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Abstract

We consider the class of polynomial differential equations
.
x = Pm (x, y)+Pm+n (x, y) ,

.
y = Qm (x, y)+

Qm+n (x, y) form, n ≥ 1 and where Pi and Qi are homogeneous polynomials of degree i. Inside this class,
we identify a new subclass of Liouvillian integrable systems, under suitable conditions such Liouvillian
integrable systems can have at most one limit cycle, and when it exists, is non-algebraic and hyperbolic.
Then we study the general systems of the systems studied in [9], which allow us to find the necessary
and suffi cient conditions for the existence and non-existence of limit cycles.

1. Introduction and Statement of the Main Results

A polynomial differential system on the plane is of the form

.
x =

dx

dt
= P (x, y) ,

.
y =

dy

dt
= Q (x, y) ,

(1.1)

where P and Q are two coprime polynomials of R [x, y] , and the derivatives are performed with respect
to the time variable. By definition, the degree of the system (1.1) is the maximum of the degrees of the
polynomials P and Q.

System (1.1) is said to be integrable on an open set Ω of R2 if there exists a non constant continuously
differentiable function H : Ω 7−→ R called the first integral of this system on Ω which is constant on the
trajectories of the polynomial system (1.1) contained in Ω, i.e., if

dH

dt
(x, y) =

∂H

∂x
(x, y)P (x, y) +

∂H

∂y
(x, y)Q (x, y) ≡ 0 in Ω.

Moreover, H = h is the general solution of the above equation, where h is an arbitrary constant. It is well
known that for the planar differential system, the existence of a first integral determines its phase portrait,
see [10].
We recall that in the phase plane, a limit cycle of system (1.1) is an isolated periodic solution in the set

of all its periodic solutions. If limit cycle contained in the zero set of invariant algebraic curve of the plane,
then we say that it is algebraic; otherwise, it is called non-algebraic. In the qualitative theory of differential
systems in the plane, two important problems are to determine the first integrals and the limit cycles.
It is very diffi cult to detect if a planar differential system is integrable or not and also to know if the

limit cycles for this system exist and are algebraic, as well as the determination of their explicit expressions.
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In the beginning, the explicit expressions of limit cycles were algebraic (see, for example, [14, 4, 5, 3] and
references therein). It is only after 2006 that it became possible to find explicit expressions of non-algebraic
limit cycles [12, 1, 15, 2, 8].
This article deals with two problems for a class of real planar differential systems of the form:

.
x = Pm (x, y) + Pm+n (x, y) ,
.
y = Qm (x, y) +Qm+n (x, y) ,

(1.2)

where Pi (x, y) and Qm (x, y) are homogeneous polynomials of degree i in the variables x and y with Pm and
Qm satisfying xQm − yPm ≡ 0.

In order to present our main results, we take the polar coordinates changes x = r cos θ, y = r sin θ, system
(1.2) becomes

.
r = fm+1 (θ) rm + fm+n+1 (θ) rm+n,
.

θ = gm+n+1 (θ) rm+n−1,
(1.3)

where
fi (θ) = cos θPi−1 (cos θ, sin θ) + sin θQi−1 (cos θ, sin θ) ,

gi (θ) = cos θQi−1 (cos θ, sin θ)− sin θPi−1 (cos θ, sin θ) .

We note that if gm+n+1 (θ) vanishes for some θ = θ∗ then it has {θ = θ∗} as an invariant straight line.
From the uniqueness of solutions, we get that system (1.3) has no limit cycles. Since our goal is to study the
limit cycles, we limit the study to region W = {θ : gm+n+1 (θ) 6= 0} . In this case, we remark that for any
equilibrium point (x0, y0) of the systems, we have x0Q (x0, y0)− y0P (x0, y0) = 0, but

.
x and

.
y are related to

.

θ by
.

θ = xQ(x,y)−yP (x,y)
x2+y2 , we deduce then that at each point (x0, y0) 6= (0, 0) we have

.

θ = 0. As
.

θ =
dθ

dt
is

positive or negative for all t, this means that (0, 0) is the unique equilibrium point of system (1.2) and the
orbits (r (t) , θ (t)) of system (1.3) have same or opposite orientation with respect to (x (t) , y (t)) of system
(1.2) .
Our results are the following

Theorem 1. For system (1.2) the following statements hold.

