A Note On A Conjecture Of R. Brück*

Indrajit Lahiri ${ }^{\dagger}$, Shubhashish Das ${ }^{\ddagger \S}$

Received 11 March 2020

Abstract

In connection to a conjecture of R. Brück we improve a result of Z. X. Chen and K. H. Shon [4] concerning value sharing by an entire function with its derivative.

1 Introduction, Definitions and Results

Let f be an entire function and $M(r, f)=\max _{|z|=r}|f(z)|$ be the maximum modulus function of f. The order $\sigma(f)$ and the lower order $\lambda(f)$ of f are defined respectively by

$$
\sigma(f)=\limsup _{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r}
$$

and

$$
\lambda(f)=\liminf _{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r}
$$

The first iterated order or hyper order $\sigma_{2}(f)$ and the first iterated lower order or hyper lower order $\lambda_{2}(f)$ are defined respectively by

$$
\sigma_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log \log M(r, f)}{\log r}
$$

and

$$
\lambda_{2}(f)=\liminf _{r \rightarrow \infty} \frac{\log \log \log M(r, f)}{\log r} .
$$

If the Taylor expansion of f is $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, then the power series $\sum_{n=0}^{\infty}\left|a_{n}\right| r^{n}$ converges for every $r>0$ and so for any given $r>0$, we have $\lim _{r \rightarrow \infty}\left|a_{n}\right| r^{n}=0$. Hence the maximum term $\mu(r, f)=\max _{n \geq 0}\left|a_{n}\right| r^{n}$ is well defined.

Also we define $\nu(r, f)$, the central index of f, as the greatest exponent m such that $\mu(r, f)=\left|a_{m}\right| r^{m}$ (see [7, p.50]).

It is well known that

$$
\sigma(f)=\limsup _{r \rightarrow \infty} \frac{\log \nu(r, f)}{\log r}
$$

(see [7, p.51]). Similarly it can be verified that

$$
\lambda(f)=\liminf _{r \rightarrow \infty} \frac{\log \nu(r, f)}{\log r}
$$

By Lemma 2 in [3] we see that

$$
\sigma_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log \nu(r, f)}{\log r}
$$

[^0]and in a similar fashion we can prove that
$$
\lambda_{2}(f)=\liminf _{r \rightarrow \infty} \frac{\log \log \nu(r, f)}{\log r} .
$$

Let $u(z)$ be a nonconstant subharmonic function in the open complex plane. We put $B(r, u)=\sup _{|z|=r} u(z)$. The order $\sigma(u)$ and the lower order $\lambda(u)$ of u are defined by

$$
\sigma(u)=\limsup _{r \rightarrow \infty} \frac{\log B(r, u)}{\log r}
$$

and

$$
\lambda(u)=\liminf _{r \rightarrow \infty} \frac{\log B(r, u)}{\log r}
$$

(see [1]).
Let $E \subset[1, \infty)$ and χ_{E} be the characteristic function of E. The upper and the lower logarithmic densities of E are respectively defined by

$$
\overline{\operatorname{logdens}}(E)=\limsup _{r \rightarrow \infty} \frac{\int_{1}^{r} \frac{\chi_{E}(t)}{t} d t}{\log r}
$$

and

$$
\underline{\operatorname{logdens}}(E)=\liminf _{r \rightarrow \infty} \frac{\int_{1}^{r} \frac{\chi_{E}(t)}{t} d t}{\log r}
$$

The quantity $\lim _{r \rightarrow \infty} \int_{1}^{r} \frac{\chi_{E}(t)}{t} d t$ is called the logarithmic measure of E. It is easy to note that if $\overline{\operatorname{logdens}}(E)>0$, then E has infinite logarithmic measure.

Let f and g be two entire functions and a be also an entire function, which, in particular, may be a constant. We say that f and g share the function a CM (counting multiplicities) if $f-a$ and $g-a$ have the same set of zeros with counting multiplicities.
L. A Rubel and C. C. Yang [8] were the first to consider the uniqueness problem of an entire function sharing two values with its derivative. Afterwards in 1996 R. Brück [2] considered the problem of a single value sharing by an entire function with its derivative and proposed the following conjecture.
Brück's Conjecture: Let f be a nonconstant entire function with $\sigma_{2}(f)<\infty$ and $\sigma_{2}(f)$ is not a positive integer. If f and $f^{(1)}$ share a finite value $a \mathrm{CM}$, then $f^{(1)}-a=c(f-a)$, where c is a nonzero constant.

