Applied Mathematics E-Notes, 21(2021), 179-186 © ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/~amen/

A Note On Periodic Solutions Of Matrix Riccati Differential
Equations®

Zahra Goodarzif, Mohammad Reza Mokhtarzadeh?, Mohammad Reza Pournaki?,
Abdolrahman Razani¥

Received 2 April 2020

Abstract

In this note, we show that under certain assumptions the matrix Riccati differential equation X' =
A(t)X + XB(t)X + C(t) with periodic coeflicients admits at least one periodic solution. Also, we give
an illustrative example in order to indicate the validity of the assumptions and the novelty of our result.

1 Introduction

Let us start this note by considering the second order differential equation of the form

Y +pt)y +qt)y = r(t),

where p, ¢ and r are real functions on R. This equation describes a large class of dynamical systems appearing
throughout the field of engineering and applied mathematics. In the homogeneous case, by making the change
of variable z = —y//y, we are led to a first order differential equation of the form

= —p(t)z + 2 +q(t).

This latter equation is a special case of a more general one, so-called scalar Riccati differential equation,
namely

2’ = a(t)z + b(t)2® + c(t),

where a, b and ¢ are real functions on R. A generalization of the scalar Riccati differential equation to the
matrix case gives us matriz Riccati differential equation, namely

X' =At)X + XBt)X +C(t), (1)

where A, B and C are (n x n)-real-matrix valued functions on R.

Matrix Riccati differential equations are central objects of present-day control theory. In fact, in the
theory of control systems, the qualitative control problem has received considerable research interests. This
problem is regarded as an extension of the classical result of Kalman et al. [12] on controllability and
stability of linear systems which is relevant to matrix Riccati differential equations (see [5, 17, 4, 3, 7, 8]).
These equations also play predominant roles in other control theory problems such as dynamic games, linear
systems with Markovian jumps, and stochastic control. The study of such differential equations, which also
appear in a number of other areas such as biomathematics and multidimensional transport processes, is an
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180 Periodic Solutions of Matrix Riccati Differential Equations

interesting area of current research (see, for example, [11, 9]). There exists a rather extensive literature on
matrix Riccati differential equations, mainly developed within the automatic control literature. We refer the
reader to [3] for an extensive survey as well as to [5, 17, 4, 10] as fundamental papers on this area.

The analysis of periodic systems has long been a topic of interest. In this direction, an important question,
which has been studied extensively by a number of authors (see, for example, [1, 13, 15, 19, 18, 14]), is whether
scalar or matrix Riccati differential equations can support periodic solutions. For example, in theoretical
aspects, knowledge of the periodic solutions is important for understanding the phase portrait of scalar or
matrix Riccati differential equations and, in particular, the qualitative behavior of solutions (see, for example,
[17]). On the other hand, on the applied side, in the problem of quadratic periodic optimization, arising for
instance in the design of solar heating systems where the ambient temperature represents a periodic input,
there occurs the need to compute the periodic solutions, if any, of a scalar or matrix Riccati differential
equation with periodic coefficients. Another application is found in Kalman filtering of periodic systems
such as orbiting satellites, seasonal phenomena like river flows, and econometric models, etc. We refer the
reader to [2] for an overview on the structural properties of periodic systems, to [3] for the properties of
periodic solutions to periodic scalar or matrix Riccati differential equations, and to [6] for the study of
the periodic Lyapunov differential equations. Also, the book by Reid [16] covers many areas in scalar or
matrix Riccati differential equations and is concerned with applications of these differential equations such
as transmission line phenomena, theory of random processes, variational theory and optimal control theory,
diffusion problems, and invariant imbedding.

In this note, we show that under certain assumptions the matrix Riccati differential equation (1) with
periodic coefficients admits at least one periodic solution. Also, we give an illustrative example in order to
indicate the validity of the assumptions and the novelty of our result.

2 Statement of the Main Result

In this section, we state the main result of this note, that is, Theorem 1, and we then treat an illustrative
example in order to indicate the validity of the assumptions and the novelty of the result. We prove the
main result in the next section.

