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Abstract

In this paper, we prove that if a, b > 0 and 0 ≤ ν ≤ 1, then for all positive intger m, we have

(aνb1−ν)m + rm0 (a
m
2 − b

m
2 )2 + rm

(
((ab)

m
4 − b

m
2 )2χ(0, 1

2
](ν) + ((ab)

m
4 − a

m
2 )2χ( 1

2
,1](ν)

)
≤ (νa+ (1− ν)b)m, (A-I)

where r0 = min{ν, 1− ν}, rm = min{2rm0 , (1− r0)m− rm0 } and χI(ν) is the characteristic function of the
set I. The inequality (A-I) provides a generalization of an important refinement of the Young inequality
obtained in 2015 by Hirzallah and Kittaneh. The inequality (A-I) extends also another important re-
finement of the Young inequality obtained in 2015 by J. Zhao and J. Wu which corresponds to the case
m = 1.

As applications of the inequality (A-I), we give some refined Young type inequalities for the traces, de-
terminants, norms of positive definite matrices, and some inequalities concerning the generalized Euclid-
ean operator radius.

1 Introduction

The well-known Young’s inequality for scalars asserts that for all positive real numbers a, b and 0 ≤ ν ≤ 1,
we have

aνb1−ν ≤ νa+ (1− ν)b. (1)

The inequality (1) implies that for m = 1, 2, 3, ...,

(aνb1−ν)m ≤ (νa+ (1− ν)b)m. (2)

Hirzallah and Kittaneh [3] refined Young’s inequality (1) to

(aνb1−ν)2 + r20(a− b)2 ≤ (νa+ (1− ν)b)2, (3)

where r0 = min{ν, 1− ν}.
Kittaneh and Manasrah [7] refined Young’s inequality so that

aνb1−ν + r0(
√
a−
√
b)2 ≤ νa+ (1− ν)b, (4)

where r0 = min{ν, 1− ν}.
In 2015, Manasrah and Kittaneh [8] refind the inequality (2) by adding the quantity rm0 (a

m
2 − bm2 )2 to

its first part, and obtained the following inequality:

(aνb1−ν)m + rm0 (a
m
2 − bm2 )2 ≤ (νa+ (1− ν)b)m, (5)
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130 A Generalized Refinement of Young Inequality

where m = 1, 2, 3, ....
The inequality (5) is a common generalization of the inequalities (3) and (4).
In 2015, J. Zhao and J. Wu refined inequality (2) as follows:
if 0 < ν ≤ 1

2 , then

aνb1−ν + ν(
√
a−
√
b)2 + r1(

4
√
ab−

√
b)2 ≤ νa+ (1− ν)b, (6)

and if 12 < ν ≤ 1, then

aνb1−ν + (1− ν)(
√
a−
√
b)2 + r1(

4
√
ab−

√
a)2 ≤ νa+ (1− ν)b. (7)

where r0 = min{ν, 1− ν}, and r1 = min{2r0, 1− 2r0}.
We can gather the above inequalities (6) and (7) in the following form:

aνb1−ν + r0(a
1
2 − b 12 )2 + r1

(
((ab)

1
4 − b 12 )2χ(0, 12 ](ν) + ((ab)

1
4 − a 1

2 )2χ( 12 ,1](ν)
)

≤ νa+ (1− ν)b,

valid for all positive numbers a, b and for all ν ∈ [0, 1], where for any set I, we denote χI its characteristic
function defined by

χI(x) =

{
1 if x ∈ I,
0 if x /∈ I.

One of the aims of this paper is to extend the inequality above to the following one:

(aνb1−ν)m + rm0 (a
m
2 − bm2 )2 + rm

(
((ab)

m
4 − bm2 )2χ(0, 12 ](ν) + ((ab)

m
4 − am2 )2χ( 12 ,1](ν)

)
≤ (νa+ (1− ν)b)m, (A-I)

where r0 = min{ν, 1− ν} and rm = min{2rm0 , (1− r0)m− rm0 }, which will be valid for all positive integer m,
for all positive numbers a, b and all ν ∈ [0, 1].
This inequality extends all the previous refinements of Young’s inequality, this means the inequalities:

(3), (4), (5), (6) and (7).
The inequality (A-I) is proved in the second section.
In sections two and three of this paper, we give applications of the inequality (A-I) to establish new re-

finements to certain Young type inequalities for the traces, determinants, norms of positive definite matrices,
and some inequalities concerning the generalized Euclidean operator radius.

