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Abstract

Applying the concept of fractional q-calculus, we introduce the subclass T S
m

q (δ, λ, α, β) of β-uniformly
starlike and β-uniformly convex functions involving a linear multiplier fractional q-differintegral operator.
A characterization of those functions belonging to the newly-introduced subclass T S

m

q (·) is provided.
Results on growth and distortion theorems, extreme points and other interesting properties of the subclass
are also investigated.

1 Introduction and Preliminaries

The fractional q-calculus is the q-extension of the ordinary fractional calculus. The theories of q-calculus
operators have been applied in such many areas of mathematics, statistics and physics as (for example)
ordinary fractional calculus, optimal control problems, and solutions of the q-difference. For more other
results involving the fractional q-calculus and its applications, one may refer to such works as [1, 3, 4, 5, 8, 13].

A firm footing of the usage of the q-calculus in the context of geometric function theory was provided
in the book [18]. Recently, many authors have introduced new classes of analytic functions using q-calculus
operators. For some recent investigations on the classes of analytic functions defined by using q-calculus
operators and related topics, we refer the reader to [10, 11, 12, 15, 16] and the references cited therein. In
this paper, we aim to introduce a new generalized class of β-uniformly starlike functions and β-uniformly
convex functions defined by fractional q-calculus operators, which is analytic in the open unit disk. Some
interesting and (potentially) useful properties of those functions are also investigated. It is also noted that
the results presented here are general enough to reduce to yield many simpler ones. Throughout this paper,
let C and N denote the sets of complex numbers and positive integers, respectively, and let N0 := N ∪ {0}.

The following notations and definitions are recalled (see, e.g. [19, Chapter 6]): The q-shifted factorial
(a; q)n is defined by

(α; q)n :=

n−1
∏

k=0

(

1 − αqk
)

(n ∈ N), (1)

where α, q ∈ C and it is assumed that α 6= q−m (m ∈ N0). It is noted that the limiting case as q → 1− of
(α; q)n in (1) yields the familiar Pochhammer symbol (α)n defined by (α)0 = 1 and (α)n = α(α +1) · · · (α +
n − 1) (n ∈ N). We also write

(α; q)∞ :=

∞
∏

k=0

(

1 − α qk
)

(α, q ∈ C; |q| < 1). (2)

When α 6= 0 and |q| ≥ 1, the infinite product in (2) diverges. So, whenever (α; q)∞ is involved in a given
formula, the constraint |q| < 1 will be tacitly assumed. The (α; q)n in (1) can be expressed in terms of the
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q-Gamma function defined by

Γq(x) =
(q; q)∞(1 − q)1−x

(qx; q)∞
(0 < q < 1) (3)

as follows:

(qα; q)n =
Γq(α + n)(1 − q)n

Γq(α)
(n ∈ N). (4)

The q-derivative of a function f(t) is defined by

Dqf(t) :=
dq

dq t
f(t) =

f(qt) − f(t)

(q − 1)t
. (5)

From (5) we find

lim
q→1

Dqf(t) =
d

dt
f(t),

if f(t) is differentiable. For example, the q-derivative of f(z) = zn (n ∈ N) is

Dqz
n =

zn − (zq)n

(1 − q)z
= [n]q zn−1,

where

[n]q :=
1 − qn

1 − q
= 1 + q + · · ·+ qn−1 → n

as q → 1. So the notation [n]q (n ∈ N) is called q-analogue of n ∈ N.
The q-integral of a function f(t) is defined by

∫ z

0

f(t)dqt = z(1 − q)

∞
∑

k=0

qkf(zqk). (6)

We also recall the fractional q-calculus operators of a complex-valued function f(z) (see [11]). The fractional
q-integral operator Iδ

q,z of a function f(z) of order δ is defined by

Iδ
q,zf(z) ≡ D−δ

q,zf(z) =
1

Γq(δ)

∫ z

0

(z − tq)δ−1f(t) dqt (δ > 0), (7)

where f(z) is analytic in a simply connected region of the z-plane containing the origin and the q-binomial
function (z − tq)δ−1 is given by

(z − tq)δ−1 = zδ−1
1Φ0

(

q−δ+1 ;−; q, tqδ/z
)

.