In the sequel, w is a positive real number, M, (R) is the linear space of n X n matrices with real entries
equipped with the operator norm || ||, and V = C(R, M,,(R)) is the linear space of continuous functions from
R to M, (R).

Theorem 1 Let A, B and C be w-periodic elements of V such that I,, — M is nonsingular, where I,, is the
n x n identity matriz and M = exp([,” A(7)dr). Set My = (I, — M)~" and My = MM, and consider

M, exp (fstA(T)dT) , 0<s<t<uw,
G(t,s) =
My exp (f;A(T)dT) , 0<t<s<uw,
p= sup [G(ts)],
0<t,s<w
and

V= sup
0<t<w

/O "Gt 5)C(s)ds

Suppose for all t,s € [0,w], fot A(r)dr commutes with both of [ A(T)dr and A(t), and A(t) commutes with
M. If

@ 1
| 1Bl <
0

nz

then the matriz Riccati differential equation (1) admits at least one w-periodic solution.
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We now treat the following illustrative example, which shows the validity of the assumptions in Theorem
1. This example is generated by trial and error process using computer codes in Mathematica 5.2 with
symbolic operations. Therefore, it seems to be quite far from a real practical problem. However, it shows
the novelty of our result, since the previous results in the literature, in our knowledge, are inapplicable for
proving the existence of a periodic solution of it.

Example 1 Let A, B and C be 2n-periodic elements of V = C(R,Ma(R)), which are defined as follows:

112 1 1| cost —sint
A(t)g{l 2}’B(t)8[sint cost } and

1 —18cost — cos3t — 81sint 8lcost+ 18sint + sin 3t

63cost — 18sint —sin3t —18cost — cos 3t — 63sint

We have p =~ 1.83803 and v ~ 0.115645, and so

2m 1
/ |B(7)||dT ~ 0.785398 < 1.176150 ~ —.
0 dpv

Therefore, Theorem 1 implies that the matriz Riccati differential equation (1) admits at least one 2m-periodic
solution. This 2m-periodic solution may be given by

1 { cost —sint ]

X(t):§ sint  cost

3 Proof of the Main Result

In this section, we prove Theorem 1 which will be done by proving a series of lemmas and recalling some
definitions and known results. Let us start with the following lemma.

Lemma 1 For allt € [0,w], the matriz A(t) commutes with both of My and M.
Proof. By the assumption, for all ¢ € [0,w], the matrix A(¢) commutes with M, and so it commutes with
I, — M. Therefore, A(t) commutes with (I, — M)~ = M;. By using this fact, for all ¢t € [0,w], we may

write

A(t) My = A(t)(MM;) = (MM;)A(t) = MyA(t).

This shows that A(t) commutes with Ms as well. m

The following lemma shows that the function G in the statement of Theorem 1 is, in fact, the Green’s
function of the matrix Riccati differential equation (1).

Lemma 2 Let X € V be a solution of the integral equation

X(t) = / G(t,5)(X(5)B(8)X (5) + O(s) ) ds.
0
Then X is a solution of the matriz Riccati differential equation (1).

Proof. By the assumption, for all ¢, s € [0,w], fg A(7)dT commutes with fos A(7)dr, and so

(f tAde) (- [ aear) = (= [Camar) ([ tAde) .
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This implies that for all ¢, s € [0, w],

exp ( / tA(T)dT> ~ e ( /0 Ay — /0 SA(T)dT>
exp < A t A(T)dT) exp <— /0 ) A(T)dT)
~ e </Ot A(T)dT) <exp (/OSA(T)dT»l .