2 A Generalized Refinement of Young’s Inequality

For the proof of our first main result, we need to recall the following theorem concerning the celebrated
weighted arithmetic-geometric mean (AM-GM) inequality.

Theorem 1 Let n be a positive integer. For i = 1, 2, . . . , n, let ai ≥ 0, and let νi ≥ 0 satisfy
∑n
i=1 νi = 1.

Then, we have
n∏
i=1

aνii ≤
n∑
i=1

νiai.

By taking n := 2 in the weighted AM-GM inequality, we recapture the classical Young’s inequality.

We need also the following lemma.
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Lemma 2 Let m be a positive integer and let ν a real number, such that 0 ≤ ν ≤ 1. Then we have

m∑
k=1

(
m

k

)
kνk(1− ν)m−k = mν,

and
m−1∑
k=0

(
m

k

)
(m− k)νk(1− ν)m−k = m(1− ν).

where
(
m
k

)
is the binomial coeffi cient.

For a proof of Lemma 2, one can see [1].

The first main result of this paper reads as follows.

Theorem 3 Let a and b be two positive numbers and 0 ≤ ν ≤ 1. Then for all positive intger m, we have the
inequality (A-I).

Proof. Suppose that 0 < ν ≤ 1
2 . We claim that

(νa+ (1− ν)b)m − νm(am2 − bm2 )2 − rm((ab)
m
4 − bm2 )2 ≥ (aνb1−ν)m.

Indeed, we have, the following identities:

(νa+ (1− ν)b)m − νm(am2 − bm2 )2 − rm((ab)
m
4 − bm2 )2

=

m∑
k=0

(
m

k

)
νk(1− ν)m−kakbm−k − νm

(
am + bm − 2(ab)m2

)
− rm

(
(ab)

m
2 + bm − 2(ab)m4 bm2

)
=

(
(1− ν)m − νm − rm

)
bm +

(
2νm − rm

)
(ab)

m
2 +

m−1∑
k=1

(
m

k

)
νk(1− ν)m−kakbm−k + 2rm(ab)

m
4 b

m
2

=

m+1∑
k=0

νkxk

where xi is given by

x0 := bm with ν0 :=
(
(1− ν)m − νm − rm

)
,

and for 1 ≤ k ≤ m− 1,

xk := akbm−k with νk :=
(
m

k

)
νk(1− ν)m−k

and
xm := (ab)

m
2 with νm :=

(
2νm − rm

)
,

and
xm+1 := (ab)

m
4 b

m
2 with νm := 2rm.

We have

1. xk > 0 for all k ∈ {0, 1, ...,m+ 1},

2. νk ≥ 0 for all k ∈ {0, 1, ...,m+ 1}, with
∑m+1
k=0 νi = 1.
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Hence by applying Theorem 1, we get

(νa+ (1− ν)b)m − νm(am2 − bm2 )2 − rm((ab)
m
4 − bm2 )2 ≥

m+1∏
k=0

xνii = aα(m)bβ(m),

where

α(m) =

m−1∑
k=1

(
m

k

)
kνk(1− ν)m−k + m

2

(
2νm − rm

)
+
m

2
rm

=

m∑
k=1

(
m

k

)
kνk(1− ν)m−k = mν, (by Lemma 2)

and

β(m) =
m

2

(
2νm − rm

)
+
3m

2
rm

+

m−1∑
k=1

(
m

k

)
(m− k)νk(1− ν)m−k +m

(
(1− ν)m − νm − rm

)
=

m−1∑
k=0

(
m

k

)
(m− k)νk(1− ν)m−k = m(1− ν) (by Lemma 2).

The case 1
2 < ν ≤ 1 is established by similar arguments.

This completes the proof.

Remark 1 In Theorem 3 above, we have refined the inequality (5) by adding to its first part the quantity

rm0 (a
m
2 − bm2 )2 + rm

(
((ab)

m
4 − bm2 )2χ(0, 12 ](ν) + ((ab)

m
4 − am2 )2χ( 12 ,1](ν)

)
where r0 = min{ν, 1 − ν} and rm = min{2rm0 , (1 − r0)m − rm0 }. So this is a considerable generalization of
the refinements of the Young inequality due to Manasrah and Kittaneh [8].