(1) The system (1.2) has the Liouvillian first integral

H (x, y) =
(
x2 + y2

)n
2 exp

(
−
∫ arctan

y
x

0

F (s) ds

)
−
∫ arctan

y
x

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds,

where
F (s) = n× fm+n+1(s)

gm+n+1(s)
and G (s) = n× fm+1(s)

gm+n+1(s)
.

(2) The system (1.2) can have at most one limit cycle. When it exists, it is hyperbolic, and given in polar
coordinates by the equation

r (θ, r0) = exp

(
1
n

∫ θ

0

F (s) ds

)(
rn0 +

∫ θ

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds

) 1
n

,

where

r0 =
n

√
exp(

∫ 2π
0

F (s)ds)
1−exp(

∫ 2π
0

F (s)ds)

∫ 2π

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds.

Moreover, there exist such systems which have one non-algebraic limit cycle.
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We will apply our theorem to the subsystem of system (1.2)

.
x = x+ (αy − βx)U,
.
y = y − (βy + αx)U,

(1.4)

where U is a homogenous polynomial of degree n in the variables x and y.
The rest of this paper is organized as follows. Section 2 is dedicated to prove theorem 1. In Section 3, we

present the necessary and suffi cient conditions for systems (1.4) to have non-algebraic and hyperbolic limit
cycles.

2. Proof of Theorem 1

(1) In the region W = {θ : gm+n+1 (θ) 6= 0} , system (1.3) becomes

dr

dθ
= fm+1(θ)

gm+n+1(θ)
r1−n + fm+n+1(θ)

gm+n+1(θ)
r, (2.1)

which is a Bernoulli equation. By introducing the standard change of variables ρ = rn, we can transform
(2.1) into the linear differential equation

dρ

dθ
= F (θ) ρ+G (θ) , (2.2)

with
F (θ) = n× fm+n+1(θ)

gm+n+1(θ)
and G (θ) = n× fm+1(θ)

gm+n+1(θ)
.

The general solution of equation (2.2) is

ρ (θ) = exp

(∫ θ

0

F (s) ds

)(
k +

∫ θ

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds

)
,

with k ∈ R, which implies that the general solution of the equation (2.1) is

r (θ) = exp

(
1
n

∫ θ

0

F (s) ds

)(
k +

∫ θ

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds

) 1
n

,

with k ∈ R. From this solution, we can obtain a first integral in the variables (x, y) of the form

H (x, y) =
(
x2 + y2

)n
2 exp

(
−
∫ arctan

y
x

0

F (s) ds

)
−
∫ arctan

y
x

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds.

Since this first integral is a function that can be expressed by quadratures of elementary functions, it is a
Liouvillian function; consequently, system (1.2) is Liouvillian integrable. Hence, statement (1) is proved.
(2) Notice that system (1.2) has a periodic orbit if and only if equation (2.1) has a strictly positive 2π-periodic
solution.
The general solution of equation (2.1), with initial condition r (0) = r0, is

r (θ, r0) = exp

(
1
n

∫ θ

0

F (s) ds

)(
rn0 +

∫ θ

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds

) 1
n

.

The condition that the solution starting at r = r0 is periodic reads as

r0 =
n

√
exp(

∫ 2π
0

F (s)ds)
1−exp(

∫ 2π
0

F (s)ds)

∫ 2π

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds.
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Periodicity of r (θ, r0)
We have

r (θ + 2π) = exp

(
1
n

∫ θ+2π

0

F (s) ds

) exp(
∫ 2π
0

F (s)ds)
1−exp(

∫ 2π
0

F (s)ds)

