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Abstract

We introduce a two-parameter class of entropic functions involving Euler’s gamma function and solve
a concavity problem stated by Ferreira & Tenreiro Machado in 2019.

1 Introduction

The concept of entropy plays a central role in many-particle physics; see [6]. The archetype of entropy is the
nowadays known as Boltzmann-Gibbs (BG) entropy, namely,

SBG(p1, ..., pn) = −k
n∑
i=1

pi log(pi), (1)

where k = 1.3807 × 10−23J/K is the Boltzmann constant, n is the number of microstates consistent with
the macroscopic constraints of a given thermodynamical system, and pi is the probability that the system
is in the microstate i. Apart from the constant factor, the mathematical properties of SBG follow from the
study of the function f(x) = −x log(x). In the past 30 years, many formulations appeared in the literature
extending the formula (1) (see, for example, [1, 2, 6, 7, 8, 12]). Here, we consider entropic functions of
the form S(p1, ..., pn) =

∑n
i=1 f(pi), where f is defined on [0, 1]. Now, the question arises: can f be any

function defined on [0, 1]? From the mathematical perspective the answer is indeed "yes", but from the
physical perspective the answer is "no". For instance, an entropy is a function that measures some kind of
feature in a physical system (such as energy that cannot produce work, disorder, uncertainty, randomness,
complexity, etc.), therefore, f should be a nonnegative function. However, there does not exist a complete
list of properties that an entropic function must satisfy. This is the reason why different entropic functions
come on the scene and attract the attention of numerous researchers. It is nevertheless usual for an entropic
function Sn to satisfy the following three Shannon—Khinchin axioms (see [6, section 2]):

Let ∆n = {(p1, ..., pn) ∈ Rn | pi ≥ 0, p1 + ...+ pn = 1}.

(i) Sn is nonnegative and continuous on ∆n.

(ii) For all (p1, ..., pn) ∈ ∆n: Sn(p1, ..., pn) ≤ Sn(1/n, ..., 1/n).

(iii) For all (p1, ..., pn) ∈ ∆n: Sn+1(p1, ..., pn, 0) = Sn(p1, ..., pn).

This paper is motivated by a recently published article of Ferreira & Tenreiro Machado [7]. Inspired by
Abe [1] and by fractional calculus theory [9] they studied the entropic function

Sα(p1, ..., pn) =

n∑
i=1

pi
Γ(1− log(pi))

Γ(1− α− log(pi))
(0 < α ≤ 1), (2)
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and applied it to study the Dow Jones Industrial Average taking into account the variation of the parameter
α (see [7, section 3] for details). Here, as usual, Γ denotes Euler’s gamma function. Numerous computer
calculations led Ferreira & Tenreiro Machado to the conjecture that the function

Rα(x) = x
Γ(1− log(x))

Γ(1− α− log(x))
(0 < α ≤ 1) (3)

is concave on (0, 1], but “a rigorous proof of that fact was not yet obtained" [7, p. 3]. It is our aim to prove
that for each parameter α ∈ (0, 1] the function Rα is strictly concave on [0, 1]. An application of Jensen’s
inequality for concave functions gives that Sα satisfies the second Shannon—Khinchin axiom.

Actually, we do not only prove that Rα is concave, but we show that for two real parameters a and b and
a function f satisfying certain assumptions, the function

Fa,b,f (x) = x
Γ(a+ f(x))

Γ(b+ f(x))

is concave on (0, 1]. Inspired by this result we introduce a two-parameter class of entropy functions which
includes (2),

Sa,b,f (p1, ..., pn) =

n∑
i=1

pi
Γ(a+ f(pi))

Γ(b+ f(pi))
. (4)

Since

S1,0,− log(p1, ..., pn) = −
n∑
i=1

pi log(pi),

we conclude that the Boltzmann—Gibbs entropy is a special case of (4).
In the next section, we present two helpful lemmas. Our main results are given in Section 3.

2 Two Lemmas

The digamma function ψ is the logarithmic derivative of Euler’s gamma function,

ψ(x) =
Γ′(x)

Γ(x)
(x > 0),

and the derivatives of ψ are known as polygamma functions. We have the series and integral representations

ψ(n)(x) = (−1)n+1n!

∞∑
i=0

1

(x+ i)n+1
= (−1)n+1

∫ ∞
0

e−xt
tn

1− e−t dt (n ∈ N, x > 0).

The main properties of these functions are collected, for instance, in [3, section 6]. In this section, we present
two useful inequalities involving ψ′, ψ′′ and ψ′′′.

Lemma 1 For x > 0, we have

L(x) = 2ψ′3(x)− ψ′(x)ψ′′′(x) + ψ′′2(x) > 0.

