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Abstract

In this paper, we give an approach for computing a sparse approximate inverse factor for symmetric
positive definite matrices. Each column of the computed factor contains at most two nonzero entries. The
computed inverse factor can be applied as a pre-scaling for symmetric positive definite linear systems.
Numerical results are given to show the effi ciency of the method.

1 Introduction

Consider the system of linear equations of the form

Ax = b, (1)

where the coeffi cient matrix A ∈ Rn×n is large, sparse, and symmetric positive definite (SPD) and x, b ∈ Rn.
Iterative methods which combine preconditioning techniques are among the most effi cient techniques for
solving the system (1). More precisely, iterative methods usually involve a second matrix that transforms
the coeffi cient matrix into one with a more favorable spectrum. The transformation matrix is called a
preconditioner. Let us assume that A has the LTDL factorization A = LTDL, where LT and D are lower
unit-triangular and diagonal matrices, respectively. Since the matrix A is SPD, it is easy to see the diagonal
entries of the matrix D are positive. Letting M = L−1, we see that MTAM = D. The matrix M is called
the inverse factor of A. In this case, we have D− 1

2MTAMD− 1
2 = I, where I is the identity matrix. Now,

let W be a sparse approximation of the matrix MD− 1
2 . In this case, we have WTAW ≈ I, and solving the

system
WTAWy = WT b, x = Wy, (2)

using the conjugate gradient (CG) method is recommended.
Eq. (2) is called split-preconditioned system. Also, there are left- and right-preconditioned systems [1, 9].
There are many ways to compute sparse approximate inverse factors of an SPD matrix. Among them

are the FSAI algorithm proposed by Kolotilina and Yeremin [6, 7], the AIB (approximate inverse factors via
a bordering technique) algorithm proposed by Saad [3, 9] and the SAINV algorithm presented by Benzi et
al. in [2]. In this paper, using a well-known iterative method for computing the solution of a SPD system of
linear equations and the AIB algorithm we propose a method for computing a approximate inverse factor of
an SPD matrix, where each column of the inverse factor contain at most two nonzero entries.
This paper is organized as follows. In Section 2, an algorithm for solving an SPD linear system and the

AIB algorithm are presented. Section 3 is devoted to the proposed method. Numerical experiments are
given in section 3. Concluding remarks are drawn in Section 5.
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2 Solving SPD Systems and the AIB Algorithm

2.1 Solving SPD Linear Systems

In this section, we derive an approach for solving SPD linear systems of equations which is provided by a
projection method. This approach will be useful for later applications. Let L = K = span{ei}, where ei is
the i-th column of the identity matrix. Let also x be an approximate solution of Eq. (1). We look for an
approximate solution xnew to the system (1) by imposing the conditions that xnew belongs to x + K and
that the new residual vector be orthogonal to L, i.e.,

Find xnew ∈ x+K, such that rnew := b−Axnew⊥L.

This framework is known as the Petrov-Galerkin condition. Hence the new approximate solution of the
system (1) takes the form xnew = x+ δ, where δ ∈ K, i.e.,

xnew = x+ αei, (3)

for some α ∈ R . Now, we have
rnew = b−Axnew = r − αAei, (4)

where the vector r denotes the initial residual vector r = b−Ax. Then the Petrov-Galerkin condition rnew⊥L
yields

α =
1

aii
eTi r =

1

aii
ri, (5)

where ri is the i-th entry of r. Therefore, we have

(xnew)i = xi +
1

aii
ri,

(xnew)j = xj , j 6= i.

Theorem 1 ([9]) Assume that i is selected at each projection step to be the index of a component of largest
absolute value in the current residual vector r = b−Ax. Then

‖dnew‖A ≤ (1− 1

nκ2(A)
)1/2‖d‖A, (6)

where dnew = A−1b− xnew, d = A−1b− x, and κ2(A) = ‖A‖2‖A−1‖2 is the spectral condition number of A.
Here, for a vector v ∈ Rn, ‖v‖A =

√
vTAv. Eq. (6) shows that the method converges for any initial guess.