∫ 2π
0
G (s) exp

(
−
∫ s
0
F (w) dw

)
ds∫ θ+2π

0
G (s) exp

(
−
∫ s
0
F (w) dw

)
ds


1
n

,

it follows

r (θ + 2π) = exp

(
1
n

(∫ 2π

0

F (s) ds+

∫ θ+2π

2π

F (s) ds

))
exp(

∫ 2π
0

F (s)ds)
∫ 2π
0

G(s) exp(−
∫ s
0
F (w)dw)ds

1−exp(
∫ 2π
0

F (s)ds)∫ 2π
0
G (s) exp

(
−
∫ s
0
F (w) dw

)
ds

+
∫ θ+2π
2π

G (s) exp
(
−
∫ s
0
F (w) dw

)
ds


1
n

,

i.e.

r (θ + 2π) = exp

(
1
n

∫ θ+2π

2π

F (s) ds

)
exp

(
1
n

∫ 2π

0

F (s) ds

) ∫ 2π
0

G(s) exp(−
∫ s
0
F (w)dw)ds

1−exp(
∫ 2π
0

F (s)ds)

+
∫ θ+2π
2π

G (s) exp
(
−
∫ s
0
F (w) dw

)
ds


1
n

,

by the change of variable u = s− 2π, we obtain∫ θ+2π

2π

F (s) ds =

∫ θ

0

F (s) ds,

and ∫ θ+2π

2π

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds = exp

(
−
∫ 2π

0

F (s) ds

)∫ θ

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds,

then
r (θ + 2π) = r (θ) .

Therefore r (θ, r0) is 2π-periodic.
In order to prove the hyperbolicity of the limit cycle, we introduce the Poincaré return map

γ 7→ Π (γ) = r (2π, γ) = exp

(
1
n

∫ 2π

0

F (s) ds

)(
γn +

∫ 2π

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds

) 1
n

and show that the function of Poincaré first return verify
dΠ

dγ
(γ)

∣∣∣∣
γ=r0

6= 1, see [11]. We have

dΠ

dγ
(γ) =

(
exp

(
1
n

∫ 2π

0

F (s) ds

))
γn−1

(
γn +

∫ 2π

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds

) 1
n−1

,

which implies that

dΠ

dγ
(γ)

∣∣∣∣
γ=r0

=

(
exp

(
1
n

∫ 2π

0

F (s) ds

))
rn−10

(
rn0 +

∫ 2π

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds

) 1
n−1

.

After the substitution of the value of r0 into the previous relationship , we obtain

dΠ

dγ
(γ)

∣∣∣∣
γ=r0

= exp

(∫ 2π

0

F (s) ds

)
6= 1.
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Therefore the solution of the differential equation (2.1) is a hyperbolic limit cycle; consequently, it is a
hyperbolic limit cycle for the system (1.2) .
We consider the system (1.2) with m = 1 and n = 2 having the form

.
x = x+ (y − x)

(
x2 − xy + y2

)
,

.
y = y − (y + x)

(
x2 − xy + y2

)
,

(2.3)

It is easy to check that system (2.3) is a subclass of (1.2) because of P1 (x, y) = x and Q1 (x, y) = y i.e.,
satisfying xQ1 − yP1 ≡ 0. These systems have a non-algebraic and hyperbolic limit cycle, see [8]. Hence,
statement (2) is proved.

3. Application of Theorem 1

In this section, we apply Theorem 1 to systems (1.4) for studying their integrability and the existence of
non-algebraic limit cycles.

Corollary 1. For system (1.4) the following statements hold.

(1) The system (1.4) has the Liouvillian first integral

H (x, y) =
(
x2 + y2

)n
2 exp

(
−nβ
α arctan y

x

)
+ n

α

∫ arctan
y
x

0

exp

(
−nβα s

)
U(s) ds.

(2) If βU > 0 and α 6= 0, the system (1.4) has exactly one non-algebraic, stable and hyperbolic limit cycle
explicitly given in polar coordinates by

r (θ, r0) = exp
(
β
αθ
)rn0 +

∫ θ

0

−n exp
(
−nβα s

)
αU(s) ds


1
n

,

where

r0 = n

√√√√√ exp

(
2πn

β
α

)
exp

(
2πn

β
α

)
−1

∫ 2π

0

n exp

(
−nβα s

)
αU(s) ds.

(3) If βU ≤ 0 or α = 0, the system (1.4) has no periodic orbits.

Proof of Corollary 1. Taking polar coordinates (r, θ) , the systems (1.4) can be written as

.
r = r − βUrn+1,
.