If $a=0$, then the conjecture was resolved by Brück himself [2], but the case $a \neq 0$ is not yet fully resolved.
For entire functions of finite order, G. G. Gundersen and L. Z. Yang [6] resolved the conjecture and proved the following result.

Theorem 1 ([6]) Let f be a nonconstant entire function of finite order. If f and $f^{(1)}$ share one finite value $a C M$ then $f^{(1)}-a=c(f-a)$ for some nonzero constant c.

Generalizing Theorem 1 to higher order derivatives, L. Z. Yang [10] proved the following result.
Theorem 2 ([10]) Let f be a nonconstant entire function of finite order. If f and $f^{(k)}$ share one finite value a $C M$, then $f^{(k)}-a=c(f-a)$ for some nonzero constant c.

In 2004, J. P. Wang [9] improved Theorem 2 in the following manner.
Theorem 3 ([9]) Let f be a nonconstant entire function of finite order and a be a nonconstant polynomial. If f and $f^{(k)}$ share a CM, then $f^{(k)}-a=c(f-a)$ for some nonzero constant c.

In the same year Z. X. Chen and K. H. Shon [4] extended Theorem 1 to a class of entire functions of unrestricted order and proved the following theorem.

Theorem 4 ([4]) Let f be a nonconstant entire function with $\sigma_{2}(f)<\frac{1}{2}$. If f and $f^{(1)}$ share a finite value a CM, then $f^{(1)}-a=c(f-a)$, where c is a nonzero constant.

Noting that Brück conjecture remains open for the case $\sigma_{2}(f) \geq \frac{1}{2}$, the purpose of the paper is to improve both Theorem 3 and Theorem 4 and prove the following result. Also our proof is simpler than Z. X. Chen and K. H. Shon [4].

Theorem 5 Let f be a nonconstant entire function with $\lambda_{2}(f)<\frac{1}{2}$ and $\sigma_{2}(f)<\infty$. Suppose that $a=a(z)$ is a polynomial. If f and $f^{(k)}$ share a CM, then $f^{(k)}-a=c(f-a)$, where c is a nonzero constant.

2 Lemmas

In this section we present some necessary lemmas.
Lemma $6([7, \mathbf{p . 9}])$ Let $P(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{0}\left(b_{n} \neq 0\right)$ be a polynomial of degree n. Then for every $\epsilon(>0)$ there exists $R(>0)$ such that for all $|z|=r>R$ we get

$$
(1-\epsilon)\left|b_{n}\right| r^{n} \leq|P(z)| \leq(1+\epsilon)\left|b_{n}\right| r^{n}
$$

Lemma 7 ([7, p.51]) Let f be a transcendental entire function. Then there exists a set $E \subset(1, \infty)$ with finite logarithmic measure such that for $|z|=r \notin[0,1] \cup E$ and $|f(z)|=M(r, f)$ we get

$$
\begin{equation*}
\frac{f^{(k)}(z)}{f(z)}=(1+o(1))\left(\frac{\nu(r, f)}{z}\right)^{k} \tag{1}
\end{equation*}
$$

Lemma $8([7, \mathbf{p . 5}])$ Let $g:(0,+\infty) \rightarrow \mathbb{R}$ and $h:(0,+\infty) \rightarrow \mathbb{R}$ be monotone increasing functions such that $g(r) \leq h(r)$ outside of an exceptional set E of finite logarithmic measure. Then for any $\alpha>1$, there exists $R>0$ such that $g(r) \leq h\left(r^{\alpha}\right)$ holds for $r>R$.