The series 1Φ0 is defined by

1Φ0(a;−; q, z) :=

∞
∑

k=0

(a; q)k

(q; q)k

zk =
(az; q)∞
(z; q)∞

(|q| < 1; |z| < 1) , (8)

which was proven by several mathematicians and whose last equality is called q-binomial theorem (see [19,
Section 6.3]). The series 1Φ0(a;−; q, z) is single valued when | arg(z)| < π and |z| < 1 and so the function
(z − tq)δ−1 in (7) is single valued when | arg(−tqδ/z)| < π, |tqδ/z| < 1 and | arg(z)| < π.

The fractional q-derivative operator Dδ
q,z of a function f(z) of order δ is defined by

Dδ
q,zf(z) ≡ Dq,z I1−δ

q,z f(z) =
1

Γq(1 − δ)
Dq,z

∫ z

0

(z − tq)−δ f(t) dqt (0 ≤ δ < 1), (9)
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where f(z) is suitably constrained and the multiplicity of (z − tq)−δ is removed as in (7).
Let δ > 0 and m be the smallest integer that exceeds δ. Then the extended fractional q-derivative of a

function f(z) of order δ is defined by

Dδ
q,zf(z) = Dm

q,z Im−δ
q,z f(z), (10)

provided that it exists.
We find from (10) that

Dδ
q,z zn =

Γq(n + 1)

Γq(n + 1 − δ)
zn−δ (δ ≥ 0; n > −1). (11)

2 The Class T Sm
q (δ, λ, α, β)

Let A denote the class of functions f(z) of the form

f(z) = z +

∞
∑

n=2

anzn, (12)

which are analytic in the open unit disk D := {z ∈ C : |z| < 1}. Also let T denote a subclass of A consisting
of functions of the form

f(z) = z −

∞
∑

n=2

anzn (an ≥ 0; n ∈ N \ {1}). (13)

Let S, S∗, K and C denote the class of all functions in A which are, respectively, univalent, starlike, convex
and close-to-convex. A function f(z) ∈ A is said to be β-uniformly starlike of order α (0 ≤ α < 1), the class
of such functions is denoted by UST (α, β), if and only if

<

{

zf ′(z)

f(z)
− α

}

≥ β

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

(β ≥ 0; z ∈ D).

A function f(z) ∈ A is said to be β-uniformly convex of order α (0 ≤ α < 1), the class of those functions is
denoted by UCV(α, β), if and only if

<

{

1 +
zf ′′(z)

f ′(z)
− α

}

≥ β

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

(β ≥ 0; z ∈ D).

It is noted that UST (α, 0) = S∗(α) and UCV(α, 0) = K(α), where S∗(α) and K(α) are the familiar classes
of starlike and convex functions of order α. It is also noted that f(z) ∈ UCV(α, β) if and only if zf ′(z) ∈
UST (α, β). To know more about β-uniformly starlike and β-uniformly convex functions one may refer to
the papers of Kanas and Wisniowska [6, 7].

We define a q-differintegral operator Ωδ
q,z : A −→ A as follows:

Ωδ
q,zf(z) =

Γq(2 − δ)

Γq(2)
zδ Dδ

q,z f(z) = z +

∞
∑

n=2

Γq(2 − δ)Γq(n + 1)

Γq(2)Γq(n + 1 − δ)
anzn (14)

(δ < 2; 0 < q < 1; z ∈ D).

Here Dδ
q,z f(z) represents, respectively, a fractional q-integral of f(z) of order δ when −∞ < δ < 0 and a

fractional q-derivative of f(z) of order δ when 0 ≤ δ < 2. It is noted that Ω0
q,zf(z) = f(z). We remark here

that the operator Ωδ
q,z is the q-extension of Srivastava-Owa differintegral operator [9].