θ = −αUrn.
(3.1)

(1) Using the statement (1) of Theorem 1, we find that the systems (1.4) admits

H (x, y) =
(
x2 + y2

)n
2 exp

(
−
∫ arctan

y
x

0

F (s) ds

)
−
∫ arctan

y
x

0

G (s) exp

(
−
∫ s

0

F (w) dw

)
ds

as a Liouvillian first integral, where
F (θ) = nβ

α ,

G (θ) = −n
αU(θ) .
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After calculation, we get

H (x, y) =
(
x2 + y2

)n
2 exp

(
−nβ
α arctan y

x

)
+ n

α

∫ arctan
y
x

0

exp

(
−nβα s

)
U(s) ds.

Hence, statement (1) of the corollary is proved.
(2) Using the statement (2) of theorem 1, we find that the limit cycle, if it exists, is of the form:

r (θ) = exp
(
β
αθ
)(

rn0 +

∫ θ

0

−n
αU(s) exp

(
−nβα s

)
ds

) 1
n

,

where

r0 = n

√√√√√ exp

(
2πn

β
α

)
exp

(
2πn

β
α

)
−1

∫ 2π

0

n exp

(
−nβα s

)
αU(s) ds.

Notice that

A =
exp

(
2πn

β
α

)
exp

(
2πn

β
α

)
−1
,

B =
n exp

(
−nβα s

)
αU(s) .

i.e.

r0 =
n

√
A

∫ 2π

0

Bds.

As βU > 0 and α 6= 0, then (A > 0 and B > 0) or (A < 0 and B < 0) , which implies that r0 > 0.
By the proof of Theorem 1, r (θ, r0) is 2π−periodic. To demonstrate that the solution r (θ, r0) is periodic, it
suffi ces to show that it is strictly positive.

Strict Positivity of r (θ, r0) for θ ∈ [0, 2π[ .

To study the strict positivity of r (θ, r0), we distinguish two cases αU < 0 and αU > 0.
When αU < 0, It’s clear that r (θ, r0) is strictly positive.
When αU > 0, we have αβ is strictly positive, which implies that A > 1 and therefore

r (θ, r0) = exp
(
β
αθ
)A ∫ 2π

0

n exp

(
−nβα s

)
αU(s) ds−

∫ θ

0

n exp

(
−nβα s

)
αU(s) ds


1
n

≥ exp
(
β
αθ
)∫ 2π

0

n exp

(
−nβα s

)
αU(s) ds−

∫ θ

0

n exp

(
−nβα s

)
αU(s) ds


1
n

because of A > 1

≥ exp
(
β
αθ
)∫ 2π

θ

n exp

(
−nβα s

)
αU(s) ds


1
n

> 0 because of αU > 0.

Stability of r (θ, r0)

We have
F (s) = nβ

α and
.

θ = −αUrn+1.
It has been shown in the proof of statement 1 of Theorem1 that the limit cycle in the case of its existence
is hyperbolic. To study stability, two cases arise.
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When αU < 0, it’s easy to see that F < 0 and
.

θ > 0 which implies that

dΠ

dγ
(γ)

∣∣∣∣
γ=r0

= exp

(∫ 2π

0

F (s) ds

)
< 1.

Therefore the solution of the differential equation (3.1) is a stable and hyperbolic limit cycle; consequently,
it is a stable and hyperbolic limit cycle for the system (1.4) .

When αU > 0, we have F > 0 and
.

θ < 0 which implies that

dΠ

dγ
(γ)

∣∣∣∣
γ=r0

= exp

(∫ 2π

0

F (s) ds

)
> 1.

Therefore the solution of the differential equation (3.1) is an unstable and hyperbolic limit cycle. Conse-
quently, it is a stable and hyperbolic limit cycle for the system (1.4) .
Clearly in the (x, y) plane, the curve (r cos θ, r sin θ) with

rn (θ, r0) = exp
(
nβ
α θ
)rn0 +

∫ θ

0

−n exp
(
−nβα s

)
αU(s) ds


is not algebraic, due to the expression exp

(
nβ
α θ
)
rn0 . So the limit cycle it also non-algebraic. Since the

Poincaré return map possesses only one fixed point r0, the system (1.4) admits exactly one limit cycle. This
completes the proof of statement (2) of corollary.
(3) It is easy to check that if βU < 0, then A and B have different signs, and if αβU = 0, then A or B is
not defined. This implies that if βU ≤ 0 or α = 0, then r0 is not defined, or it is negative. So the systems
(1.4) do not have periodic orbits. Hence, statement (3) of the corollary is proved.