Lemma 9 ([1]) Let $u(z)$ be a nonconstant subharmonic function in the open complex plane \mathbb{C} of lower order $\lambda, 0 \leq \lambda<1$. If $\lambda<\alpha<1$, then

$$
\overline{\operatorname{logdens}}\{r: A(r)>(\cos \alpha \pi) B(r)\} \geq 1-\frac{\lambda}{\alpha}
$$

where $A(r)=\inf _{|z|=r} u(z)$ and $B(r)=\sup _{|z|=r} u(z)$.
Remark 1 Since for an entire function $Q, \log |Q(z)|$ is a subharmonic function in \mathbb{C} ([5, p.394]), we can apply Lemma 9 to the function $u(z)=\log |Q(z)|$.

3 Proof of Theorem 5

Proof. Since $f^{(k)}-a$ and $f-a$ share 0 CM , there exists an entire function Q such that

$$
\begin{equation*}
\frac{f^{(k)}-a}{f-a}=e^{Q} \tag{2}
\end{equation*}
$$

If Q is a constant, then we are done. So we suppose that Q is nonconstant and consider the following cases.
Case 1. Let $\sigma(f)<\infty$. Then from (2) we see that Q is a polynomial. Further $\sigma(f) \geq 1$, because if $\sigma(f)<1$, then (2) implies that Q is a constant. Therefore f is transcendental.

Now for any z with $|f(z)|=M(r, f)$, noting that f is transcendental, we get by Lemma 6

$$
\begin{equation*}
\left|\frac{a(z)}{f(z)}\right| \leq \frac{M(r, a)}{M(r, f)} \leq \frac{2|\beta| r^{\operatorname{deg} a}}{M(r, f)} \rightarrow 0 \tag{3}
\end{equation*}
$$

as $r \rightarrow \infty$, where β is the leading coefficient of $a=a(z)$.
From (2) we get

$$
\begin{equation*}
e^{Q}=\frac{\frac{f^{(k)}}{f}-\frac{a}{f}}{1-\frac{a}{f}} \tag{4}
\end{equation*}
$$

Now by Lemma 7 there exists $E \subset(1, \infty)$ with finite logarithmic measure such that for all large $|z|=r \notin$ $[0,1] \cup E$ and $|f(z)|=M(r, f)$ we get in view of (3),(4) and (1)

$$
\begin{equation*}
e^{Q(z)}=(1+o(1))\left(\frac{\nu(r, f)}{z}\right)^{k} \tag{5}
\end{equation*}
$$

Now from (5) we get for all large $|z|=r \notin[0,1] \cup E$ with $|f(z)|=M(r, f)$

$$
\begin{align*}
|Q(z)| & =\left|\log e^{Q(z)}\right| \\
& =\left|\log \left(\frac{\nu(r, f)}{z}\right)^{k}\right|+o(1) \\
& =|k \log \nu(r, f)-k \log z|+o(1) \\
& \leq k \log \nu(r, f)+k \log r+6 k \pi \\
& <2 k(\sigma(f)+1) \log r+6 k \pi \tag{6}
\end{align*}
$$

Also by Lemma 6 we obtain for all large $|z|=r$

$$
\begin{equation*}
\frac{1}{2}|\delta| r^{\operatorname{deg} Q} \leq|Q(z)| \tag{7}
\end{equation*}
$$

where δ is the leading coefficient of Q.
Now (6) and (7) together imply $\operatorname{deg} Q=0$, which is a contradiction.
Case 2. Let $\sigma(f)=\infty$. We note from (2) that $\lambda(Q) \leq \lambda_{2}(f)<\frac{1}{2}$. We now consider the following subcases. Subcase 2.1. Let Q be a polynomial. Then from (5) we get for all large $|z|=r \notin[0,1] \cup E$ with $|f(z)|=M(r, f)$

$$
\begin{equation*}
|Q(z)| \leq k \log \nu(r, f)+k \log r+6 k \pi \tag{8}
\end{equation*}
$$

From (7) and (8) we obtain for all large $|z|=r \notin[0,1] \cup E$ with $|f(z)|=M(r, f)$

$$
\frac{1}{2}|\delta| r^{\operatorname{deg} Q} \leq k \log \nu(r, f)+k \log r+6 k \pi
$$

So for all large $|z|=r \notin[0,1] \cup E$ we get

$$
\frac{1}{2}|\delta| r^{\operatorname{deg} Q} \leq k \log \nu(r, f)+k \log r+6 k \pi
$$

