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Abstract

In the present study we consider generalized rotational surfaces in Euclidean 4-space E4. Further, we
obtain some curvature properties of these surfaces. We also introduce some kind of generalized rotational
surfaces in E4 with the choice of meridian curve. Finally, we give some examples.

1 Introduction

In the 3D differential geometry, surface of revolution has wide applications in many areas. Especially, they
have been studied in kinematics and soliton theory [16]. In [17], Cole studied the general theory of rotations
in 4-dimensional Euclidean space in E4. Later, Moore considered the general rotational surface M in E4
with the parametrization of the form

x̃1(u, v) = x1(u) cos cv − x2(u) sin cv,

x̃2(u, v) = x1(u) sin cv + x2(u) cos cv,

x̃3(u, v) = x3(u) cos dv − x4(u) sin dv,

x̃3(u, v) = x3(u) sin dv + x4(u) cos dv,

(1)

where, γ(u) = (x1(u), x2(u), x3(u), x4(u)) is the meridian curve, c and d are the rates of rotation in fixed
planes of the rotation [13]. If c or d is zero, then the surface generated by (1) becomes a (simple) rotational
surface. However, the rotational surfaces in E4 with constant curvatures are studied in [14] and [7]. If one can
choose the meridian curve γ(u) in the x1x3-plane as γ(u) = (x1(u), 0, x3(u), 0) then the resultant rotational
surface should have the parametrization

M1 : W (u, v) = (x1(u) cos cv, x1(u) sin cv, x3(u) cos dv, x3(u) sin dv) , (2)

where u ∈ I ⊂ R, v ∈ (0, 2π) and c2x21(u) +d2x23(u) > 0 on I [4], [8], [10]. Moreover, for the values c = d = 1
and x1(u) = r(u) cosu, x3(u) = r(u) sinu in (2) the rotational surface is known as Vranceanu rotational
surface in E4 [15].
Meanwhile, if we consider the meridian curve as a space curves, γ(u) ⊂ R3 then the rotational surface in

E4 should have the parametrization;

M2 : Z(u, v) = (x1(u), x2(u), x3(u) cos v, x3(u) sin v); (3)

u ∈ I, v ∈ (0, 2π), which means that, M2 is obtained by the rotation of the curve γ(u) around the unit circle

δ(v) = (cos v, sin v) [9]. These surfaces are also known as spherical product surfaces in E4 [5].
Furthermore, if we rotate the planar curve γ(u) = (x1(u), x2(u)) around a space curve δ(v) satisfying

the conditions, ‖δ(v)‖ = 1,
∥∥δ′(v)

∥∥ = 1. Then the resultant rotational surface in E4 should have the
parametrization

M3 : Y (u, v) = x1(u)−→e 1 + x2(u)δ(v) (4)
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where u ∈ I ⊂ R, v ∈ (0, 2π) and −→e 1 = (1, 0, 0, 0). Actually, these surfaces are called meridian surfaces in

E4 (See, [11], [2] and [1]).
This paper is organized as follows: In section 2 we give some basic concepts of the second fundamental

form and curvatures of the surfaces in E4. In Section 3 we consider generalized rotational surface given with
c = 0, d = 1 in (1). That is, after the rotation the point with coordinates x1, x2, x3, x4 passes into the point
with the coordinates x̃1, x̃2, x̃3, x̃4 by

x̃1(u, v) = x1(u, v),

x̃2(u, v) = x2(u, v),

x̃3(u, v) = x3(u) cos v − x4(u) sin v,

x̃3(u, v) = x3(u) sin v + x4(u) cos v.

(5)

Further, we obtain some curvature properties of the generalized rotational surface given with the position

vector (5). We also introduce some kind of generalized rotational surfaces in E4 with the choice of meridian
curve γ(u). Consequently, we obtained some results related with their curvatures. Finally, we give some
examples of these type of surfaces.