4. Application of Corollary 1

In this section, we apply the Corollary 1 to system (1.4) for U =
(
ax2 − bxy + ay2

)n
. The system becomes

.
x = x+ (αy − βx)

(
ax2 − bxy + ay2

)n
,

.
y = y − (βy + αx)

(
ax2 − bxy + ay2

)n
.

(4.1)

In [9], Bokoucha determined suffi cient conditions for the existence of a limit cycle for systems (4.1). In
the following proposition, we complete what has been done, where we establish suffi cient and necessary
conditions for its existence.

Proposition 1. For system (4.1) , these following assertions are true.

(1) The system (4.1) has the Liouvillian first integral

H (x, y) =
(
x2 + y2

)n
exp

(
−2nβ
α arctan y

x

)
+ 2n

α

∫ arctan
y
x

0

exp

(
− 2nβα s

)
(
a− b2 sin 2s

)n ds.

(2) The system (4.1) has exactly one non-algebraic, stable and hyperbolic limit cycle if and only if one of
the following statements holds

i) n is even, α 6= 0, β > 0 and |b| < 2 |a| .
ii) n is odd, α 6= 0, β > 0 and |b| < 2a.
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iii) n is odd, α 6= 0, β < 0 and 2a < − |b| .

Moreover, this limit cycle is given in polar coordinates by

r (θ, r0) = exp
(
β
αθ
)rn0 +

∫ θ

0

−2n exp
(
− 2nβα s

)
α

(
a− b2 sin 2s

)n ds


1
2n

,

where

r0 = 2n

√√√√√ exp

(
4πn

β
α

)
exp

(
4πn

β
α

)
−1

∫ 2π

0

2n exp

(
− 2nβα s

)
α

(
a− b2 sin 2s

)n ds.

(3) The system (4.1) has no periodic orbits if and only if one of the following statements holds

i) αβ = 0 or |b| ≥ 2 |a| .
ii) n is even, α 6= 0, β < 0 and |b| < 2 |a| .
iii) n is odd, α 6= 0, β < 0 and |b| < 2a.

iv) n is odd, α 6= 0, β > 0 and 2a < − |b| .

Remark 1. Bokoucha in [9], studied only the case where α > 0, β > 0 and |b| < 2a.

The following lemma gives necessary and suffi cient conditions on the sign of U =
(
ax2 − bxy + ay2

)n
.

Lemma 2. Consider U =
(
ax2 − bxy + ay2

)n
.

1) U > 0 if and only if one of the following statements holds

i) n is even and |b| < 2 |a| .
ii) n is odd and |b| < 2a.

2) U < 0 if and only if n is odd and 2a < − |b| .

3) U = 0 if and only if |b| ≥ 2 |a| .

Proof of proposition 1. The proof of proposition is an immediate consequence of Corollary 1 and Lemma
2.

5. Examples

In this section, we present some examples to illustrate the applicability of the our main results. In addition,
plots of phase portraits on the Poincaré disc for each example are performed.

Example 1. In the system (4.1), we take α = β = a = −b = 1 and n = 1, we obtain
.
x = x+ (y − x)

(
x2 + xy + y2

)
,

.
y = y − (y + x)

(
x2 + xy + y2

)
.

(5.1)

which has a non-algebraic, stable and hyperbolic limit cycle whose expression in polar coordinates is

r (θ, r0) = exp (θ)

√
r0 +

∫ θ

0

−2 exp(−2s)(
1− 12 sin 2s

)ds,
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Figure 5.1: The phase portrait on the Poincaré disc of the system (5.1), showing a limit cycle.

where

r0 =

√
exp(4π)
exp(4π)−1

∫ 2π

0

2 exp(−2s)(
1− 12 sin 2s

)ds ' 1.1912.

