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Abstract

In this paper, we discuss the inverse Sturm-Liouville problem. We show a new uniqueness theorem
and some results related to it.

1 Introduction

We consider following boundary value problem L on [0, 1],

− y′′ + q(x)y = λy, (1)

y′(0)− hy(0) = 0, (2)

y′(1) +Hy(1) = 0, (3)

where h,H ∈ R and λ is a spectral parameter. q(x) is the real valued function and q(x) ∈ L2(0, 1). The
values of the λ parameter for which (1)—(3) has nonzero solutions are called eigenvalues {λn}n≥0 and the
corresponding nontrivial solutions are called eigenfunctions {yn(x)}n≥0 . Some important results on the
properties of eigenvalues and eigenfunctions of Sturm-Liouville problem have been published in various
publications (see, [4, Chapter 3], [5], [29]) and the references therein). It is known that the spectrum of such
problems consists of countable many real eigenvalues, which have no finite limit point.
Inverse spectral problems consist in recovering the coeffi cients of an operator from their spectral char-

acteristics. The inverse spectral problem for L is to determine the potential function q(x) from some given
data. The first result on this area is given by Ambarzumian [1]. Inverse Sturm-Liouville problems, which
appear in mathematical physics and other branches of natural sciences, have now been studied for about 90
years (see, [6], [11], [14]—[22], [24], [28] and the references therein). Borg [2] showed that generally a single
spectrum is insuffi cient to determine the potential. He also proved that if q is symmetric about the midline,
q(1− x) = q(x) and if h = H, then a single spectrum {λn}n≥0 uniquely determines the potential. Levinson
[14] considerably shortened the proofs using complex analysis techniques. However, if a finite number of
eigenvalues in one spectrum is unknown, q is not uniquely determined. Hald [9] showed that the lowest
eigenvalue must be taken into account in order to determine the boundary conditions as well as the sym-
metric potential. He gave a counterexample that there are different symmetric potentials q(x) such that the
two Sturm-Liouville problems have the same spectrum except lowest eigenvalues.
The half inverse Sturm-Liouville problem which is one of the important subjects of the inverse spectral

theory has been studied firstly by Hochstadt and Lieberman in [12]. They proved that a single spectra
and the potential on the interval [1/2, 1] uniquely determine the potential q(x) on the whole interval [0, 1].
Since then, this result has been generalized to various versions. Some uniqueness results as Hochstadt and
Lieberman-type theorems have been given in [7], [8], [13], [23]. Castillo discussed the half-inverse problem
for (1)—(3). He [3] gave a counterexample that show the necessity of coeffi cient h. Wei and Xu [25] solved
an open problem of missing one eigenvalue presented in [7]. They showed that only one spectrum missing
one eigenvalue is suffi cient to achieve the Hochstadt and Lieberman’s result. Similarly, Wang [27] proved a
Borg-type theorem for a missing eigenvalue.
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The purpose of this note is to give a new uniqueness theorem. Under the light of above studies, our result
contains in the cases symmetric potential and half inverse problem. We shall not require a finite number of

eigenvalues but rather suppose
1∫
0

q(t) cos 2nπtdt is known for n = 1, . . . , k − 1.

2 Main Results

Together with L, we consider a boundary value problem L̃ = L(q̃(t), h,H) of the same form but with different
coeffi cient q̃(t). We assume that if a certain symbol s denotes an object related to L , then s̃ will denote an
analogous object related to L̃. We give following uniqueness theorem.

Theorem 1 Let an =
1∫
0

q(t) cos 2nπtdt. We assume that h, H,
1∫
0

|q(t)| dt,
1∫
0

|q̃(t)| dt ≤ k
15 for k ∈ N and

k ≥ 5. If an = ãn for n = 1, . . . , k − 1 and λn = λ̃n for n ≥ k, then

q(x) + q(1− x) = q̃(x) + q̃(1− x)

almost everywhere on [0, 1/2] .

Under the assumptions of the Theorem 1, the following corollaries which are analogies to Levinson and
Hochstadt-Lieberman’s results can be given.

Corollary 2 If q(x) = q(1− x) and q̃(x) = q̃(1− x) then q(x) = q̃(x) a.e. on [0, 1].

Corollary 3 If q(x) = q̃(x) on [1/2, 1] then q(x) = q̃(x) a.e. on [0, 1].

Corollary 4 If q(x) = −q(1− x) and q̃(x) = q̃(1− x) then q̃(x) = 0 a.e. on [0, 1].

