximate the double sum in (5), we change the order of summations. Thus,

n∑
m=1

∑
p|m

log

(
1− 1

ps

)
=
∑
p6n

log

(
1− 1

ps

) ∑
m6n
p|m

1 =
∑
p6n

log

(
1− 1

ps

)[
n

p

]

=
∑
p6n

log

(
1− 1

ps

)(
n

p
+O(1)

)

= n
∑
p6n

1

p
log

(
1− 1

ps

)
+O

∑
p6n

log

(
1− 1

pk

)
= αs n+ n

∑
p>n

1

p
log

(
1− 1

ps

)−1
+O

∑
p6n

log

(
1− 1

ps

) .

Since − log(1− t) ∼ t as t→ 0, we get

∑
p>n

1

p
log

(
1− 1

ps

)−1
�
∑
p>n

1

ps+1
�
∫ ∞
n

dx

xs+1
� 1

ns
.

Also, by using the approximation
∑
p6n

1
p � log log n we obtain

∑
p6n

log

(
1− 1

ps

)
�
∑
p6n

1

ps
�


∫ n
2
dx
xs �

1
ns−1 (s 6= 1),

log log n (s = 1).
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Hence,
n∑

m=1

∑
p|m

log

(
1− 1

ps

)
= αs n+O

({
n1−s (s 6= 1)
log log n (s = 1)

)
. (7)

We let r = [ s2 ] in (6). Note that 2[ s2 ] + 1 > s − 1. Therefore, by considering (5) and (7) we conclude the
proof.

3 Proof of Theorem 2

Proof. Let s > 0. We conclude from (1) that

∆−s (n) =

n∏
m=1

m−s hs(m) = n!−s
n∏

m=1

hs(m),

where hs(m) =
∑
d|m µ(d)ds. Since hs is multiplicative, we get

hs(m) =
∏
pa‖m

hs(p
a) =

∏
pa‖m

(1− ps) =
∏
p|m

(1− ps)

= (−1)
ω(m)

∏
p|m

(ps − 1) = (−1)
ω(m)

κ(m)s
∏
p|m

(
1− 1

ps

)
,

where ω(m) counts the number of distinct prime factors of m, and κ(m) denotes the product of distinct
prime factors of m. Thus,

∆−s (n) = (−1)
∑n
m=1 ω(m) n!−s

(
n∏

m=1

κ(m)

)s n∏
m=1

∏
p|m

(
1− 1

ps

)
. (8)

This relation implies that the sign of ∆−s (n) depends on the value of
∑n
m=1 ω(m), which is independent of

s. Moreover, the sign of ∆−s (n) is same as the sign of (−1)
ηn , where

ηn =
∑

16m6n
ω(m) is odd

1.

denoting the number of integers m ∈ [1, n] which have odd number of distinct prime divisors. Furthermore,
we conclude from (8) that

log
∣∣∆−s (n)

∣∣ = −s log n! + s

n∑
m=1

log κ(m) +

n∑
m=1

∑
p|m

log

(
1− 1

ps

)
.

To approximate
∑n
m=1 log κ(m) we recall the notion of the index of composition of n, which is defined by

λ(n) =
log n

log κ(n)
,

for each integer n > 2. Note that λ(n) “somehow”measures how much the integer n > 2 is composite!
For n square-free it takes the value λ(n) = 1, and for integers n having square factors in heart, it takes the
value λ(n) > 1. De Koninck and Kátai [1] proved that given any positive integer r, there exist computable
constants d1, . . . , dr such that

υ(x) :=
∑
k6x

1

λ(k)
= x+

r∑
j=1

dj
x

logj x
+O

( x

logr+1 x

)
. (9)
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By using Abel summation we get

n∑
k=1

log κ(k) =

n∑
k=2

1

λ(k)
log k = υ(n) log n− υ(2−) log 2−

∫ n

2

υ(t)

t
dt.

To deal with the last integral, we study the functions Lj(t) defined for each integer j > 1 by the following
anti-derivative

Lj(t) :=

∫
dt

logj t
,

Note that L1(t) is the logarithmic integral function, which admits the following expansion

L1(t) = li(t) =

r∑
i=1

(i− 1)!
t

logi t
+O

( t

logr+1 t

)
. (10)

Integrating by parts gives

Lj−1(t) =

∫ ( 1

logj−1 t

)
(dt) =

t

logj−1 t
+ (j − 1)

∫
dt

logj t
.

Hence, for j > 2 the functions Lj(t) satisfy the recurrence

Lj(t) =
1

j − 1
Lj−1(t)−

t

(j − 1) logj−1 t
.