We also define a linear multiplier fractional q-differintegral operator D
δ,m
q,λ as follows:

D
δ,m

q,λ f(z) := D
δ,1

q,λ

(

D
δ,m−1

q,λ f(z)
)

(m ∈ N; δ < 2; λ ≥ 0; 0 < q < 1; z ∈ D) (15)
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where
D

δ,0
q,λf(z) := f(z)

and
D

δ,1

q,λf(z) := (1 − λ)Ωδ
q,zf(z) + λ z Dq(Ω

δ
q,zf(z)).

It is seen from (15) that, for f(z) in (12),

D
δ,m
q,λ f(z) = z +

∞
∑

n=2

(

Γq(2 − δ)Γq(n + 1)

Γq(2)Γq(n + 1 − δ)

[

1 − λ + [n]qλ
]

)m

anzn

= z +

∞
∑

n=2

Aq(λ, δ, m, n)anzn, (16)

where

Aq(λ, δ, m, n) =

(

Γq(2 − δ)Γq(n + 1)

Γq(2)Γq(n + 1 − δ)

[

1 − λ + [n]qλ
]

)m

. (17)

Remark 1 By suitably specializing the parameters, the operator D
δ,m

q,λ in (15) reduces to many known and
new integral and differential operators. For example, when δ = 0 and q → 1, it reduces to the operator
introduced by Al-Oboudi [2]; when δ = 0, λ = 1, and q → 1, it yields the operator given by Sălăgean [14].

By using the linear multiplier q-fractional differintegral operator D
δ,m

q,λ in (15), we introduce another
subclass Sm

q (δ, λ, α, β) of analytic functions: A function f ∈ A is said to be in the class Sm
q (δ, λ, α, β) if and

only if

<

{

z Dq

(

D
δ,m

q,λ f(z)
)

D
δ,m

q,λ f(z)
− α

}

≥ β

∣

∣

∣

∣

z Dq

(

D
δ,m

q,λ f(z)
)

D
δ,m

q,λ f(z)
− 1

∣

∣

∣

∣

(18)

where m ∈ N; 0 ≤ α < 1; β ≥ 0; δ < 2; λ ≥ 0; 0 < q < 1; z ∈ D. It is interesting to note that the class
Sm

q (δ, λ, α, β) is a generalization of β-uniformly starlike and convex functions.
Let T Sm

q (δ, λ, α, β) := Sm
q (δ, λ, α, β) ∩ T . It is seen that T Sm

q (δ, λ, α, β) extends the classes of starlike,
convex, β-uniformly starlike and convex functions with suitable choices of the parameters as shown in the
following examples: As q → 1,

(i) T S0
q(δ, λ, α, β) → UST (α, β);

(ii) T S1
q(0, 1, α, β) → UCV(α, β);

(iii) T S0
q(δ, λ, α, 0) → S∗(α);

(iv) T S1

q(0, 1, α, 0) → K(α) as q → 1.

3 Coefficient Estimates

Here a necessary condition for a function to belong to the class Sm
q (δ, λ, α, β) and a characterization of the

class T Sm
q (δ, λ, α, β) are provided.

Theorem 1 A function f(z) in (12) is in Sm
q (δ, λ, α, β) if

∞
∑

n=2

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)|an| ≤ 1 − α (19)

where 0 ≤ α < 1, β ≥ 0, λ ≥ 0, δ < 2, 0 < q < 1, m ∈ N and Aq(λ, δ, m, n) is given as in (17).
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Proof. It suffices to show that

L(z, q, δ, λ, m) ≤ 1 − α,

where

L(z, q, δ, λ, m) := β

∣

∣

∣

∣

z Dq

(

D
δ,m

q,λ f(z)
)

D
δ,m
q,λ f(z)

− 1

∣

∣

∣

∣

− <

{

z Dq

(

D
δ,m

q,λ f(z)
)

D
δ,m
q,λ f(z)

− 1

}

.