2 Basic Concepts

Let M be a local surface in E4 given with position vector X(u, v). The tangent space TpM is spanned by
the vector fields Xu and Xv. In the chart (u, v) the coeffi cients of the first fundamental form of M are given
by

E = 〈Xu, Xu〉, F = 〈Xu, Xv〉 , G = 〈Xv, Xv〉 , (6)

where 〈, 〉 is the inner product in E4. We assume that X(u, v) is regular i.e., W 2 = EG− F 2 > 0. Let ∇̃ be
the Riemannian connection of E4, and X1 = Xu, X2 = Xv tangent vector fields of M then Gauss equation
gives

∇̃XiXj =

2∑
k=1

ΓkijXk +

2∑
α=1

LαijNα; 1 ≤ i, j ≤ 2, (7)

where Lαij are the coeffi cients of the second fundamental form with respect to unit normal vector Nα and

Γkij are the Christoffel symbols of M [12].

Consequently, the Gaussian curvature and mean curvature vector
−→
H of M are given by

K =
1

W 2

2∑
α=1

(
Lα11L

α
22 − (Lα12)

2
)

(8)

and

−→
H =

1

2W 2

2∑
α=1

(ELα22 − 2FLα12 +GLα11)Nα (9)

respectively. The norm
∥∥∥−→H∥∥∥ of the mean curvature vector −→H is known as mean curvature ofM . Recall that,

a surface M is said to be minimal (resp. flat) if its mean curvature (resp. Gaussian curvature) vanishes
identically [3, 6].

3 General Rotational Surfaces in E4

Let M be a general rotational surface defined by the following parametrization

X(u, v) = (x1(u), x2(u), x3(u) cos v − x4(u) sin v, x3(u) sin v + x4(u) cos v) (10)
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where
γ(u) = (x1(u), x2(u), x3(u), x4(u)) ,

is the meridian curve of the surface M .
In the sequel, two situations have been dealt with in relation to the case of the meridian curve of the

general rotation surface. Some results related to the rotation surface in each case have been obtained.
Case I. Suppose

x3(u) = r(u) cosϕ(u) and x4(u) = r(u) sinϕ(u). (11)

Then the resultant rotational surface should have the following parametrization

M : X(u, v) = (x1(u), x2(u), r(u) cosα, r(u) sinα) (12)

where α(u, v) = ϕ(u) + v and r(u), ϕ(u) are smooth functions.
The tangent space TpM of M is spanned by{

Xu = (x′1, x
′
2, r
′cosα− ϕ′r sinα, r′ sinα+ ϕ′r cosα) ,

Xv = (0, 0,−r sinα, r cosα) .
(13)

We may consider the profile curve γ(u) has arclength parameter, i.e.,

‖γ′(u)‖2 = (x′1)
2

+ (x′2)
2

+ (r′)
2

+ r2 (ϕ′)
2

= 1. (14)

Consequently, the coeffi cients of first fundamental form become
E = 〈Xu, Xu〉 = 1,

F = 〈Xu, Xv〉 = r2(u)ϕ′(u),

G = 〈Xv, Xv〉 = r2(u),

(15)

where 〈, 〉 is the standard scalar product in E4.
The second partial derivatives of X(u, v) are expressed as follows

Xuu(u, v) = (x′′1 , x
′′
2 , A(u, v), B(u, v)),

Xuv(u, v) = (0, 0,−r′ sinα− rϕ′ cosαϕ′, r′ cosα− rϕ′ sinα),

Xvv(u, v) = (0, 0,−r cosα,−r sinα),

(16)

where A(u, v) and B(u, v) are differentiable functions defined by{
A(u, v) = r′′ cosα− 2r′ϕ′ sinα− r(ϕ′)2 cosα− rϕ′′ sinα,
B(u, v) = r′′ sinα+ 2r′ϕ′ cosα− r(ϕ′)2 sinα+ rϕ′′ cosα.

The normal space is spanned by the vector fields

N1 =
1

λ
(−x′2, x′1, 0, 0) and N2 =

1

λ
√

1− r2(ϕ′)2
(
r′x′1, r

′x′2,−λ2 cosα,−λ2 sinα
)
. (17)

where
λ2 = (x′1)

2
+ (x′2)

2
, (18)

is the differentiable function. Hence, the coeffi cients of the second fundamental form of the surface are

L111 = 〈Xuu(u, v), N1(u, v)〉 = κ1(u)
λ ,

L112 = 〈Xuv(u, v), N1(u, v)〉 = 0,

L122 = 〈Xvv(u, v), N1(u, v)〉 = 0,

L211 = 〈Xuu(u, v), N2(u, v)〉 =
r′λλ′−λ2(r′′−r(ϕ′)2)

λ
√
1−r2(ϕ′)2

,

L212 = 〈Xuv(u, v), N2(u, v)〉 = λrϕ′√
1−r2(ϕ′)2

,

L222 = 〈Xvv(u, v), N2(u, v)〉 = λr√
1−r2(ϕ′)2

,

(19)
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where
κ1(u) = x′1(u)x′′2(u)− x′′1(u)x′2(u),

is the smooth function.
Consequently, by the use the equations (15) and (19) with (8) we obtain the following result.