The following lemmas are important for proof of the main result.

Lemma 5 ([10, Lemma 1]) We assume that h, H,
1∫
0

|q(t)| dt ≤ k
15 for k ∈ N and k ≥ 5. For n ≥ k, the

eigenvalues satisfy

λn = (nπ)
2 + 2

h+H +
1

2

1∫
0

q(t)(1 + cos 2nπt)dt

± k2

10n
(4)

and the eigenfunctions satisfy

yn(x) = cosnπx±
k

10n
. (5)

Here r = s± ε means that r = s+ θε for some |θ| ≤ 1.

The assertion of following Lemma is proven in the proof of [10, Lemma 1].

Lemma 6 Let n be fixed and m = nπ + a
nπ + γ

(
k
5nπ

)2
with |γ| ≤ 0.69 correspond to an eigenvalue. The

function cosmx satisfies

cosmx = (−1)j
(
1

nπ

(
a
j − 1/2
n

+ b

)
+ cd

)
± 0.779

(
k

5nπ

)2
(6)

for j = 1, 2, . . . , n where

a = h+H +
1

2

1∫
0

q(t)(1 + cos 2nπt)dt,
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b = h+
1

2

(j−1/2)
n∫
0

q(t)(1 + cos 2nπt)dt− a (j − 1/2)
n

,

|c| = 1, d ≤ 0.423 k

5nπ
.

Proof of Theorem 1. Let us write the equation (1) for yn and ỹn

− y′′n(x) + q(x)yn(x) = λnyn(x), (7)

− ỹ′′n(x) + q̃(x)ỹn(x) = λnỹn(x), (8)

for n ≥ k. If we apply the classical procedure:

i) multiply (7) by ỹn(x) and (8) by yn(x);

ii) subtract from each other, then we get

[yn(x)ỹ
′
n(x)− y′n(x)ỹn(x)]

′
= [q(x)− q̃(x)] yn(x)ỹn(x).

By integrating both sides of this equality on [0, 1], we obtain

[yn(x)ỹ
′
n(x)− y′n(x)ỹn(x)]

1
0 =

1∫
0

[q(x)− q̃(x)] yn(x)ỹn(x)dx.

Now let us see which boundary conditions satisfy ỹn(x) and by yn(x) at 0 with x = 1. Since h = h̃, H = H̃,
we have that

1∫
0

[q(x)− q̃(x)] yn(x)ỹn(x)dx = 0, n ≥ k.

Let k and k̃ be defined as in Lemma 5 and assume that k ≥ k̃. Also, we have that

yn(x)ỹn(x) =
1 + cos 2nπx

2
± k

(5n)
2 ±

(
k

10n

)2
±
(
k

5n

)3
from (5) and (6). It is obvious that

1∫
0

[q(x)− q̃(x)]
(
1 + cos 2nπx

2
± k

(5n)
2 ±

(
k

10n

)2
±
(
k

5n

)3)
dx = 0, n ≥ k. (9)

On the other hand, one can show by using (4) that

λn − λ̃n =
1∫
0

(q(x)− q̃(x)) dx = 0, n ≥ k.

It is easy to check that

lim
n→∞

(
λn − λ̃n

)
=

1∫
0

(q(x)− q̃(x)) dx = 0. (10)
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We obtain that (
1

2
± k

(5n)
2 ±

(
k

10n

)2
±
(
k

5n

)3) 1∫
0

[q(x)− q̃(x)] dx = 0, n ≥ k. (11)

Using (9), (10) and (11) we have that

1∫
0

[q(x)− q̃(x)] cos 2nπxdx = 0, n = 0 and n ≥ k. (12)

This result and the assumptions of the theorem show that

1∫
0

[q(x)− q̃(x)] cos 2nπxdx = 0, n ≥ 0

and so
1/2∫
0

[q(x)− q̃(x)] cos 2nπxdx+
1/2∫
0

[q(1− x)− q̃(1− x)] cos 2nπxdx = 0, n ≥ 0.

Thus can be rewritten as
1/2∫
0

[
φ(x)− φ̃(x)

]
cos 2nπxdx = 0, n ≥ 0

where φ(x) = q(x) + q(1− x). By the completeness of the functions {cos 2nπx}∞n=0 on [0, 1/2] (see [26]), we
have that

φ(x) = φ̃(x)

and so q(x) + q(1− x) = q̃(x) + q̃(1− x) on [0, 1/2] almost everywhere. The proof is complete.
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