Theorem 3 also extends the result obtained by J. Zhao and J. Wu in [13] which correspondd to the
particular case m = 1.

3 Applications to Young Type Inequalities for the Traces, Deter-
minants, and Norms of Positive Definite Matrices

In this section, we apply Theorem 3 to provide some improvements to certain refined Young type inequalities
for the traces, determinants, and norms of positive definite matrices obtained by F. Kittaneh and Y. Manasrah
in [8].
Let Mn(C) designate the space of all n × n complex matrices. A matrix A ∈ Mn(C) is called positive

semidefinite, (denoted as A ≥ 0) if x∗Ax ≥ 0 for all x ∈ Cn, and it is called positive definite (denoted as
A > 0) if x∗Ax > 0 for all nonzero x ∈ Cn. The singular values of a matrix A ∈Mn(C) are the eigenvalues
of the positive semidefinite matrix |A| = (A∗A)1/2, denoted by si(A) for i = 1, 2, 3.., n.
A norm |||.||| on Mn(C) is called unitarily invariant if |||UAV ||| = |||A||| for all A ∈ Mn(C) and all

unitary matrices U, V ∈Mn(C).
The trace norm ||.|| is given by ||A||1 = tr|A| =

∑n
k=1 sk(A), where tr is the usual trace for matrices. It

is well known that this norm is unitarily invariant.
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A matrix version of Young inequality, proved in [2], asserts that

sj(A
νB1−ν) ≤ sj(νA+ (1− ν)B) for j = 1, . . . , n. (8)

The above singular value inequality entails the following unitarily invariant norm inequality

||AνB1−ν ||1 ≤ ||νA+ (1− ν)B||1.

A determinant version of Young’s inequalities is also known [[4]; p. 467], for positive semidefinite matrices
A, B and 0 ≤ ν ≤ 1,

det(AνB1−ν) ≤ det(νA+ (1− ν)B). (9)

The following inequality, proved in [9], asserts that for all positive semidefinite matrices (and unitarily
invariant norms), we have:

|||AνXB1−ν ||| ≤ ν|||A|||+ (1− ν)|||B|||.

By using the inequality (5), Manasrah and Kittaneh [8] gave refinements to the following inequalities:(
tr|AνB1−ν |)

)m
≤
(
tr(νA+ (1− ν)B)

)m
,

(
det(AνB1−ν)

)m
≤
(
det(νA+ (1− ν)B)

)m
,

and (
|||AνXB1−ν |||

)m
≤
(
ν|||A|||+ (1− ν)|||B|||

)m
. (10)

Here, as application of Theorem 3, we give further and enhanced improvements to the above inequalities.
To prove the main results of this section, we need to recall the following two lemmas, the first lemma [5]

is a Heinz-Kato type inequality for unitarily invariant norms, and the second lemma (see, e.g., [[4], p. 482])
is the Minkowski inequality for determinants.

Lemma 4 ([5]) Let A,B ∈Mn(C) be positive semidefinite matrices. Then we have

|||AνXB1−ν ||| ≤ |||AX|||ν |||XB|||1−ν .

In particular, we have
tr
∣∣AνXB1−ν∣∣ ≤ (trA)ν(trB)1−ν .

Lemma 5 Let A,B ∈Mn(C) be positive definite matrices. Then we have

det (A+B)
1
n ≥ det(A) 1n + det(B) 1n .

The first result of this section concerns the determinant of positive definite matrices and reads as follows:

Theorem 6 Let A,B ∈Mn(C) be positive definite matrices and 0 ≤ ν ≤ 1. Then for all positive intger m,
we have(

det(AνB1−ν)
)m
+ rnm0

(
det(A)

m
2 − det(B)m2

)2
+ rnm

[ (
[det(A) det(B)]

m
4 − det(B)m2

)2
χ(0, 12 ](ν)

+
(
[det(A) det(B)]

m
4 − det(A)m2

)2
χ( 12 ,1](ν)