Theorem 1 Let M be a general rotational surface in E4 given with the parametrization (12). Then the
Gaussian curvature of M at point p is

K = −
r′′
(

1− r2 (ϕ′)
2
)

+ rr′ϕ′ (rϕ′′ + r′ϕ′)

r
(

1− r2 (ϕ′)
2
)2 . (20)

For the vanishing Gaussian curvature we give the following examples.

Example 1 The general rotational surfaces given with the following parametrization have vanishing Gaussian
curvatures

(i) X(u, v) = (x1(u), x2(u), c cosα, c sinα),

(ii) X(u, v) = (x1(u), x2(u), (au+ b) cos(c+ v), (au+ b) sin(c+ v)),

(iii) X(u, v) = (x1(u), x2(u), (au+ b) cos(c+ d ln(u+ b
a ) + v), (au+ b) sin(c+ d ln(u+ b

a ) + v)),

where a, b, c and d are real constants.

Let us denote be H =
∥∥∥−→H∥∥∥ the mean curvature of the general rotational surface M in E4. Consequently,

by (15) and (19) with (9) we obtain the following result.

Theorem 2 Let M be a general rotational surface in E4 given with the parametrization (12). Then the
mean curvature of M at point p is∥∥∥−→H∥∥∥2 =

1

4r2
(

1− r2 (ϕ′)
2
)3 {1− (r′)

2 − 3r2 (ϕ′)
2

+ 2r4 (ϕ′)
4

+ 4r4 (r′)
2

(ϕ′)
4

−4r2 (r′)
2

(ϕ′)
2 − 6r3r′ϕ′ϕ′′ + 4r5r′ (ϕ′)

3
ϕ′′ − r4 (ϕ′′)

2

+r2κ2γ − 2rr′′ − r4κ2γ (ϕ′)
2

+ 6r′′r3 (ϕ′)
2 − 4r5r′′ (ϕ′)

4}. (21)

However, by taking r = 1 in the equation (21), the following result is obtained.

Corollary 1 Let M be a general rotational surface in E4 given with the radius function r(u) = 1. Then the
mean curvature of M at point p becomes

∥∥∥−→H∥∥∥2 =
1

4
(

1− (ϕ′(u))
2
)2
(
κ2γ + 1− 2 (ϕ′(u))

2 − (ϕ′′(u))
2

1− (ϕ′(u))
2

)
(22)

where κγ is the curvature of the meridian curve γ.

As a consequence of (22) we obtain the following result.

Corollary 2 Let M be a general rotational surface in E4 given with the radius function r(u) = 1. Then M

has positive mean curvature
∥∥∥−→H∥∥∥ > 1

2 .
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Proof. Now, one can obtain this expression in terms of κγ and the derivatives of φ. Because the parameter
u is the arc length of γ, then

(x′1)
2 + (x′2)

2 + (x′3)
2 + (x′4)

2 = 1,

and λ2 = 1− (ϕ′(u))
2
. Remark that, ‖γ′′(u)‖ = κγ . Hence, we have

κ2γ = (x′′1)2 + (x′′2)2 + (ϕ′)
4

+ (ϕ′′)
2
. (23)

Furthermore, we can write

x′1 =

√
1− (ϕ′)

2
cos θ and x′2 =

√
1− (ϕ′)

2
sin θ. (24)

Then, we have

x′′1 = −ϕ
′ϕ′′

λ
cos θ − λθ′ sin θ and x′′2 = −ϕ

′ϕ′′

λ
sin θ + λθ′ cos θ. (25)

We have two expressions

κ2γ =
(ϕ′)

2
(ϕ′′)

2

(1− (ϕ′)
2
)

+ (1− (ϕ′)
2
)
(
θ′
)2

+ (ϕ′)
4

+ (ϕ′′)
2
. (26)

Consequently, summing up (22)—(26) we obtain

∥∥∥−→H∥∥∥2 =

(
θ′
)2

4(1− (ϕ′)
2
)

+
1

4
. (27)

This completes the proof of the corollary.