2.2 The AIB Algorithm

The AIB algorithm is among the algorithms for computing the inverse factors of a matrix. Here is a brief
description of the algorithm in the case that the matrix is SPD. In the AIB algorithm, the sequence of
matrices

Ak+1 =

(
Ak vk
vTk αk+1

)
, k = 1, . . . , n− 1,

where Ak is the kth leading principle sub-matrix of A, vk = (a1,k+1, . . . , ak,k+1)
T and αk+1 = ak+1,k+1. If

the inverse factor Uk is available for Ak, i.e., UTk AkUk = Dk, then the inverse factor Uk+1 for Ak+1 will be
obtained by writing (

UTk 0
−zTk 1

)(
Ak vk
vTk αk+1

)(
Uk −zk
0 1

)
=

(
Dk 0
0 δk+1

)
,

in which
Akzk = vk, (7)
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δk+1 = αk+1 − zTk vk. (8)

Eq. (8) can be exploited if the system (7) is solved exactly. Otherwise, we should use

δk+1 = αk+1 − vTk zk − zTk (vk −Akzk) = αk+1 − zTk (vk + rk), (9)

instead of Eq. (8) where rk = vk − Akzk. Starting from k = 1, this procedure suggests an algorithm
for computing the inverse factor of A. If a sparse approximate solution of Eq. (7) is computed, then an
approximate factorization of A−1 is obtained. This scheme can be summarized as follows.

Algorithm 2 AIB algorithm

1. Set A1 = [a11], U1 = [1] and δ1 = a11.

2. For k = 1, . . . , n− 1 Do: (in parallel).

3. Compute a sparse approximate solution to Akzk = vk and return the residual rk = vk −Akzk

4. Compute δk+1 = αk+1 − zTk (vk + rk).

5. Form Uk+1 and Dk+1

6. EndDo

7. U := Un and D := Dn.

This algorithm returns U and D such that UTAU ≈ D. For SPD matrices, it can be easily seen that
δk+1 is always positive independently of the accuracy with which the system (7) is solved [9]. Hence the AIB
algorithm is well-defined for SPD matrices.

3 A Sparse Approximate Inverse

We consider the projection method studied in Subsection 2.1 and implement it for computing an approximate
solution of the system Akzk = vk in step 4 of Algorithm 2. First, let zk = 0 be an approximate solution of
Akzk = vk. In this case {

δ1 = a11,
δk+1 = αk+1 = ak+1,k+1, k = 1, . . . , n− 1.

Hence, U = I and D = diag(A). Note that aii > 0, since A is SPD. Therefore we have

D−1/2AD−1/2 ≈ I. (10)

Hence, D−1/2 can be used as a diagonal preconditioner for the system (1). Now, we try to improve the
preconditioner. To do this, we improve the solution zk = 0 of Akzk = vk. We use the projection method
described in Subsection 2.1. Obviously rk = vk − Akzk = vk. Hereafter, let i be the index of a component
of largest absolute value in rk. This choice provides the assumptions of Theorem 3. In this case, Eq. (5)
results in

α =
1

aii
eTi rk =

ai,k+1
aii

,

and Eq. (3) gives the new approximate solution zk,new = zk + αei = αei, of Akzk = vk. Let rk,new be the
residual vector of zk,new. Then, we have

eTi rk,new = eTi (vk −Akzk,new) = ai,k+1 − αeTi Akei = ai,k+1 − αaii = 0.
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Therefore

δk+1 = ak+1,k+1 − αeTi (vk + rk) = ak+1,k+1 − αeTi vk = ak+1,k+1 −
a2i,k+1
ai,i

=
1

aii

∣∣∣∣ aii ai,k+1
ak+1,i ak+1,k+1

∣∣∣∣ (from ai,k+1 = ak+1,i)

=
1

aii
det(ETAE) > 0,

where E = (ei, ek+1). Note that, the matrix ETAE is SPD and hence det(ETAE) > 0. Therefore, the
approximate inverse factor U computed in step 7 of the AIB algorithm has at most two nonzero entries in
each column and

Ukk = 1, k = 1, . . . , n,

Uik = −aik
aii

, k = 2, . . . , n,

and
δ1 = a11,

δk = akk −
a2ik
aii

, k = 2, . . . , n.

Hence UTAU ≈ S, where S = diag(δ1, . . . , δn). Defining W = US−1/2, we get WTAW ≈ I. It can be easily
seen that

Wkk =
1√
δk
, k = 1, . . . , n, (11)

Wik = − aik

aii
√
δk
, k = 2, . . . , n. (12)

Theorem 3 Let W be the approximate inverse factor computed by the Algorithm 2. Then diag(WTAW ) =
I.