]
≤ det (νA+ (1− ν)B)m ,

where r0 = min{ν, 1− ν} and rnm = min{2rnm0 , (1− r0)nm − rnm0 }.
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Proof. We have

det (νA+ (1− ν)B)m

=
[
det (νA+ (1− ν)B)

1
n

]nm
≥

[
det(νA)

1
n + det((1− ν)B) 1n

]nm
(by Lemma 5)

=
[
ν det(A)

1
n + (1− ν) det(B) 1n

]nm
≥

[(
det(A)

1
n

)ν (
det(B)

1
n

)1−ν]nm
+ rnm0

[(
det(A)

1
n

)mn
2 − (det(B))

1
n
mn
2

]2
+rnm

(
[det(A)

1
n det(B)

1
n ]

nm
4 − (det(B) 1n )nm2

)2
χ(0, 12 ](ν)

+
(
[det(A)

1
n det(B)

1
n ]

nm
4 − (det(A) 1n )nm2

)2
χ( 12 ,1](ν) (by Theorem 3)

=
(
det(AνB1−ν)

)m
+ rnm0

(
det(A)

m
2 − det(B)m2

)2
+
(
[det(A) det(B)]

m
4 − det(B)m2

)2
χ(0, 12 ](ν)

+
(
[det(A) det(B)]

m
4 − det(A)m2

)2
χ( 12 ,1](ν).

This ends the proof.

The second result of this section concerns the traces of positive definite matrices and reads as follows:

Theorem 7 Let A,B ∈ Mn(C) be positive definite matrices and 0 ≤ ν ≤ 1. Then for all positive integer
m, we have [

tr(|AνB1−ν |)
]m
+ rm0

(
(trA)

m
2 − (trB)m2

)2
+ rm

(
[(trA)(trB)]

m
4 − (trB)m2

)2
χ(0, 12 ](ν)

+
(
[(trA)(trB)]

m
4 − (trA)m2

)2
χ( 12 ,1](ν) ≤ [tr(νA+ (1− ν)B)]

m
,

where r0 = min{ν, 1− ν} and rm = min{2rm0 , (1− r0)m − rm0 }.

Proof. We have[
tr(|AνB1−ν |)

]m
+ rm0

[
(trA)

m
2 − (trB)m2

]2
+ rnm

(
[(trA)(trB)]

m
4 − (trB)m2

)2
χ(0, 12 ](ν)

+
(
[(trA)(trB)]

m
4 − (trA)m2

)2
χ( 12 ,1](ν)

≤
[
(trA)ν(trB)1−ν

]m
+ rm0

[
(trA)

m
2 − (trB)m2

]2
+ rnm

(
[(trA)(trB)]

m
4 − (trB)m2

)2
χ(0, 12 ](ν)

+
(
[(trA)(trB)]

m
4 − (trA)m2

)2
χ( 12 ,1](ν) (by Lemma 4)

≤ [tr(νA+ (1− ν)B)]m (by Theorem 3).

This ends the proof.

The third and last result of this section provides an improvement to the inequality (10) and reads as
follows:

Theorem 8 Let A,X,B ∈ Mn(C) be positive semidefinite matrices and 0 ≤ ν ≤ 1. Then for all positive
integer m, we have

|||AνXB1−ν |||m + rm0
(
|||AX|||m2 − |||XB|||m2

)2
+ rm

[(
(|||AX||||||XB|||)m4 − |||XB|||m2

)2
χ(0, 12 ](ν)

+
(
(|||AX||||||XB|||)m4 − |||AX|||m2

)2
χ( 12 ,1](ν)

]
≤
[
ν|||AX|||+ (1− ν)|||XB|||

]m
,

where r0 = min{ν, 1− ν} and rm = min{2rm0 , (1− r0)m − rm0 }.
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Proof. We have

|||AνXB1−ν |||m + rm0
(
|||AX|||m2 − |||XB|||m2

)2
+ rm

[(
(|||AX||||||XB|||)m4 − |||XB|||m2

)2
χ(0, 12 ](ν)

+
(
(|||AX||||||XB|||)m4 − |||AX|||m2

)2
χ( 12 ,1](ν)

]
≤

[
|||AX|||ν |||XB|||1−ν

]m
+ rm0

(
|||AX|||m2 − |||XB|||m2

)2
+rm

[(
(|||AX||||||XB|||)m4 − |||XB|||m2

)2
χ(0, 12 ](ν)

+
(
(|||AX||||||XB|||)m4 − |||AX|||m2

)2
χ( 12 ,1](ν)

]
(byLemma 4)

≤
[
ν|||AX|||+ (1− ν)|||XB|||

]m
(byTheorem 3).