We find that

L(z, q, δ, λ, m) ≤ (1 + β)

∣

∣

∣

∣

z Dq

(

D
δ,m

q,λ f(z)
)

D
δ,m

q,λ f(z)
− 1

∣

∣

∣

∣

≤
(1 + β)

∑

∞

n=2

(

[n]q − 1
)

Aq(λ, δ, m, n)|an|

1 −
∑

∞

n=2
Aq(λ, δ, m, n)|an|

,

where Aq(λ, δ, m, n) is given in (17). Now it is seen that the last quantity is bounded above by 1− α under
the given condition (19). This completes the proof.

A necessary and sufficient condition that a given function f(z) ∈ T belongs to the class T Sm
q (δ, λ, α, β)

is provided, which is asserted by Theorem 2.

Theorem 2 A function f(z) in (13) is in the class T Sm
q (δ, λ, α, β) if and only if

∞
∑

n=2

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)an ≤ 1 − α (20)

where 0 ≤ α < 1, β ≥ 0, λ ≥ 0, δ < 2, 0 < q < 1, m ∈ N and Aq(λ, δ, m, n) is given in (17).

Proof. In view of Theorem 1, we need only to prove the sufficient part. Let f(z) ∈ T Sm
q (δ, λ, α, β) and z

be real. Then it follows from (18) that

<

{

z Dq

(

D
δ,m
q,λ f(z)

)

D
δ,m
q,λ f(z)

− α

}

≥ β

∣

∣

∣

∣

z Dq

(

D
δ,m
q,λ f(z)

)

D
δ,m
q,λ f(z)

− 1

∣

∣

∣

∣

,

which implies

1 −
∑

∞

n=2
[n]qAq(λ, δ, m, n)anzn−1

1 −
∑

∞

n=2
Aq(λ, δ, m, n)anzn−1

− α ≥ β

∣

∣

∣

∣

∑

∞

n=2

(

[n]q − 1
)

Aq(λ, δ, m, n)anzn−1

1 −
∑

∞

n=2
Aq(λ, δ, m, n)anzn−1

∣

∣

∣

∣

.

Taking the limit as z → 1 along the real axis, we obtain the desired inequality. The result (20) is sharp for

f(z) = z −
∞
∑

n=2

1 − α
[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)
zn.

We demonstrate only an application of Theorem 2 in the following corollary.

Corollary 1 Assume that a function f(z) in (13) is in T Sm
q (δ, λ, α, β). Then we have

∞
∑

n=2

an ≤
1 − α

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)
, (21)

where Aq(λ, δ, m, 2) is given in (17) and

Aq(λ, δ, m, 2) =

[

(1 − q2)(1 + qλ)

1 − q2−δ

]m

. (22)
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Proof. Since f(z) ∈ T Sm
q (δ, λ, α, β), we can use Theorem 2 to obtain

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)

∞
∑

n=2

an

≤

∞
∑

n=2

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)an

≤ 1 − α.

Thus we find that
∞

∑

n=2

an ≤
1 − α

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)
,

which is the desired inequality.

4 Growth and Distortion Bounds

Distortion bounds for functions f(z) ∈ T Sm
q (δ, λ, α, β) involving q-derivative are given in the following

theorem.

Theorem 3 Let f(z) ∈ T Sm
q (δ, λ, α, β). Then we find that, for z ∈ D,

|z| −
(1 − α)|z|2

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)

≤ |f(z)| ≤ |z| +
(1 − α)|z|2

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)
(23)

and

1−
(1 + q)(1 − α)|z|

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)

≤ |Dqf(z)| ≤ 1 +
(1 + q)(1 − α)|z|

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)
(24)

where Aq(λ, δ, m, 2) is the same as in (22).