Example 2. In the system (4.1), we take α = β = 1, a = b = −2 and n = 2, we obtain

.
x = x+ (y − x)

(
−2x2 + 2xy − 2y2

)2
,

.
y = y − (y + x)

(
−2x2 + 2xy − 2y2

)2
.

(5.2)

which has a non-algebraic, stable and hyperbolic limit cycle whose expression in polar coordinates is

r (θ, r0) = exp (θ)

(
r20 +

∫ θ

0

−4 exp(−4s)
(−2+sin 2s)2 ds

) 1
4

,

where

r0 =
4

√
exp(8π)
exp(8π)−1

∫ 2π

0

4 exp(−4s)
(−2+sin 2s)2 ds ' 0.8163.

Figure 5.2: The phase portrait on the Poincaré disc of the system (5.2), showing a limit cycle



128 Non-Algebraic Limit Cycles

Acknowledgment. This work has been realized thanks to: Direction Générale de la Recherche Scien-
tifique et du Développement Technologique (DGRSDT), MESRS, Algeria and research project under code:
PRFU C00L03UN190120180007.

References

[1] Kh. I. T. Al-Dosary, Non-algebraic limit cycles for parameterized planar polynomial systems, Int. J. of
Math., 18(2007), 179—189.

[2] A. Bendjeddou, R. Benterki and T. Salhi, Explicit non-algebraic limit cycles for polynomial systems of
degree seven, Appl. Math. Sc., 13(2009), 613—622.

[3] A. Bendjeddou, A. Berbache and R. Cheurfa, A class of Kolmogorov system with exact algebraic limit
cycle, Int. J. of Diff. Equa. Appli, 14(2015), 159—165.

[4] A. Bendjeddou and R. Cheurfa, On the exact limit cycle for some class of planar differential systems,
Nonlinear Diff. Equ. Appl., 14(2007), 491—498.

[5] A. Bendjeddou and R. Cheurfa, Cubic and quartic planar differential system with exact algebraic limit
cycles, Elect. J. of Diff. Equ., 15(2011), 1—12.

[6] A. Bendjeddou and M. Grazem, A class of quintique Kolmogorov systems with explicit non-algebraic
limit cycle, J. of Sib. Fed. Un. Math. & Phy., 12(2019), 285—297.

[7] A. Bendjeddou, J. Llibre and T. Salhi, Dynamics of the differential systems with homogeneous nonlin-
earities and a star node, J. Differential Equations, 254(2013), 3530—3537.

[8] R. Benterki and J. Llibre, Polynomial differential systems with explicit non-algebraic limit cycles, Elec-
tron. J. Differential Equations, 2012, No. 78, 6 pp.

[9] R. Boukoucha, Explicit limit cycle of a family of polynomial differential systems, Electron. J. Differential
Equations 2017, Paper No. 217, 7 pp.

[10] L. Cairó and J. Llibre, Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having
a rational first integral of degree 2, J. Phys. A., 40(2007), 6329—6348.

[11] F. Dumortier, J. Llibre and J. Artés, Qualitative Theory of Planar Differential Systems, (Universitex)
Berlin, Springer, 2006.

[12] A. Gasull, H. Giacomini and J. Torregrosa, Explicit non-algebraic limit cycles for polynomial systems,
J. Comput. Appl. Math., 200(2007), 448—457.

[13] H. Giacomini, J. Llibre and M. Viano, On the nonexistence, existence and uniqueness of limit cycles,
Nonlinearity, 9(1996), 501—516.

[14] J. Giné and M. Grau, A note on relaxation oscillator with exact limit cycles, J. Math. Anal. Appl.,
324(2006), 739—745.

[15] J. Giné and M. Grau, Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using
Riccati equations, Nonlinearity, 19(2006), 1939—1950.

[16] K. Odani, The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations,
115(1995), 146—152.

[17] L. Perko, Differential equations and dynamical systems, 3rd ed., Texts in Applied Mathematics, 7.
Springer-Verlag, New York, 2001.


	Introduction and Statement of the Main Results
	Proof of Theorem ??
	Application of Theorem ??
	Application of Corollary ??
	Examples