This completes the proof.

4 Improvements of Some Inequalities for Generalized Euclidean
Operator Radius

Let H be a real or complex Hilbert space. The generalized Euclidean operator radius ωp of operators
T1, ..., Tn ∈ H is defined for p ≥ 1 as follows (see, [11]):

ωp(T1, ..., Tn) := sup
||x||=1

( n∑
i=1

|〈Tix, x〉|p
) 1
p

.

Concerning the generalized Euclidean operator radius ωp, A. Sheikhhosseini, M. S. Moslehian and K. She-
brawi established in [12] the following result:

Theorem 9 Let Ti ∈ B(H) for i = 1, 2, 3.., and p ≥ 2m for some m = 1, 2, 3, .. Then for 0 ≤ ν ≤ 1,

ωpp(T1, .., Tn) ≤
∣∣∣∣∣∣ n∑
i=1

(
ν|Ti|p + (1− ν)|T ∗|pi

)m∣∣∣∣∣∣− inf
||x||=1

ζ(x),

where

ζ(x) := min{ν, 1− ν}m
n∑
i=1

(
〈|Ti|

p
mx, x〉m2 − 〈|T ∗i |

p
mx, x〉m2

)2
.

The first aim of this section is to provide some improvements to Theorem 9.
Before giving our results, we recall the following lemmas. The first lemma is known as the generalized

mixed Schwarz inequality, this lemma is proved by F. Kittaneh in [6].

Lemma 10 Let T ∈ B(H) and ν ∈ (0, 1). Then

|〈Tx, y〉|2 ≤ 〈|T |2νx, x〉〈|T ∗|2(1−ν)y, y〉, ∀x, y ∈ H.

The second Lemma follows from the spectral theorem for positive operators and Jensen’s inequality, this
lemma is proved in [10].

Lemma 11 (McCarthy inequality) Let T ∈ B(H) such that T ≥ 0 and let x ∈ H be any unit vector.
Then we have the following assertions:

(a) 〈Tx, x〉r ≤ 〈T rx, x〉 for r ≥ 1,
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(b) 〈T rx, x〉 ≤ 〈Tx, x〉r for 0 < r ≤ 1.

Now, by using Theorem 3, we give the following refinement of Theorem 9.

Theorem 12 Let Ti ∈ B(H) for i = 1, 2, 3.., and p ≥ 2m for some m = 1, 2, 3, .. Then for all real number
ν satisfying 0 ≤ ν ≤ 1, we have

ωpp(T1, .., Tn) ≤
∣∣∣∣∣∣ n∑
i=1

(
ν|Ti|

p
m + (1− ν)|T ∗i |

p
m

)m∣∣∣∣∣∣− inf
||x||=1

ζ1(x)− inf
||x||=1

ζ2(x),

where

ζ1(x) := rm0

n∑
i=1

(
〈|Ti|

p
mx, x〉m2 − 〈|T ∗i |

p
mx, x〉m2

)2
,

and

ζ2(x) : = rm

n∑
i=1

[(
[〈|Ti|

p
mx, x〉〈|T ∗i |

p
mx, x〉]m4 − 〈|T ∗i |

p
mx, x〉m2

)2
χ(0, 12 ](ν)

+
(
[〈|Ti|

p
mx, x〉〈|T ∗i |

p
mx, x〉]m4 − 〈|Ti|

p
mx, x〉m2

)2
χ( 12 ,1](ν)

]
.