Proof. We have

Wkk = Wik(aiiWik + aikWkk) +Wkk(akiWik + akkWkk) = aiiW
2
ik + 2aikWikWkk + akkW

2
kk

= aii ×
a2ik
a2iiδk

− 2aik
aik

aii
√
δk

1√
δk

+ akk
1

δk
=

1

δk
(akk −

a2ik
aii

) =
1

δk
× δk = 1,

which completes the proof.
Here, it is mentioned that the diagonal scaling has the property obtained in Theorem 3.
We now consider the special case when the matrix A is tridiagonal. Let

A =


a1 b2
b2 a2 b3

. . .
. . .

. . .
bn−1 an−1 bn

bn an

 .

In this case the matrix U can be written as

U =


1 − b2

a1

1 − b3
a2
. . .

. . .
1 − bn

an−1

1

 .
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and D = diag(δ1, δ2, . . . , δn), with δ1 = a1 and δk = ak − b2k
ak−1

, k = 2, . . . , n. Obviously, the approximate

inverse factor W = UD
1
2 is an upper bidiagonal matrix.

4 Applications

The proposed preconditioner can be directly used as a preconditioner for linear system of equations. But
as we see in the next section the effectiveness of the proposed preconditioner for large matrices is limited.
Hence combining it with other preconditioning techniques may be useful. The direct computation WTAW
is not economical. But, the preconditioning techniques which uses only matrix-vector multiplication such as
the SAINV algorithm [2] may benefit from it. In fact W can be used as a scaling for the matrices.
Let A be a SPD block-tridiagonal matrix blocked in the form

A =


G1 E2
ET2 G2 E3

. . .
. . .

. . .
ETl−1 Gl−1 El

ETl Gl

 . (13)

Preconditioning of the systems with the coeffi cient matrices of the above form have been presented in several
papers (for example see [4, 5, 8, 10]). Let G be block-diagonal matrix consisting of the diagonal blocks
Gi and Q the block strictly-upper triangular matrix consisting of the super-diagonal blocks Ei. This kind
of matrices usually arise from discretization of the partial differential matrices. Then, A is of the form
A = QT +G+Q. Let

Λ1 = G1, Λk+1 = Gk+1 − ETk+1Λ−1k Ek+1, k = 1, . . . , l − 1.

By the above notations and expressions we have A = (L + Λ)Λ−1(Λ + U) where Λ = blkdiag(Λ1, . . . ,Λl).
Let Ωk be an approximation of ∆−1

k , where ∆i are defined as

∆1 = G1, ∆k+1 = Gk+1 − ETk+1ΩkEk+1, k = 1, . . . , l − 1,

(see [10, 8]). Matrices Gi, i = 1, . . . , l− 1 are usually sparse (for PDEs, are usually tridiagonal) and of small
size. Let Wk be the computed approximate bidiagonal inverse factor of ∆k. Then we have WT

k ∆kWk ≈ I.
Hence, ∆−1

k ≈ WkW
T
k . Hence we can set Ωk = WkW

T
k . In this case the block incomplete LU factorization

of A takes the form M = (∆ +QT )∆−1(∆ +Q). For more details see [8].
In the implementation of the preconditioner M in a Krylov-subspace method like CG, in each iteration

of the method two linear systems with matrices ∆ + QT and ∆ + Q should be solved which can be done
easily, since these matrices are lower block and upper block triangular matrices, respectively. Furthermore,
a matrix-vector multiplication with the matrix ∆ should be done.

5 Numerical Examples

All the numerical experiments presented in this section were computed in double precision with some MAT-
LAB (Release 13) codes on a Laptop 1.80GHz CPU and 6GB RAM.
For the first set of numerical experiments we choose two small-size matrices bcsstk03 (n = 112, nnz = 640,

κ2(A) = 9.41 × 106) and bcsstm07 (n = 420, nnz = 7252, κ2(A) = 1.33 × 104) from the Harwell-Boeing
collection (https://math.nist.gov). Figures 1 and 2 display the eigenvalue distribution of the matrices A,
D−1/2AD−1/2 and WTAW for the matrices bcsstk03 and bcsstm07, respectively. Here, D = diag(A) and
W is the approximate inverse computed by the proposed method. As we observe for both of the matrices
the eigenvalue distribution of the matrix WTAW are more clustered around (1, 0) than those of the matrix
D−1/2AD−1/2. This shows that the spectral condition number ofWTAW is less than that of D−1/2AD−1/2.
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Figure 1: Eigenvalue distribution of A, D−1/2AD−1/2 and WTAW for the matrix bcsstk03.