Hence by Lemma 8 for given $\alpha, 1<\alpha<\frac{3}{2}$, we get for all large values of r

$$
\frac{1}{2}|\delta| r^{\operatorname{deg} Q} \leq k \log \nu\left(r^{\alpha}, f\right)+k \alpha \log r+6 k \pi
$$

and so

$$
r^{\operatorname{deg} Q}\left(\frac{1}{2}|\delta|-\frac{k \alpha \log r}{r^{\operatorname{deg} Q}}\right) \leq k \log \nu\left(r^{\alpha}, f\right)+6 k \pi
$$

This implies $\operatorname{deg} Q \leq \alpha \lambda_{2}(f)<\frac{\alpha}{2}<1$, which is a contradiction.
Subcase 2.2. Let Q be a transcendental entire function. We see by Note 1 that $u(z)=\log |Q(z)|$ is a subharmonic function and also $\lambda(u)=\lambda(Q)<\frac{1}{2}$. Suppose that $H=\{r: A(r)>(\cos \alpha \pi) B(r)\}$, where $A(r)=\inf _{|z|=r} \log |Q(z)|, B(r)=\sup _{|z|=r} \log |Q(z)|$ and $\lambda(Q)<\alpha<\frac{1}{2}$.

Then by Lemma $9 H$ has infinite logarithmic measure. Also by Lemma 7 for $|z|=r \in H \backslash\{[0,1] \cup E\}$ with $|f(z)|=M(r, f)$ we get (1).

Now by (3), (4) and (1) for all large $|z|=r \in H \backslash\{[0,1] \cup E\}$ with $|f(z)|=M(r, f)$ we get (5), where Q is transcendental entire, and so

$$
\begin{align*}
|Q(z)| & =\left|\log e^{Q(z)}\right| \\
& =\left|\log \left(\frac{\nu(r, f)}{z}\right)^{k}\right|+o(1) \\
& =|k \log \nu(r, f)-k \log z|+o(1) \\
& \leq k \log \nu(r, f)+k \log r+6 k \pi \\
& <2 k r^{\sigma_{2}(f)+1} \tag{9}
\end{align*}
$$

So by (9) and by Lemma 9 there exists a constant $d, 0<d \leq 1$, such that $(M(r, Q))^{d} \leq 2 k r^{\sigma_{2}(f)+1}$ for all large values of $|z|=r \in H \backslash\{[0,1] \cup E\}$ and $|f(z)|=M(r, f)$. This is impossible because Q is transcendental and so $\lim _{r \rightarrow \infty} \frac{(M(r, Q))^{d}}{r^{\sigma_{2}(f)+1}}=\infty$. This proves the theorem.

Acknowledgment. The authors are thankful to the referee for valuable suggestions. The work of Shubhashish Das was supported by CSIR Fellowship, India.

References

[1] P. D. Barry, On a theorem of Kjellberg, Quart. J. Math. Oxford, 15(1964), 179-191.
[2] R. Brück, On entire functions which share one value CM with their first derivative, Result. Math., 30(1996), 21-24.
[3] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J., 22(1999), 273-285.
[4] Z. X. Chen and K. H. Shon, On conjecture of R. Brück concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math., 8(2004), 235-244.
[5] T. W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics, Springer-Verlag New York, Inc., 2001.
[6] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223(1998), 88-95.
[7] I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter, Berlin, New York (1993).
[8] L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, Lecture Notes in Math., 599(1977), 101-103.
[9] J. P. Wang, Entire functions that share a polynomial with one of their derivatives, Kodai Math. J., 27(2004), 144-151.
[10] L. Z. Yang, Solution of a differential equation and its applications, Kodai Math. J., 22(1999), 458-464.

[^0]: *Mathematics Subject Classifications: 30D35.
 \dagger Department of Mathematics, University of Kalyani, West Bengal 741235, India
 \ddagger Department of Mathematics, University of Kalyani, West Bengal 741235, India
 §Present Address: Department of Mathematics, Bharat Sevak Samaj College, Supaul, Bihar 852131, India.