Proof. Let x > 0. Using

ψ′(x) =
1

x2
+ ψ′(x+ 1), ψ′′(x) = − 2

x3
+ ψ′′(x+ 1), ψ′′′(x) =

6

x4
+ ψ′′′(x+ 1), (5)

we obtain

L(x) = 2
( 1

x2
+ ψ′(x+ 1)

)3
−
( 1

x2
+ ψ′(x+ 1)

)( 6

x4
+ ψ′′′(x+ 1)

)
+
(
− 2

x3
+ ψ′′(x+ 1)

)2
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and
x3L(x) = (2A3 −AC +B2)x3 + (6A2 − C)x− 4B (6)

with
A = ψ′(x+ 1), B = ψ′′(x+ 1), C = ψ′′′(x+ 1).

The following estimates for ψ′, ψ′′ and ψ′′′ are given in [4]:

1

x
+

1

2x2
< ψ′(x) <

1

x
+

1

2x2
+

1

6x3
, (7)

1

x2
+

1

x3
< −ψ′′(x) <

1

x2
+

1

x3
+

1

2x4
, (8)

2

x3
+

3

x4
< ψ′′′(x) <

2

x3
+

3

x4
+

2

x5
. (9)

We set λ = 1/(x+ 1). Applying (7), (8) and (9) we conclude from (6) that

x3L(x) >

[
2

(
λ+

1

2
λ2
)3
−
(
λ+

1

2
λ2 +

1

6
λ3
)(

2λ3 + 3λ4 + 2λ5
)

+ (λ2 + λ3)2

]
x3

+

[
6

(
λ+

1

2
λ2
)2
−
(
2λ3 + 3λ4 + 2λ5

)]
x+ 4(λ2 + λ3)

=
Q(x)

12(x+ 1)8

with
Q(x) = 24x8 + 216x7 + 858x6 + 1973x5 + 2902x4 + 2809x3 + 1728x2 + 606x+ 96.

It follows that L(x) > 0 for x > 0.

Lemma 2 Let

M(x) = −1 +
2

x
+
ψ′′(x)

ψ′(x)
(x > 0), M(0) = lim

x→0+
M(x) = −1. (10)

For x ≥ 0, we have M(x) < 0.

Proof. From
xψ′(x)M(x) = (2− x)ψ′(x) + xψ′′(x),

we conclude that M(x) < 0 for x ≥ 2. Next, let 0 < x < 2 and λ = 1/(x+ 1). Using (5), (7) and (8) gives

xψ′(x)M(x) = (2− x)
( 1

x2
+ ψ′(x+ 1)

)
+ x
(
− 2

x3
+ ψ′′(x+ 1)

)
= − 1

x
+ (2− x)ψ′(x+ 1) + xψ′′(x+ 1)

< − 1

x
+ (2− x)

(
λ+

1

2
λ2 +

1

6
λ3
)
− x(λ2 + λ3) = − R(x)

6x(x+ 1)3

with
R(x) = 6x4 + 15x3 + 10x2 + 2(2− x) + 2 > 0.

Thus, M(x) < 0 for x > 0.
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3 Main Results

We are now in a position to present a new class of concave functions, defined in terms of the gamma function.

Theorem 1 Let 0 ≤ b < a ≤ 1 and let f : (0, 1] → R be a continuous function which is twice differentiable
on (0, 1). If

f(x) > 0 and
2

x
f ′(x) + f ′2(x) + f ′′(x) ≤ 0 for x ∈ (0, 1), (11)

then

Fa,b,f (x) = x
Γ(a+ f(x))

Γ(b+ f(x))

is concave on (0, 1].

Proof. Since Γ(x+ 1) = xΓ(x), we get

Fa,0,f (x) = xf(x)
Γ(a+ f(x))

Γ(1 + f(x))
.

This implies that Fa,b,f is continuous on (0, 1] not only if b > 0, but also if b = 0.
We set F = Fa,b,f . Let x ∈ (0, 1) and 0 ≤ b < a ≤ 1. By differentiation we obtain

1

F (x)
F ′′(x) = f ′2(x)

(
[ψ(a+ f(x))− ψ(b+ f(x))]2 + ψ′(a+ f(x))− ψ′(b+ f(x))

)
+
( 2

x
f ′(x) + f ′′(x)

)
[ψ(a+ f(x))− ψ(b+ f(x))]. (12)

Since a > b and ψ is increasing, we conclude from (11) and (12) that

1

F (x)
F ′′(x) ≤ f ′2(x)H(a, b; f(x)) (13)

with
H(a, b; t) = [ψ(a+ t)− ψ(b+ t)]2 − [ψ(a+ t)− ψ(b+ t)] + ψ′(a+ t)− ψ′(b+ t).