Figure 2: Eigenvalue distribution of A, D−1/2AD−1/2 and WTAW for the matrix bcsstm07.
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For the second set of the numerical experiments, some matrices from Harwell-Boeing collection are chosen.
These matrices with their generic properties are shown in Table 1. Column 1 of this table gives the name of
the test matrices; Column 2 lists the size (n) of the matrix; Column 3 gives the number of the nonzero entries
(nnz) of the matrix; Column 4 presents the spectral condition number of the matrix (κ(.)); Columns 5 and
6 report the number of iterations (Iters) and the CPU time of CG algorithm for convergence, respectively.
Timings are in seconds. It is necessary to mention that for all of the numerical experiments in this section
the right-hand side of the system of equations were taken such that the exact solution is x = (1, . . . , 1)T and
the iteration is stopped as soon as the residual 2-norm is reduced by a factor of 107. The initial guess was
taken to be zero vector.

Table 1: First set of test problems information and the number of iterations of CG algorithm for the
convergence.

matrix n nnz κ(.) iters CPU time

NOS1 237 1017 2.53× 107 1933 0.10
NOS2 957 4137 4.97× 109 6602 0.28
1138_bus 1138 4054 1.23× 107 1959 0.08
bcsstk12 1473 32241 5.25× 108 2756 0.19
s3rmt3m3 5357 207123 4.44× 1010 9409 2.99
s3rmt3m1 5489 217669 4.57× 1010 8837 3.26
s2rmt3m1 5489 217681 4.84× 108 7275 3.28
s2rmq4m1 5489 263351 3.22× 108 9955 4.11
bcsstk17 10974 428650 1.95× 1010 9927 12.67

We compare the numerical results of the split-preconditioned CG algorithm [9] for solving linear systems
with preconditioner D−1/2 where D = diag(A) (Precon. 1), andW , where its entries are defined by Eqs. (11)
and (12) (Precon. 2). Numerical results are given in Table 2. This table, for each of the preconditioners,
reports the number of split-preconditioned CG iterations for convergence (Iters) and the setup time for
computing the preconditioner and iterations (CPU Time). As we observe, the proposed preconditioner
outperform the proposed preconditioner. We also see that diagonal scaling does not improve the convergence
of the CG algorithm for the matrices s3rmt3m3 and s3rmt3m1.

Table 2: Numerical results for the first set of test matrices.

Precon. 1 Precon. 2
matrix Iters CPU time Iters CPU time

NOS1 362 0.03 242 0.03
NOS2 3115 0.17 2049 0.15
1138_bus 848 0.06 255 0.05
bcsstk12 1774 0.19 735 0.13
s3rmt3m3 9700 4.43 2488 1.41
s3rmt3m1 9151 4.21 2468 1.53
s2rmt3m1 2176 1.06 961 0.72
s2rmq4m1 1531 0.93 779 0.64
bcsstk17 2435 2.49 1442 2.01

For the third set of the numerical experiments we consider the equation

−∆u+ g(x, y)u = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1).

Discretizing this equation on an nx×ny grid, by using the second order centered differences for the Laplacian
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gives a linear system of equations of order n = nx× ny with n unknowns uij = u(ih, jh)(1 ≤ i, j ≤ n) :

−ui−1,j − ui,j−1 + (4 + h2g(ih, jh))uij − ui+1,j − ui,j+1 = h2f(ih, jh).

Let nx = ny. It can be seen that the coeffi cient matrix of this system is of the form (13). Hence, we apply
the method presented in Section 4. We set g(x, y) = −10exy. It can easily be verified that, for small enough
h, the coeffi cient matrix of this system is SPD. We give the numerical results for nx = 100, 200, 300, 400, 500
in Table 3. We compare the number of iterations of the CG algorithm for the original system and left-
preconditioned CG in conjunction with the proposed method in Section 4. Since, our codes have not been
optimized for highest effi ciency and we do not report timings. All of the assumptions are as before. As we
see the proposed preconditioner reduces the iteration number of CG by a factor of about 6.

Table 3: Numerical results for the third set of the experiments.

nx n nnz Unpre. Precon.

nx = 100 10000 49600 276 53
nx = 200 40000 199200 545 92
nx = 300 90000 448800 809 129
nx = 400 160000 798400 1067 163
nx = 500 250000 1248000 1307 201

6 Conclusion and Future Work

We have proposed an approach for computing a sparse approximate inverse of a SPD matrix. Our numerical
results show that the computed sparse approximate inverse can be used as a preconditioner for SPD systems
and it outperforms the diagonal scaling from the number of iterations and the CPU time point of view.
This method can be implemented for the normal equations by a little revision. Future work may focus on
extending the proposed algorithm to general matrices.
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