Therefore, for all ¢ € [0,w], we may write

/ Gt ) §)+ C(s)) ds
= /Gts s)+ C(s)) ds+/Gts( (s)B(s)X(s)+C(s))ds
- f p/ A(r)dr) (X(5)B()X () + C(5)) ds

_MQ/ exp(/ A(r)dr) (X (s)B(s)X (s) + C(s))ds
= Mlexp(/0 A(T)dT)/O (exp(/0 A(T)d’l')) (X(s)B(s)X(s)+C(s))ds

—1

— My exp( /O " A(r)dn) /w t (exp( /0 ) A(T)d7)> (X(5)B(s)X (s) + C(s)) ds.

Also, for all t € | fo T)dT commutes with A(t), and so

(eXp ( /0 t A(T)dr>)/ — A(t) exp ( /0 t A(T)d7'> .

Therefore, for all ¢ € [0,w], we may write

X't = MA@ exp/ A(F)dr) t(exp /SA d7>1 (X (s)B(s)X () + C(s)) ds
+My (X()B()X(t) + C(t))
My A(t) exp / A(r)dr) : <e p / > (X(s)B(s)X (s) + C(s)) ds
=Mz (X(0)B(t)X (1) + C(1)).
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Now, Lemma 1 implies that for all ¢ € [0, w],

X'(t) = /Mlexp/ A(r)dr) (X (s)B(s)X () + C(s)) ds

+A(t / My exp(/ A(r)dr) (X (s)B(s)X(s) + C(s))ds
+(My — M) (X (1) B() X (t) + C(t))

_ / G(t, 5) (X(5)B(s)X () + C(s)) ds
) /t G(t,) (X(s)B(s)X (s) + C(s)) ds + X () BA)X(£) + C(¢)

= A@t) /0 Gt 5) (X(5)B(s)X (s) + C(s)) ds + X()BOX() + C (1)
= AMX(t)+XH)BOX () +C1),

which shows that X is a solution of the matrix Riccati differential equation (1), as required. =

Let us recall the definition of a Banach space. A linear space V over R together with a norm is called
a normed space. Every normed space induces a metric and so has an associated topology. All the standard
topological notion such as open sets, closed sets, bounded sets, convergence, etc. may be applied to V. Also,
in a normed space V', a subset Q of V is called convex if az + (1 — )y € Q for all z,y € Q and for all @ with
0 < a < 1. A normed space V is called a Banach space if it is complete, that is, if every Cauchy sequence
in V is convergent.

We now continue the proof of Theorem 1. Suppose that

V, ={X € V| X is w-periodic}

and for X € V,, define
[Xllw= sup [|X(®),
0<t<w

where || X (t)| is the operator norm of the matrix X (¢). It is easy to see that V,, together with the norm
I llo is a Banach space. Suppose that the w-periodic real function &y € V, is defined on [0,w] by

- / " Gt $)C(s)ds
0

F,={®eV,||®— |, <v}.

and consider

It is easy to see that F, is a closed, bounded and convex subset of V.
Now, define the operator R : V,, — V,, by sending ® to R(®), where R(®) is a w-periodic real function
which is defined on [0,w] by

t) = / G(t,s) (P(s)B(s)®(s) + C(s)) ds.
0
Lemma 3 The operator R maps F, into F,.

Proof. Let ® € F,, be given. Therefore, ||®|, — || Pollw < [|® — ol < v, and so the assumption implies
that

@[l < v+ |ollw =v+ sup
0<t<w

=v+v=2v.

/‘*’ G(t,s)C(s)ds
0
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Hence, for all ¢ € [0,w], we have ||®(¢)|| < 2v. Thus, for all ¢ € [0,w], by using the submultiplicative property
of the operator norm, we may write

IR@)(t) — Do) = ]

/0 " Gt $)B(5) B(3)D(s)ds

< / |G(t, 5)®(s) B(s)®(s)] ds
< / “ a9l 12) 2B ds
<

u)? | " 1B(s) s

1
< 4w | —
= <4W)

- V.