Case II. Suppose x4 = λx3, λ ∈ R, then the position vector of the rotational surface M is represented
by

X(u, v) = (x1(u), x2(u), x3(u) (cos v − λ sin v) , x3(u) (sin v + λ cos v)) . (28)

Then the coeffi cients of the first fundamental form of M become
E = 〈Xu, Xu〉 = 1,

F = 〈Xu, Xv〉 = 0,

G = 〈Xv, Xv〉 =
(
1 + λ2

)
x23(u).

(29)

The second partial derivatives of X(u, v) are expressed as follows
Xuu(u, v) = (x1

′′, x2
′′, x′′3 (cos v − λ sin v) , x′′3 (sin v + λ cos v)),

Xuv(u, v) = (0, 0, x′3 (− sin v − λ cos v) , x′3 (cos v − λ sin v)),

Xvv(u, v) = (0, 0, x3 (− cos v + λ sin v) , x3 (− sin v − λ cos v)).

(30)

The normal space of M is spanned by the vector fields N1 = 1
κγ

(x′′1 , x
′′
2 , x
′′
3 (cos v − λ sin v) , x′′3 (sin v + λ cos v)),

N2 =

√
1+λ2

κγ
(x′2x

′′
3 − x′′2x′3, x′3x′′1 − x′1x′′3 ,

κ1(cos v−λ sin v)
1+λ2

, κ1(sin v+λ cos v)
1+λ2

),
(31)

where
κγ =

√
(x′′1)2 + (x′′2)2 +

(
1 + λ2

)
(x′′3)2,

is the curvature of the curve γ and
κ1 = x′1x

′′
2 − x′2x′′1 ,
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is a smooth function.
As in the previous case, the coeffi cients of the second fundamental form of the surface are given by

L111 = 〈Xuu(u, v), N1(u, v)〉 = κγ ,

L112 = 〈Xuv(u, v), N1(u, v)〉 = 0,

L122 = 〈Xvv(u, v), N1(u, v)〉 =
−x3x′′3 (1+λ2)

κγ
,

L211 = 〈Xuu(u, v), N2(u, v)〉 = 0,

L212 = 〈Xuv(u, v), N2(u, v)〉 = 0,

L222 = 〈Xvv(u, v), N2(u, v)〉 =
−x3κ1

√
1+λ2

κγ
.

(32)

Substituting (32) with (29) into (8) we get the following result.

Theorem 3 Let M be a surface given with the parametrization (28). Then, the Gaussian curvature of M
is given by

K = −x
′′
3(u)

x3(u)
.

As a consequence of Theorem 3 we obtain the following result.

Corollary 3 ([1]) Let M be a surface given with the position vector (28). Then the following statements
are valid;

i) If x3(u) = aecu+be−cu then the corresponding surface is pseudo-spherical, i.e., it has negative Gaussian
curvature K = − 1

c2 ,

ii) If x3(u) = a cos cu + b sin cu then the corresponding surface is spherical, i.e., it has positive Gaussian
curvature K = 1

c2 ,

iii) If x3(u) = au+ b then the corresponding surface is flat,

where a, b and c are real constants.

The following examples are due to T. Otsuki given in [18].

Example 2 For the case λ = 0, x3(u) = sinu the surface patch (28) becomes

X(u, v) = (x1(u), x2(u), sinu cos v, sinu sin v)

where, u ∈ I, 0 ≤ v < 2π. In [18] T. Otsuki considers the following surface patches

a) x1(u) = 4
3 cos3(u2 ), x2(u) = 4

3 sin3(u2 ), x3(u) = sinu,

b) x1(u) = 1
2 sin2 u cos(2u), x2(u) = 1

2 sin2 u sin(2u), x3(u) = sinu.

One can show that these surfaces both have constant Gaussian curvature K = 1. The surface given in (a) is
called Otsuki (non-round) sphere in E4 which does not lie in a 3-dimensional subspace of E4.
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