By repeated using this recurrence we deduce that

(j − 1)! Lj(t) = li(t)−
j−1∑
i=1

(i− 1)!
t

logi t
.

Hence, by using the expansion (10), for 1 6 j 6 r we obtain

Lj(t) =

r∑
i=j

(i− 1)!

(j − 1)!

t

logi t
+O

( t

logr+1 t

)
. (11)

We deduce from the expansion (9) that

∫ n

2

υ(t)

t
dt =

∫ n

2

1 +

r∑
j=1

dj
1

logj t
+O

( 1

logr+1 t

) dt

= n+

r∑
j=1

djLj(n)−

2 +

r∑
j=1

djLj(2)

+O
( n

logr+1 n

)
.

With r replaced by r + 1 in (9), we obtain

υ(n) log n = n log n+ d1n+

r∑
j=1

dj+1
n

logj n
+O

( n

logr+1 n

)
.

Combining the above expansions, we obtain

n∑
k=1

log κ(k) = n log n+ (d1 − 1)n+

r∑
j=1

(
dj+1

n

logj n
− djLj(n)

)
− Cr +O

( n

logr+1 n

)
,
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where

Cr = 2 + υ(2−) log 2 +

r∑
j=1

djLj(2)

is a constant depending only on r. Thus, Cr = Or(1). Moreover, we deduce from the expansion (11) that

r∑
j=1

(
dj+1

n

logj n
− djLj(n)

)
=

r∑
j=1

dj+1 n

logj n
−

r∑
i=j

dj
(i− 1)!

(j − 1)!

n

logi n

+O
( n

logr+1 n

)
.

Note that
r∑
j=1

dj+1 n

logj n
−

r∑
i=j

dj
(i− 1)!

(j − 1)!

n

logi n

 =

r∑
j=1

cj
n

logj n
+O

( n

logr+1 n

)
,

where cjs are computable constants in terms of djs. Thus, letting c0 = d1 − 1, we obtain
n∑

m=1

log κ(m) = n log n+ c0 n+

r∑
j=1

cj
n

logj n
+O

( n

logr+1 n

)
.

To compute the precise value of c0 we write
n∑

m=1

log κ(m) =

n∑
m=1

log
∏
p|m

p =

n∑
m=1

∑
p|m

log p =
∑
p6n

[
n

p

]
log p = nM(n)−R(n), (12)

where

M(n) :=
∑
p6n

log p

p
,

and

R(n) :=
∑
p6n

{
n

p

}
log p.

It is known due to Landau [5, p. 198] that

M(n) = log n+ E +O
( 1

log n

)
, (13)

where E is the constant given by (4). To estimate R(n) we let

S(n) =
∑
p6n

{
n

p

}
,

and

L(n) =
∑
pα6n

{
n

pα

}
.

It is known due to Lee [6] that

L(n) = (1− γ)
n

log n
+O

( n

log2 n

)
.

We observe that although the summation L(n) has the summation S(n) in heart, but their difference is not
too large in comparison the true size of L(n). More precisely,

L(n)− S(n) =
∑
pα6n
α>2

{
n

pα

}
<
∑
pα6n
α>2

1 =
∑
p6n

1
α

α>2

1 =
∑

26α6 logn
log 2

π(n
1
α )

�
∑

26α6 logn
log 2

n
1
α

log n
1
α

6 n
1
2

log n

∑
26α6 logn

log 2

α�
√
n log n,
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where π(t) denotes the number of primes p not exceeding t, and we use the simple estimate π(t) � t
log t in

the above argument. Hence,

S(n) = (1− γ)
n

log n
+O

( n

log2 n

)
. (14)

Let $(k) to be 1 when k is prime and 0 otherwise. By using Abel summation we get

R(n) =

n∑
k=2

{n
k

}
$(k) log k = S(n) log n− S(2−) log 2−

∫ n

2

Fn(t)

t
dt,

where

Fn(t) =
∑
p6t

{
n

p

}
.

Since 0 6 Fn(t) 6 π(t)� t
log t , by using the approximation (14) we deduce that

R(n) = (1− γ)n+O
( n

log n

)
−
∫ n

2

O
( t

log t

)dt

t
= (1− γ)n+O

( n

log n

)
.

Thus, by substituting (13) and the last approximation in (12) we obtain the truncated approximation

n∑
m=1

log κ(m) = n log n+ (γ + E − 1)n+O
( n

log n

)
,

implying that c0 = γ+E−1. Hence, given any positive integer r, there exist computable constants c1, . . . , cr
such that

n∑
m=1

log κ(m) = n log n+ (γ + E − 1)n+

r∑
j=1

cjn

logj n
+O

( n

logr+1 n

)
.

By using this approximation and the relations (6) and (7) we conclude the proof.
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