Proof. For all x ∈ H, we have the following inequalities:
n∑
i=1

|〈Tix, x〉|p =

n∑
i=1

(
|〈Tix, x〉|2

) p
2

≤
n∑
i=1

(
〈|Ti|2νx, x〉〈|T ∗i |2(1−ν)x, x〉

) p
2

(by Lemma 10)

≤
n∑
i=1

(
〈|Ti|

pν
m x, x〉〈|T ∗i |

p(1−ν)
m x, x〉

)m
(by Lemma 11(a))

≤
n∑
i=1

(
〈|Ti|

p
mx, x〉ν〈|T ∗i |

p
mx, x〉(1−ν)

)m
(by Lemma 11(b))

≤
n∑
i=1

(
ν〈|Ti|

p
mx, x〉+ (1− ν)〈|T ∗i |

p
mx, x〉

)m
− ζ1(x)− ζ2(x) (by Theorem 3)

≤
n∑
i=1

(
〈
(
ν|Ti|

p
m + (1− ν)|T ∗i |

p
m

)
x, x〉

)m
− inf
||x||=1

ζ1(x)− inf
||x||=1

ζ2(x)

≤
n∑
i=1

〈
(
ν|Ti|

p
m + (1− ν)|T ∗i |

p
m

)m
x, x〉 − inf

||x||=1
ζ1(x)− inf

||x||=1
ζ2(x) (by Lemma 11(a))

≤ 〈
n∑
i=1

(
ν|Ti|

p
m + (1− ν)|T ∗i |

p
m

)m
x, x〉 − inf

||x||=1
ζ1(x)− inf

||x||=1
ζ2(x).

By taking the supremum over all x ∈ H with ||x|| = 1, we deduce the result. This completes the proof.
Next, we provide some improvements to the results stated in Theorem 4.1 of [12].

Theorem 13 Let Ti ∈ B(H) for i = 1, 2, 3.., r ≥ 1, and p ≥ q ≥ 1 such that 1
p +

1
q =

1
r . Then for

m = 1, 2, 3...,

ωmrp (|T1|, .., |Tn|)ωmrq (|T ∗1 |, .., |T ∗n |) ≤

r
p

∣∣∣∣∣∣ n∑
i=1

|Ti|p
∣∣∣∣∣∣+ r

q

∣∣∣∣∣∣ n∑
j=1

|T ∗j |q
∣∣∣∣∣∣
m

− inf
||x||=1

δ1(x)− inf
||x||=1

δ2(x),
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where

δ1(x) :=
(r
p

)m( n∑
i=1

〈|Ti|x, x〉p
)m

2 −
( n∑
j=1

〈|T ∗j |x, x〉q
)m

2

2

,

and

δ2(x) : = rm

([(( n∑
i=1

〈|Ti|x, x〉p
)( n∑

i=1

〈|T ∗i |x, x〉q
))m

4 −
( n∑
i=1

〈|T ∗i |x, x〉q
)m

2
]2
χ(2r,+∞)(p)

+
[(( n∑

i=1

〈|Ti|x, x〉p
)( n∑

i=1

〈|T ∗i |x, x〉q
))m

4 −
( n∑
i=1

〈|Ti|x, y〉p
)m

2
]2
χ(r,2r)(p)

)
,

and rm = min{2( rp )
m, (1− r

p )
m − ( rp )

m}.

Proof. We set ν := r
p , then 1− ν :=

r
q . Therefore, we have r0 =

r
p and rm = min{2(

r
p )
m, (1− r

p )
m− ( rp )

m}.
We put a :=

∑n
i=1〈|Ti|x, x〉p and b :=

∑n
i=1〈|T ∗i |x, x〉q. We apply Theorem 3 to a and b.

So, according to Theorem 3 and Lemma 11(a), we have the following successive inequalities:( n∑
i=1

〈|Ti|x, x〉p
) r
p

 n∑
j=1

〈|T ∗j |x, x〉q
 r

q


m

≤

r
p

n∑
i=1

〈|Ti|x, x〉p +
r

q

n∑
j=1

〈|T ∗j |x, x〉q
m

− δ1(x)− δ2(x)

≤

r
p

n∑
i=1

〈|Ti|px, x〉+
r

q

n∑
j=1

〈|T ∗j |qx, x〉

m

− inf
||x||=1

δ1(x)− inf
||x||=1

δ2(x)

≤

〈(r
p

n∑
i=1

|Ti|p
)
x, x〉+ 〈

(r
q

n∑
j=1

|T ∗j |q
)
x, x〉

m

− inf
||x||=1

δ1(x)− inf
||x||=1

δ2(x),

Taking the supremum over x ∈ H, ||x|| = 1, we get the result. This completes the proof.
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