Next, we show that H(a, b; t) < 0 for t > 0. By partial differentiation we find

1

ψ′(b+ t)

∂

∂b
H(a, b; t) = −2[ψ(a+ t)− ψ(b+ t)] + 1− ψ′′(b+ t)

ψ′(b+ t)
= P (a, b; t), say.

Using Lemma 1 gives

ψ′2(b+ t)
∂

∂b
P (a, b; t) = L(b+ t) > 0.

Thus,

P (a, b; t) > P (a, 0; t) = −2[ψ(a+ t)− ψ(t)] + 1− ψ′′(t)

ψ′(t)
≥ −2[ψ(1 + t)− ψ(t)] + 1− ψ′′(t)

ψ′(t)
= −M(t),

where M is defined in (10). Applying Lemma 2 yields P (a, b; t) > 0. It follows that

H(a, b; t) < H(a, a; t) = 0. (14)

Using (13) and (14) (with t = f(x)) leads to F ′′(x) ≤ 0 for x ∈ (0, 1). This implies that F is concave on
(0, 1].

Remark 1 The proof of Theorem 1 reveals that if f ′(x) 6= 0 for x ∈ (0, 1), then Fa,b,f is strictly concave on
(0, 1].
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As a special case of the following corollary we obtain that the function Rα (0 < α ≤ 1) which is defined
in (3) is concave on (0, 1].

Corollary 1 Let 0 ≤ b < a ≤ 1. The function

Ga,b(x) = x
Γ(a− log(x))

Γ(b− log(x))

is strictly concave on [0, 1].

Proof. Let f(x) = − log(x). Then

f(x) > 0 and
2

x
f ′(x) + f ′2(x) + f ′′(x) = 0 for x ∈ (0, 1).

Applying Theorem 1 and Remark 1 yields that Ga,b is strictly concave on (0, 1].
Let x > 0 and t = − log(x). We obtain

Ga,b(x) =
ta−b

et
· tb−aΓ(a+ t)

Γ(b+ t)
. (15)

Since

lim
t→∞

tb−a
Γ(a+ t)

Γ(b+ t)
= 1,

we get from (15)
Ga,b(0) = lim

x→0+
Ga,b(x) = 0. (16)

Thus, Ga,b is continuous on [0, 1]. It follows that Ga,b is strictly concave on [0, 1].

Remark 2 A result of Petrovíc (see [10, section 1.4.7]) states that if a function g is concave on [0,∞),
then, for x, y ≥ 0,

g(x+ y) + g(0) ≤ g(x) + g(y).

Applying Corollary 1 and (16) yields that if 0 ≤ b < a ≤ 1, then, for x, y ≥ 0 with x+ y ≤ 1,

Ga,b(x+ y) ≤ Ga,b(x) +Ga,b(y).

This means that Ga,b is subadditive on [0, 1]. Subadditive functions have interesting applications in various
fields, like, for example, in functional analysis and semi-group theory; see [5] for more information on this
subject.

Corollary 2 Let 0 ≤ b < a ≤ 1. The function

Φa,b(x) =
Γ(a+ log(x))

Γ(b+ log(x))

is strictly concave on [1,∞).

Proof. Using Corollary 1 gives for x > 1,

Φa,b(x) = xGa,b(1/x) and Φ′′a,b(x) =
1

x3
G′′a,b(1/x) < 0.

It follows that Φa,b is strictly concave on [1,∞).
Finally, we provide some functions which satisfy (11) but are different from − log.
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Corollary 3 Let

hα,β(x) = 1− αeβ/x and Sa,b;α,β(x) = x
Γ(a+ hα,β(x))

Γ(b+ hα,β(x))
.

If β < 0 < α ≤ e−β and 0 ≤ b < a ≤ 1, then Sa,b;α,β is strictly concave on (0, 1].

Proof. Let x ∈ (0, 1). Then

e−β/xhα,β(x) = e−β/x − α > e−β − e−β = 0, h′α,β(x) =
αβ

x2
eβ/x < 0

and
2

x
h′α,β(x) + h′2α,β(x) + h′′α,β(x) = −αβ

2

x4
eβ/xhα,β(x) < 0.

Applying Theorem 1 with f = hα,β and Remark 1 reveals that Sa,b;α,β is strictly concave on (0, 1].

Remark 3 We consider the entropy

S(p1, ..., pn) =

n∑
i=1

pi
Γ(a+ 1− αeβ/pi)
Γ(b+ 1− αeβ/pi) . (17)

If we set a = 1, b = 0, α = e, β = −1 and make use of Γ(x+ 1) = xΓ(x), then (17) leads to

S∗(p1, ..., pn) =

n∑
i=1

pi(1− e1−1/pi).

This entropy function was studied by Tsekouras & Tsallis [11].
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