Therefore, ||R(®) — Poll, < v, and so R(P) € F,,. This shows that R maps F,, into F,,, as required. ®

In the sequel, we need the following version of Ascoli-Arzela theorem. We recall that M, (R) is the linear
space of n x n matrices with real entries equipped with the operator norm || ||. Also, a given sequence
(Pr(t))ren of functions from [a, b] to M, (R) is called equicontinuous if for every e > 0, there exists a § > 0
such that for all £ € N and for all ¢1,t5 € [a,b], |[t1 — t2| < ¢ implies that ||Pg(t1) — Pi(t2)| < €.

Theorem 2 (Ascoli-Arzela) Let (Py(t))ren be a sequence of functions from [a,b] to M, (R) which is
uniformly bounded and equicontinuous. Then (P (t))ren has a uniformly convergent subsequence.

The above version of Ascoli-Arzela theorem can be proved straightforwardly using standard version of the
theorem. We give here a sketch of proof for the convenience of the reader. If the conditions are satisfied with
the operator norm, then they are satisfied for every entry. Then apply the standard version of the theorem
on the first entry, extract a uniformly convergent subsequence. Then repeat this process on the second entry
but with the indices of the first convergent subsequence and move a further subsequence, etc. Therefore, we
will have to move from one subsequence to further subsequences n? times or so. In this position, in fact, we
have a subsequence of the original sequence. This subsequence will converge uniformly for every entry and
one may prove that it converges uniformly in the operator norm.

Let us also recall that for a given Banach space V', a continuous operator S : V — V is called compact
if it maps every bounded subset of V into a set with compact closure, that is, if every bounded sequence
(Pr)ken on V has a subsequence (®y,);en such that (S(Pg,));en is convergent on V.

We continue the proof of Theorem 1 by proving the following lemma.

Lemma 4 The operator R is compact.

Proof. Let (®g)ren be a bounded sequence on V. In order to show the compactness of R, by the
observation just before the statement of the lemma, it is enough to show that (®y)ren has a subsequence,
say (P, )ien, such that (R(®y,))ien is convergent on V,,. To do this, by the boundedness of (®f)ren, there
exists L > 0 such that for all k¥ € N, ||®x||, < L. Therefore, for all £ € N and for all ¢t € [0,w], we have
|25 (¢)|| < L. Note that, by the proof of Lemma 2, for all £ € N, the function R(®y) is, in fact, differentiable
and for all t € [0,w], we have

R(®r)'(t) = A(t)Pr(t) + P (t)B(t) @i (t) + C(2).
This implies that for all £ € N and for all ¢ € [0, w],

IR(@%)" (O] < |l L + | Bllw L? + [ Cll,
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and so if for a given € > 0, we consider
§ = ¢/(|AllwL + | BllwL? + [|C]l),
then for all ¥ € N and for all t1,t2 € [0,w], |t1 — t2| < J implies that
IR(®%)(t1) = R(®x)(t2)[| < (JAllw L + | Bllw L? + ICllw) [t — t2] < e.

Thus, (R(®k)(t))ken as a sequence of matrix functions on [0,w] is equicontinuous and is also uniformly
bounded. Now, Theorem 2 implies that there exists a subsequence of (R(®r)(t))ken, say (R(Pg,)(t))ien,
which is uniformly convergent on [0,w]. This means that (R(®g,));en is convergent on V,,, and so R is
compact, as required. m

Finally, the following fixed point theorem which is originally due to Schauder completes the proof of
Theorem 1.

Theorem 3 (Schauder) Let V be a Banach space and § be a closed, bounded and convexr subset of V. If
S maps Q into Q and it is a compact operator, then S has at least one fized point on €.

Now, Lemmas 3 and 4, together with Theorem 3, prove that there exists ® € F,, such that R(®) = ®.
Thus, for all ¢ € [0,w], we have

B(t) = /0 Gt s) (®(5)B()2(s) + C(s)) ds.

Hence, the w-periodic real function ® is a solution of the integral equation

X(t) = /0 Gt s) (X(6)BE)X () +C(s))ds,

and so, by Lemma 2, it is a solution of the matrix Riccati differential equation (1). This completes the proof
of Theorem 1.
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