Proof. For f(z) ∈ T Sm
q (δ, λ, α, β), we find from Corollary 1 that

∞
∑

n=2

an ≤
1 − α

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)

which implies

|f(z)| ≤ |z| + |z|
2

∞
∑

n=2

an ≤ |z| +
(1 − α)|z|2

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)
(z ∈ D)

and

|f(z)| ≥ |z| − |z|
2

∞
∑

n=2

an ≥ |z| −
(1 − α)|z|2

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)
(z ∈ D).

Thus the assertion (23) is seen to follow at once. In a similar manner, for the q-derivative Dq

(

f(z)
)

, we find
that the following inequalities:

|Dqf(z)| ≤ 1 +

∞
∑

n=2

[n]qan|z|
n−1 ≤ 1 + |z|

∞
∑

n=2

[n]qan (z ∈ D)
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and
∞

∑

n=2

[n]qan ≤
(1 + q)(1 − α)

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)

lead to the assertion (24). The distortion bounds in Theorem 3 are sharp for

f(z) = z −
(1 − α)

[

(1 + β)q + (1 − α)
]

Aq(λ, δ, m, 2)
z2 (z ∈ D). (25)

Theorem 4 below follows easily from Theorem 2.

Theorem 4 Let

fk(z) = z −

∞
∑

n=2

an,kz
n ∈ T Sm

q (δ, λ, α, β) (k = 1, 2).

Then

f(z) = (1 − ξ)f1(z) + ξf2(z) = z −

∞
∑

n=2

anzn ∈ T Sm
q (δ, λ, α, β) (0 ≤ ξ ≤ 1).

Proof. Since fk(z) ∈ T Sm
q (δ, λ, α, β) (k = 1, 2), we use Theorem 2 to get the following coefficient inequali-

ties:
∞
∑

n=2

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)an,1 ≤ 1 − α

and
∞

∑

n=2

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)an,2 ≤ 1 − α.

Furthermore, in view of the following relationship

an = (1 − ξ)an,1 + ξan,2 (n ∈ N/{1}; 0 ≤ ξ ≤ 1),

we find that

∞
∑

n=2

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)an

=

∞
∑

n=2

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n) [(1 − ξ)an,1 + ξan,2]

=

∞
∑

n=2

(1 − ξ)
[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)an,1

+

∞
∑

n=2

ξ
[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)an,2

≤ (1 − ξ)(1 − α) + ξ(1 − α) = (1 − α).

Thus, by Theorem 2 again, we finally obtain f(z) ∈ T Sm
q (δ, λ, α, β). This completes the proof of Theorem

4.
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5 Extreme Points

Theorem 5 Let f1(z) = z and

fn(z) = z −
(1 − α)

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)
zn (n ∈ N \ {1}.

Then f(z) is in T Sm
q (δ, λ, α, β) if and only if it can be expressed in the form f(z) =

∑

∞

n=1
λnfn(z), where

λn ≥ 0 and
∑

∞

n=1
λn = 1.

Proof. Adopting the same technique used by Silverman [17], we first assume that

f(z) =
∞
∑

n=1

λnfn(z) = z −
∞

∑

n=2

λn

(1 − α)
[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)
zn.

Then we have

∞
∑

n=2

λn

(1 − α)
[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)

×
([

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)
)

= (1 − α)

∞
∑

n=2

λn = (1 − α)(1 − λ1) ≤ (1 − α).

Hence it follows from Theorem 2 that f ∈ T Sm
q (δ, λ, α, β).

Conversely, suppose f ∈ T Sm
q (δ, λ, α, β). Then we find from Corollary 1 that

an ≤
1 − α

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)
(n ∈ N \ {1}).

Now, by letting

λn =

{

[

(1 + β)[n]q − (α + β)
]

Aq(λ, δ, m, n)

1 − α

}

an (n ∈ N \ {1})

and λ1 = 1 −
∑

∞

n=2
λn, we prove our assertion, since

f(z) =

∞
∑

n=1

λnfn = λ1f1(z) +

∞
∑

n=2

λnfn(z).

We conclude this paper by remarking that, by suitably specializing the parameters involved in each of
the results presented here, further numerous corollaries and consequences can be deduced.
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